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ABSTRACT

Incurred but not reported (IBNR) loss reserving is of great importance for
Property & Casualty (P&C) insurers. However, the temporal dependence
exhibited in the claim arrival process is not reflected in many current loss
reserving models, which might affect the accuracy of the IBNR reserve pre-
dictions. To overcome this shortcoming, we proposed a marked Cox process
and showed its many desirable properties in Badescu et al. (2016).

In this paper, we consider the model estimation and applications. We first
present an expectation–maximization (EM) algorithm which guarantees the
efficiency of the estimators unlike the moment estimation methods widely used
in estimating Cox processes. In addition, the proposed fitting algorithm can
be implemented at a reasonable computational cost. We examine the perfor-
mance of the proposed algorithm through simulation studies. The applicability
of the proposed model is tested by fitting it to a real insurance claim data set.
Through out-of-sample tests, we find that the proposed model can provide
realistic predictive distributions.

KEYWORDS

IBNR claims, loss reserving, Cox model, hidden Markov chain, temporal
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1. INTRODUCTION

For Property & Casualty (P&C) insurers, an important type of reserve is the
so-called incurred but not reported (IBNR) reserve, which stems from the
potential time delay between the claim occurrence date and the claim report-
ing date. In practice, various deterministic algorithms based on aggregated
triangular data (e.g., Friedland 2010) are used to provide a best estimate for
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the IBNR reserve together with the reported but not settled (RBNS) reserve.
Meanwhile, there is a whole array of stochastic models which aims to interpret
these so called macro-level methods and to analyze the uncertainty of their
results. See Wüthrich and Merz (2008) and Wüthrich and Merz (2015) for a
comprehensive overview.

Due to the limited number of data points contained in the triangular struc-
ture, these macro-level models tend to be overparameterized and thus produce
unstable estimates (Verdonck et al. 2009). Furthermore, they cannot separately
estimate the RBNS reserve and the IBNR reserve without some further gran-
ulation of the current data (Schinieper 1991; Liu and Verrall 2009), or the
inclusion of new data such as the numbers of reported claims (Verrall et al.
2010). To address some of these issues, a class of models that are very pop-
ular nowadays and are referred to as “micro-level” models has emerged due
to the seminal work of Ragnar Norberg (see Norberg 1993a; Norberg 1993b;
Norberg 1999). Norberg (1993a) proposed to use a marked nonhomogeneous
Poisson model and a general mathematical framework for predicting the IBNR
claims and reserve calculation. Since then, quite a few authors contributed sub-
stantially to the development of the micro-level modeling framework. Antonio
and Plat (2014) presented a study case based on the Poisson arrival model intro-
duced by Norberg (1993a). An econometric comparison between the micro-
and the macro-level models is presented in Charpentier and Pigeon (2016).
Understanding the importance of reporting delay together with its proper cal-
ibration is essential in obtaining accurate predictions for the IBNR counts.
Verrall and Wüthrich (2016) and Verbelen et al. (2018) considered report-
ing delays that are time dependent under a Poisson-type marked accident
arrival framework. Deep learningmethods for evaluating the IBNR andRBNS
reserves are considered in Wüthrich (2018).

In Badescu et al. (2016), we proposed the modeling of the claim arrival
process together with the reporting delays as a marked Cox process. The
proposed model is mathematically tractable, statistically flexible and computa-
tionally efficient. The underlying intensity process is assumed to be a piecewise
stochastic process generated by a hidden Markov model (HMM) with Erlang
state-dependent distributions. As such, the model allows for the policy expo-
sure fluctuation. Because of the potential reporting delay, one can only observe
the associated reported claim process instead of the claim arrival process.
Meanwhile, the associated reported claim process provides a starting point for
predicting the number of IBNR claims. As a result, it is critical to understand
the connections among these three processes from a modeling perspective.
Under our model assumptions, we showed that both the associated reported
claim process and the IBNR claim process are marked Cox processes with eas-
ily convertible intensity processes and marking distributions. Because data are
usually aggregated in some discrete form before analysis in practice, we also
studied the three corresponding discretely observed processes. We showed that
they are all Pascal-HMMs and also preserve all the information about the claim
arrivals due to an order statistics property. The flexibility of the proposed Cox
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process in modeling temporal dependence is guaranteed as the joint distribu-
tion of the discretely observed claim arrival process is a multivariate Pascal
mixture (Badescu et al. 2015). In addition, we derived an analytical formula
for the auto-correlation function (ACF) of the discretely observed process,
whose power-decaying pattern is desirable for temporal dependence interpreta-
tion. Finally, we showed that both the distributions of the number of reported
claims and the number of IBNR claims come from the class of Pascal mixtures
with closed-form expression for their mixing weights. Note that assuming the
reporting delay distribution to be time independent can be viewed as a limi-
tation in our model. However, as shown in the numerical analysis, our model
provides a very accurate prediction of the number of the IBNR claims even if
the model lacks this assumption. In Section 6, we discuss how this limitation
will be addressed in our future investigations.

Given the statistical flexibility and the mathematical tractability of the
model proposed in Badescu et al. (2016), in this paper we aim to provide an
estimation procedure for the proposed Cox process. In the current literature,
Cox processes fall into two large classes, that is, the log-Gaussian Cox process
(Moller et al. 1998) and the shot-noise Cox process (Moller 2003; Avanzi et
al. 2016). Usually, the maximization of the full likelihood is computationally
very intensive and often requires an enormous amount ofMarkov chainMonte
Carlo (MCMC) simulations (Moller and Waagepeterson 2003). On the other
hand, closed-form expressions are available for many second-order summary
statistics of Cox processes, like pair-correlation function, Palm intensity and
K-function. Based on these properties, manymoment estimation methods have
been proposed, including composite likelihood (Guan 2006), Palm likelihood
estimation (Tanaka et al. 2008) and minimum contrast method (Diggle 2003).
At the expense of losing efficiency compared with maximum likelihood estima-
tors (MLEs), the estimators from these three methods are faster to compute
and are simulation-free.

Besides the balance between computational cost and efficiency of estima-
tors, estimating a Cox process as a model for claim arrivals raises some extra
challenges. Firstly, the exposure fluctuation makes the Cox process inhomo-
geneous. While the aforementioned three moment estimation methods can
be adapted for inhomogeneous Cox processes using a two-step approach
(Waagepetersen and Guan 2009), one needs to impose restrictive conditions
on the Cox process, which are usually not readily suitable for insurance inter-
pretation. Secondly, due to the reporting delay that is the key component in
estimating the IBNR reserve (Verrall and Wüthrich 2016), the claim arrival
process cannot be fully observed. Parameter estimation has to be carried out
using the associated reported claim process, which only contains incomplete
information.

In this paper, we propose an expectation–maximization (EM) algorithm for
estimating the Cox process model, which can deal with the above-mentioned
issues. The exposure fluctuation can be easily incorporated by varying the coef-
ficients before the scale parameter in the proposed model and thus poses no
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issues for the estimation (see Equation (2.1)). Since both the discretely observed
claim arrival process and the reported claim process are Pascal-HMMs with
easily convertible parameters (Proposition 2.2), one can easily cope with the
incomplete data challenge by first estimating the reported claim process and
then converting its parameters back to that of the claim arrival process. As
MLEs, the estimators from the proposed fitting algorithm are efficient. Most
importantly, the proposed algorithm can be implemented at a reasonable com-
putational cost. The E-step reduces to calculating the forward and backward
probabilities, which are recursively defined. Out of the three estimators in the
M-step, two have analytical expressions and one is the unique zero root of a
continuous monotone function.

The paper is organized as follows. Section 2 gives a brief review of the
marked Cox model proposed in Badescu et al. (2016). In Section 3, we present
an EM algorithm for fitting purposes. The effectiveness of the algorithm and
the versatility of the proposed model is tested through a simulation study in
Section 4. In Section 5, we examine the applicability of the proposed model
by fitting it to a real insurance claim data set. Detailed out-of-sample tests are
held to attest for the quality of our model. The paper concludes in Section 6
and several future research directions are given.

2. THE PROPOSED MARKED COX MODEL

In this section, we give a brief review of the marked Cox model proposed in
Badescu et al. (2016), along with its several important properties. The relevant
proofs and detailed discussions of the model can be found in that paper.

Suppose that the development of a claim until its reporting time is described
as a pair of random variables (T ,U), where T is the claim arrival time and U
is its reporting delay. The claims from the considered portfolio are ordered
in chronology of their arrival times: T1 <T2 < · · · . The claim arrival process
constitutes of the counting process {Na(t), t≥ 0}, where Na(t)=∑∞

i=1 I{Ti≤t}
and IA is the indicator function for event A. At a given valuation date τ ,
we do not observe a claim which has occurred so far unless it has been
reported, that is, T +U ≤ τ . The reported claim process comprises of the
counting process {Nr(t), 0≤ t≤ τ }, where Nr(t)=∑∞

i=1 I{Ti≤t, Ti+Ui≤τ }. In order
to predict the number of IBNR claims, we also consider the IBNR claim
process which consists of the counting process {NIBNR(t), 0≤ t≤ τ }, where
NIBNR(t)=∑∞

i=1 I{Ti≤t, Ti+Ui>τ }. It should be emphasized that all the three pro-
cesses described above are marked point processes with marks being the
reporting delays, although the notation does not explicitly express them.

As in Badescu et al. (2016), the claim arrival process {Na(t), t≥ 0} is mod-
eled as a marked Cox process. The marks or the reporting delays {U1,U2, . . .}
are assumed to be independent and identically distributed (i.i.d.) random
variables with common density function pU (u) and cumulative distribution
function PU (u). The stochastic intensity process �(t) is assumed to be a
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piecewise stochastic process: �(t)= �l, for dl−1 ≤ t< dl, l = 1, 2, . . . with d0 =
0, where d1, d2, . . . are preset time points that may be interpreted as data col-
lecting times. {�1,�2, . . .} is assumed to come from an Erlang hidden Markov
model (Erlang-HMM) with the following structure:

• The hidden parameter process {C1,C2, . . .} is a time-homogeneous Markov
chain with a finite state space {1, 2, . . . , g}. Its initial distribution and transi-
tion probability matrix are, respectively, denoted by the row vector π 1 and
the matrix � = (γij)g×g, where γij =P(Cl = j|Cl−1 = i). The Markov chain is
assumed to be irreducible, aperiodic and all the states are positive recurrent.
As a result, there exists a unique limiting distribution which is denoted by δ.

• The state-dependent process {�1,�2, . . .} is such that they are independent of
each other when conditional on {C1,C2, . . .}. In addition, each �l depends
only on the current state Cl. Given that Cl = i, we assume that �l follows an
Erlang distribution with shape parameter mi and scale parameter ωlθ whose
density function is given by

f�l |Cl=i(λ)=
λmi−1e− λ

ωl θ

(ωlθ)mi (mi − 1)! � f (λ;mi,ωlθ), (2.1)

where ωl represents the exposure of the considered portfolio for the lth
period.

We remark that the Ammeter process (Ammeter, 1948) is a very special
case of the proposed claim arrival process. In fact when d1 = ∞, the proposed
process is reduced a mixed Poisson process. When the initial distribution π 1

is the limiting distribution δ, each row of � is δ and there are no exposure
fluctuation ωl ≡ ω, the proposed process further degenerates to an Ammeter
process.

If the claim arrival process {Na(t), t≥ 0} is a marked Cox process, then
both the associated reported claim process {Nr(t), 0≤ t≤ τ } and the IBNR
claim process {NIBNR(t), 0≤ t≤ τ } are still marked Cox processes with easily
convertible stochastic intensity functions and mark densities.

Theorem 2.1. Assume that the claim arrival process {Na(t), t≥ 0} is a marked
Cox process as described above. Then for a given valuation date τ , its
associated reported claim process {Nr(t), 0≤ t≤ τ } and IBNR claim pro-
cess {NIBNR(t), 0≤ t≤ τ } are also marked Cox processes. Their adjusted
stochastic intensity functions are �r(t)= �(t)PU (τ − t)I{0≤t≤τ } and �IBNR(t)=
�(t) (1−PU (τ − t)) I{0≤t≤τ }, respectively, and their independent marks follow
adjusted position-dependent mark density functions prU|t(u)= pU (u)

PU (τ−t)I{0≤u≤τ−t} and

pIBNRU|t (u)= pU (u)
1−PU (τ−t)I{u>τ−t}, respectively.

For a given integer l, denote the number of claims that arrived during
[dl−1, dl) by Nl. Similarly, Nr

l and N
IBNR
l , respectively, are the number of claims

occurred during [dl−1, dl) that are reported or not by the valuation time τ .
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Without loss of generality, assume that τ = dk. Then {N1,N2, . . .}, {Nr
1, . . . ,N

r
k}

and {NIBNR
1 , . . . ,NIBNR

k } all come from the class of Pascal-HMMs as shown in
the following theorem.

Theorem 2.2. For the proposed claim arrival process, the discretely observed
claim arrival process {N1,N2, . . .}, the discretely observed reported claim
process {Nr

1, . . . ,N
r
k}, and the discretely observed IBNR claim process

{NIBNR
1 , . . . ,NIBNR

k } all come from the class of Pascal-HMMs. They share the
same hidden parameter process {C1,C2, . . .} with {Na(t), t≥ 0} and their state-
dependent distributions are Pascals with the following probability functions,
respectively,

P(Nl = n|Cl = i)=p (n;mi, (dl − dl−1)ωlθ),

P(Nr
l = n|Cl = i)=p

(
n;mi,

(∫ dl

dl−1

PU (τ − t)dt
)

ωlθ

)
,

P(NIBNR
l = n|Cl = i)=p

(
n;mi,

(∫ dl

dl−1

(1−PU (τ − t)) dt
)

ωlθ

)
,

where

p(n;m, θ)=
(
n+m− 1
m− 1

)(
1

1+ θ

)m (
θ

1+ θ

)n

. (2.2)

3. PARAMETER ESTIMATION: AN EM ALGORITHM

In this section, we will present an EM algorithm for fitting our class of Pascal-
HMMs, which includes the three discretely observed processes discussed
above. Variations of the EM algorithm have been used to fit Erlang-based
mixture distributions to data in Lee and Lin (2010), Badescu et al. (2015) and
Verbelen et al. (2015). As we are dealing with time series data and fitting the
proposed stochastic model to the data in this paper, the proposed EM algo-
rithm in this section, although it has some similarity to the aforementioned
EM algorithms due to the use of the Erlang distribution, is very different. The
likelihood calculation now involves the use of forward and backward proba-
bilities and hence is much more complex, which requires the employment of an
approximation scheme.

The general class of Pascal-HMM has the same components as that of our
proposed model in Section 2, except that the state-dependent distributions are
Pascals with known time-varying scale parameters:

P(Nl = n|Cl = i)= p(n;mi, alθ), al > 0, l = 1, 2, . . . , i= 1, . . . , g. (3.1)
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When al = (dl − dl−1)ωl, the above model generates the discretely observed
claim arrival process. The discretely observed reported claim process and the
discretely observed IBNR claim process, respectively, come from the above

model if al equals
(∫ dl

dl−1
PU (τ − t)dt

)
ωl or

(∫ dl
dl−1

(1−PU (τ − t)) dt
)

ωl.

Denote the random sample from this general Pascal-HMM and our obser-
vation, respectively, byN (T) = (N1, . . . ,NT ) and n(T) = (n1, . . . , nT ). Our goal is
to estimate all the parameters in the model: g, m1, . . . ,mg, π 1,� and θ under
constraints including

∑g
i=1 π1i = 1 and

∑g
j=1 γij = 1 for i= 1, . . . , g. Denote 1 as

the row vector with all its elements being 1 and 1T as the corresponding
transposed column vector. We also adopt the following notation:

Pt(n)=
⎛
⎜⎝
p(n;m1, atθ) . . . 0

...
. . .

...
0 . . . p(n;mg, atθ)

⎞
⎟⎠ . (3.2)

Using a similar proof to that of Corollary 4.3 in Badescu et al. (2016), the
likelihood for the observed data is

P(N (T) = n(T))= π 1P1(n1)�P2(n2) · · · �PT (nT )1T �LT . (3.3)

The maximization of the above likelihood is a complex problem of con-
strained nonlinear optimization, which can be a challenging task numerically.
Due to the finite mixture structure of our model together with the Erlang
conditional distribution assumption for the accident intensity we will con-
sider the model estimation in an EM algorithm context. Before presenting
the details about the algorithm, we first introduce forward and back proba-
bilities, which will play an important role in the E-step of the proposed EM
algorithm.

3.1. Forward and backward probabilities

For t= 1, 2, . . . ,T and i= 1, 2, . . . , g, define

αt(i)=P(N (t) = n(t),Ct = i), (3.4)

where N (t) = (N1, . . . ,Nt) and n(t) = (n1, . . . , nt), and

βt(i)=P(NT
t+1 = nTt+1|Ct = i), (3.5)

where NT
t+1 = (Nt+1, . . . ,NT ) and nTt+1 = (nt+1, . . . , nT ). In the literature of

HMMs, the probabilities αt(i)’s and βt(i)’s are usually referred to as for-
ward probabilities and backward probabilities, respectively. Under our model
assumptions, these probabilities may be calculated recursively as shown in the

https://doi.org/10.1017/asb.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.15


716 ANDREI L. BADESCU, TIANLE CHEN, X. SHELDON LIN AND DAMENG TANG

proposition below. The proof is similar to those of Propositions 2 and 3 of
Section 4.1 in Zucchini and MacDonald (2009).

Proposition 3.1. Denote row vector αt = (αt(1), . . . , αt(g)) and column vector
β t = (βt(1), . . . , βt(g))

T. Then the following recursive relations hold:

α1 = π 1P1(n1),

αt = αt−1�Pt(nt), t= 2, 3, . . . ,T , (3.6)

and

βT = 1,

β t = �Pt+1(nt+1)β t+1, t= 1, 2, . . . ,T − 1. (3.7)

We remark that there exists the computational issue of underflow when cal-
culating the forward (backward) probabilities. The values of the probabilities
can become exceedingly small when t becomes large (small). When we imple-
ment the proposed EM algorithm in the next subsection, a strategy of scaling
αt and β t will be used as suggested in Zucchini andMacDonald (2009). In most
applications, including all of our simulation studies and real data analysis, this
technique can help avoid the underflow problem.

In the next proposition, we obtain the conditional probability of the states
of the HMM as well as their conditional transition probabilities.

Proposition 3.2. For t= 1, . . . ,T,

P(Ct = i|N (T) = n(T))= αt(i)βt(i)/LT .

For t= 2, . . . ,T,

P(Ct−1 = i,Ct = j|N (T) = n(T))= αt−1(i)γijp(nt;mj, atθ)βt( j)/LT .

Here LT = π 1P1(n1)�P2(n2) . . . �PT (nT )1.

The results in the both propositions are of central importance in the E-step of
the proposed EM algorithm.

3.2. An EM algorithm

In each run of the proposed EM algorithm, we treat g,m1, . . . ,mg as preset
and aim to estimate parameters � = (π 1,�, θ). We augment each observed
data Nt = nt, t= 1, 2, . . . ,T , by introducing its associated state indicators Zt =
(Zt1, . . . ,Ztg), where for i= 1, 2, . . . , g,

Zti =
{
1, if Ct = i
0, otherwise

. (3.8)
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Based on the structure of {C1,C2, . . . ,CT}, Zt satisfies the following distribu-
tional laws:

P(Z1 = z1)=
g∏
i=1

π
z1i
1i ,

P(Zt = zt|Zt−1 = zt−1)=
g∏
i=1

g∏
j=1

(
γij
)zt−1,i×zt,j .

The likelihood of the complete data {n(T), z(T)} can be obtained as

L(�; n(T), z(T))

�P(N (T) = n(T),Z (T) = z(T))

=P(Z1 = z1) ·
T∏
t=2

P (Zt = zt|Zt−1 = zt−1) ·
T∏
t=1

P (Nt = nt|Zt = zt)

=
g∏
i=1

π
z1i
1i ·

T∏
t=2

g∏
i=1

g∏
j=1

(
γij
)zt−1,i×zt,j ·

T∏
t=1

g∏
i=1

(p(nt;mi, atθ))
zti .

Correspondingly, the log-likelihood of the complete data is

l(�; n(T), z(T))=
g∑
i=1

z1i ln π1i +
g∑
i=1

g∑
j=1

T∑
t=2

zt−1,i zt,j ln γij

+
T∑
t=1

g∑
i=1

zti ln p(nt;mi, atθ). (3.9)

3.2.1. The E-step
At the kth iteration of the E-step, we take the conditional expectation of (3.9)
given the observed data n(T) and the current estimator �(k−1) for �:

Q(�;�(k−1))

�E
(
l(�; n(T),Z (T))|n(T);�(k−1)

)
=

g∑
i=1

z(k)1i ln π1i +
g∑
i=1

g∑
j=1

T∑
t=2

z(k)tij ln γij +
T∑
t=1

g∑
i=1

z(k)ti ln (p(nt;mi, atθ)), (3.10)

where, according to Proposition 3.2,

z(k)ti =E
(
Zti|n(T);�(k−1)

)
=P

(
Zti = 1|n(T);�(k−1)

)
=P

(
Ct = i|n(T);�(k−1)

)
= αt(i)(k−1)βt(i)(k−1)

L(k−1)
T

(3.11)
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and

z(k)tij =E
(
Zt−1,i ×Zt,j|n(T);�(k−1)

)
=P

(
Zt−1,i = 1,Zt,j = 1|n(T);�(k−1)

)
=P

(
Ct−1 = i,Ct = j|n(T);�(k−1)

)
= α

(k−1)
t−1 (i)γ (k−1)

ij p(nt;mj, atθ (k−1))βt(j)(k−1)

L(k−1)
T

. (3.12)

Here, L(k−1)
T is the likelihood for the observed data (see (3.3)) with � = �(k−1).

3.2.2. The M-step
At the kth iteration of the M-step, we maximize (3.10) under the constraints on
the parameters, that is,

∑g
i=1 π1i = 1 and

∑g
j=1 γij = 1 for i= 1, 2, . . . , g. Observe

that each of the three terms in (3.10) only contains one part of � = (π 1,�, θ),
which shows that this maximization neatly splits into three separate pieces.

Using Lagrange’s multiplier, it is easy to see that the constrained optimizers
for π 1 and � are

π
(k)
1i = z(k)1i , i= 1, 2, . . . , g, (3.13)

and

γ
(k)
ij =

∑T
t=2 z

(k)
tij∑g

j=1

∑T
t=2 z

(k)
tij

, i, j= 1, 2, . . . , g. (3.14)

Both of the above optimizers have intuitive interpretations. π (k)
1i is the posterior

probability of N1 belonging to state i. γ
(k)
ij is the proportion of the expected

number of one-step transition from i to j to the total expected number of one-
step transition from i to all the states including state i itself.

Remark 3.3. If we assume the hidden Markov chain {C1,C2, . . .} is stationary,
that is, π 1 = δ, then (3.10) should be maximized with an extra constraint, namely,
π 1� = π 1, which may increase the complexity of this maximization. This problem
is also discussed in Zucchini andMacDonald (2009). While the initial distribution
can be quite different from the stationary distribution, the convergence is usually
relatively fast for HMMs. This has been documented in Zucchini andMacDonald
(2009).

Finally, θ (k) satisfies equation

T∑
t=1

g∑
i=1

z(k)ti
nt
θ

=
T∑
t=1

g∑
i=1

z(k)ti

(
miat

1+ atθ
+ ntat

1+ atθ

)
. (3.15)
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Since
∑g

i=1 z
(k)
ti = 1, it reduces to

T∑
t=1

nt
θ

=
T∑
t=1

g∑
i=1

z(k)ti
miat

1+ atθ
+

T∑
t=1

ntat
1+ atθ

,

where it can be rewritten as the following if we denote
∑g

i=1 z
(k)
ti mi as z̃

(k)
t :

T∑
t=1

(
z̃(k)t atθ − nt
1+ atθ

)
= 0. (3.16)

Since all of z̃(k)t , nt and at are nonnegative, (3.16) is a continuous and mono-
tone function of θ over the domain of (0,∞) and takes values in the range of
(−∑T

t=1 nt,
∑T

t=1 z̃
(k)
t ) including zero. This implies that its equivalent equation

(3.15) has a unique solution, which entails little computational cost to solve
for.

We measure the difference between two consecutive sets of parameters
�(k−1) and �(k) using the relative distance defined as

d(�(k−1),�(k))=
g∑
i=1

∣∣∣∣∣π
(k−1)
1i − π

(k)
1i

π
(k−1)
1i

∣∣∣∣∣+
∣∣∣∣θ (k−1) − θ (k)

θ (k−1)

∣∣∣∣+
g∑
i=1

g∑
j=1

∣∣∣∣∣γ
(k−1)
ij − γ

(k)
ij

γ
(k−1)
ij

∣∣∣∣∣ .
The E-step and the M-step are iterated until d(�(k−1),�(k)) becomes sufficiently
small.

3.2.3. Initialization
Initialization is usually one of the bottlenecks for the performance of an EM
algorithm, especially for models with many parameters like ours. Based on our
numerical experiments and the various real data analysis from Zucchini and
MacDonald (2009), we find that the following initialization strategy produces
satisfactory results in most situations:

1. For a given g, set mi = si, where i= 1, . . . , g and s is a spread factor which
serves to achieve a wider spread at the initial step. If possible, one should
try using a wide range of spread factors.

2. For i= 1, . . . , g, set π
(0)
1i = 1/g. It is known (e.g., Zucchini and MacDonald

2009) that the estimators for π 1 will converge to a unit vector very quickly,
so using these crude uniformly distributed estimates should have little
influence on the efficiency of the proposed algorithm.

3. All the off-diagonal transition probabilities are initialized at small values
such as 0.01, that is, γ

(0)
ij = 0.01 for i �= j, and γ

(0)
ii = 1− 0.01× (g− 1) for

i= 1, . . . , g.

https://doi.org/10.1017/asb.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.15


720 ANDREI L. BADESCU, TIANLE CHEN, X. SHELDON LIN AND DAMENG TANG

4. Set θ (0) = (g/T)
(∑

t nt/at
)
/
∑

i mi. Since E(Nt)=∑
i πtimiatθ , if we assume

that πti ≡ π
(0)
1i = 1/g, it reduces to E(Nt/at)=∑

i miθ/g. Thus the formula
for θ (0) is simply its sample version.

3.3. Adjustments of the shape parameters and the number of states

In the above EM algorithm, all the shape parameters are preset, which means
that the resulting estimators might be suboptimal. However, it is not practical
to search for the optimal shape parameters in the strict sense, since the search-
ing range is Ng. To circumvent this issue, we follow the element-wise +1/−1
variation strategy advocated in Lee and Lin (2010), which is briefly described
below.

Denote the shape parameters as m= (m1, . . . ,mg) and assume that we have
fitted the model with these shape parameters.

• Increase mg by 1 and keep all the other shape parameters unchanged. Use
this new set of shape parameters and the estimated parameters from the
previous fit as the new initialization and perform the fitting again. Repeat
increasing the value of mg by 1 until the likelihood of the fitted model stops
increasing.

• Apply the above procedure to mg−1, . . . ,m1 as well. One has to make sure
that m1, . . . ,mg is always in an increasing order.

• Decreasem1 by 1 and keep all the other shape parameters unchanged. Apply
the procedure in step 1. Similar form2, . . . ,mg. As in step 2, one should keep
m1, . . . ,mg in an increasing order.

• Repeat the above steps until the likelihood of the fitted model does not
increase.

The above strategy to adjust the shape parameters is quite effective according
to our numerical experiments.

At the same time, we also need to determine the appropriate number of
states g. While increasing the value of g can always improve the fitting effect,
it introduces the statistical issue of overfitting as well. For this purpose, we
propose to use a modified backward selection strategy again from Lee and Lin
(2010). Each time we delete the state with the smallest limiting probability.
While the estimated value of θ in the previous run of the EM algorithm can
be directly used as the initial value for the new run, the initial values of π 1

and � can be found by normalizing their estimated values without the deleted
state. This backward selection strategy can take advantage of the estimated
values from the previous run and thus significantly increase the efficiency of
the proposed algorithm. We stop deleting the number of states when the cho-
sen information criteria (IC) (which can be either AIC or BIC) of the fitted
model no longer decreases. If the resulting fitted model has a lower value of the
chosen IC, the new number of states g− 1 as well as all the other parameters
would replace their old values. This procedure of reducing the number of states
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continues until the value of the chosen IC no longer decreases by deleting an
additional state.

4. A SIMULATION STUDY

The main purpose of this section is to investigate the algorithm’s ability to
recover the original model parameters when the base model comes from the
same class of distributions to the one we are considering in the paper, namely
the Pascal-HMM class. To this end, we consider two scenarios, the first con-
tains a smaller state space with relatively small values of the parameters and
the second one with higher state space and very large values of the shape
parameters and various types of transition probability matrices.

In the first study that we present in more details, we simulated 5,000 data
points (n1, n2, . . . , n5000) from a Pascal-HMM in the form of (3.1) with the
following parameters:

g= 3, θ = 5,
(m1,m2,m3)= (12, 21, 37),

� =
⎛
⎝0.90 0.06 0.04
0.03 0.95 0.02
0.06 0.06 0.88

⎞
⎠ , (4.1)

π 1 = (1, 0, 0),
al ≡ 1, l = 1, 2, . . .

There exists a unique limiting distribution δ = (0.273, 0.545, 0.182) for the given
� and al ≡ 1 corresponds to the first assumption in Theorem 4.1 in Badescu
et al. (2016). However, π 1 does not equal to δ, which means this Pascal-HMM
is not stationary. On the other hand, the underlying Markov chain quickly
converges to its limiting distribution (π 50 = (0.274, 0.544, 0.182) for our target
model). As a result, the truncated series (n51, n52, . . . , n5000) can be considered as
stationary, which allows us to calculate various quantities of interest (e.g., ACF
and marginal distributions). Figure 1 shows the last 500 points of our simu-
lated sample. The three vertical lines on the histogram correspond, respectively
(from left to right) to the three mean values of the state-dependent distributions
(60, 105 and 185). While it seems easy to distinguish the highest level from the
other two, separation between the lower two is not obvious visually. One of
our aims is to detect these three groups and determine each point’s belonging
based on the fitted model.

Starting from 5 states, we followed the proposed EM algorithm and
obtained a sequence of fitted models corresponding to spread factors ranging
from 1 to 14. The AICs of these models are shown in Figure 2. We see that
the best fitted model (in terms of AIC) is obtained from an initialization with
a spread factor of 4. The influence of the choice of spread factors on the fitted
model signifies the necessity of introducing it in our initialization strategy.
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FIGURE 1: Simulated sample.

FIGURE 2: The effect of using different spread factors in the initialization.

The chosen fitted model has three states and has the following parameters:

Common Scale (θ): 5.005

Shapes:(
12 21 37

)
Initial Probability:(

1 . .
)

(4.2)

Transition Matrix:⎛
⎝0.893 0.063 0.044
0.033 0.943 0.024
0.061 0.064 0.875

⎞
⎠
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TABLE 1

CLASSIFICATION OF THE SIMULATED SAMPLE.

Accuracy

Overall 96.4%
State 1 95.7%
State 2 96.7%
State 3 96.5%

FIGURE 3: True hidden state vs. viterbi decoding.

Stationary State:(
0.2760 0.5253 0.1987

)
Mean Time to Return:(

3.623 1.904 5.033
)

(4.3)

The fitted model successfully recognizes the three underlying states. It also
fully recovers the shape parameter and the initial distribution. The estimated
values for θ and � are all very close to their target values. Closeness in param-
eter space indicates closeness in all distributional properties. Although not
stationary, the underlying Markov chain of the fitted model quickly converges
to its limiting distribution as well.

Finally, we perform data classification based on the fitted model and using
the global decoding method (see Zucchini and MacDonald 2009). Our fitted
model successfully recovers the states of most data points. We plotted the last
100 data points to visualize the decoding accuracy in Figure 3.

Intuitively, the state with the largest (smallest) limiting probability can be
most (least) easily detected; this is confirmed by the relative errors in Table 1.

While in the first simulation study the values of the parameters are relatively
nice, in the second example we purposely chose a higher dimension state space
with parameter values that are very large. To this end, we simulated 1, 000
time steps from a Pascal-HMM in the form of (3.1) with different number of
states. The shape parameters are randomly generated and sorted in increasing
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TABLE 2

TRANSITION MATRICES WHERE g IS NUMBER OF STATES.

Transition type P(Ct+1 = j|Ct = i)

0 1/g
1 ((1+ g)− |i− j|)/(∑j (1+ g)− |i− j|)
2 (1+ |i− j|)/(∑j 1+ |i− j|)

TABLE 3

AVERAGE RELATIVE ERROR FOR PARAMETER RECOVERY.

True Transition Fitted Average relative error

States Type States Shapes (m) Scale (θ) Transition (�)

4 0 4 0.0230 0.0272 0.1063
4 1 4 0.0053 0.0041 0.1138
4 2 4 0.1478 0.1719 0.1297
8 0 9 – 0.0011 –
8 1 8 0.1150 0.1037 0.2240
8 2 8 0.3027 0.4252 0.2623

order and the common scale parameter is fixed, θ = 1. We consider a 4- and
an 8-state Pascal-HMM with the shape parameters recorded in the vector m=
(83, 182, 271, 358, 448, 544, 633, 726). Note that for the 4-state HMMwe chose
the first four values of the shape parameters.

Three types of transition probability behaviors are considered according to
the structure presented in Table 2. For transition type 0, state transitions are
uniform. Transitions of type 1 are transitions back to the current state, while
transitions type 2 are transitions away from the current state.

For vectors v, v̂ of length n, we define the average relative error as E(v, v̂)=
1
n

∑n
i=1

|v̂i−vi |
vi

. For matrices, we compute the average relative error as a average
over all elements. The average relative errors are presented in Table 3. As it can
be observed from the table, for smaller state spaces the relative errors are small
given the very large shape parameter values. However for larger state spaces (of
dimension 8), the relative error increases and sometimes the algorithm is not
able to recover the exact number of states. This is justified by the fact that the
likelihood for such huge values of the shape parameters is insensitive to smaller
changes in shape parameters, overall being almost impossible to recover the
exact values of the parameters.

For 8-states, Transition Type 0, we found that the fitted model has 1 extra
state: m̂= (83, 180, 274, 359, 447, 531, 619, 661, 730). This is due to the state
corresponding to shape parameter 633 being misidentified as two separate
states (i.e., states corresponding to shapes 619, 661), whose average shape is
640. If we combine the misidentified states as a single state with shape 640, the
average relative error for shape is 0.0084.
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For 8-states, Transition Type 2, the fitted common scale is 1.4252, which
is far from the true scale parameter of 1. With mixture of many components,
the exact parameters for each component can be hard to identify since they
give similar log-likelihoods. If we compute an adjusted shape parameter for the
true scale parameter by matching the component means, such that m∗θ = m̂θ̂ ,
we find that the average relative error for the shape parameter drops to 0.0073.

To conclude, as the values of the model parameters increase it is harder
and harder to recover the original parameters. However, the proposed algo-
rithm produces very good estimates for the empirical-based model, fact that is
illustrated numerically in the next section on a real insurance application.

5. APPLICATION: PREDICTING THE NUMBER OF IBNR CLAIMS

In this section, we aim to examine the applicability of the proposedmodel along
with the suggested fitting algorithm through a real insurance data set. We will
focus on the prediction of the number of IBNR claims.

5.1. Data

Our data come from an automobile liability insurance portfolio supplied by
an European company. There are policies with varying policy lengths in the
portfolio, with yearly policies being the most common, followed by 6-month
policies, with starting dates ranging from 1/1/2005 to 6/22/2015. Among them,
321,925 claims were incurred and reported during the observation period
from 1/1/2005 to 5/29/2015 with their accident and reporting dates provided.
Although not directly used for the analysis in this paper, detailed records are
also available for other claim information, including start and end dates of case
reserves, payment amounts and times, as well as a final claim status indicating
whether it is closed or not. However, information about specific claim types
(bodily injury, material damage, etc.) are not provided. Since the claim devel-
opment pattern can be quite different for various claim types, there might exist
some degree of heterogeneity in our dataset.

We assume a valuation date τ of 2010-01-02, based on which a training set
and a validation set are extracted from the original dataset. While the train-
ing set includes all the claims incurred and reported between 2005-01-01 and
2010-01-02, the validation set shows more claims incurred during this period
that were reported after 2010-01-02. A week is chosen as the unit of time. The
evolution of the portfolio exposures per week over the observation period can
be found in Figure 4. The exposures are calculated as earned ones, for example,
if the lifetime of a policy has an overlapping of n days within a given week, then
it contributes n/7th to the exposure of that week. We observe that the portfolio
experienced a slowing growth from the start of valuation period until the end
of valuation, on 2010-01-02. It is interesting to note that there are few sharp
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TABLE 4

CHARACTERISTICS OF THE OBSERVED REPORTING DELAYS (IN DAYS).

Mean Min. 1st Qu. Median 3rd Qu. Max.

Lower 23.14 0.00 0.00 2.00 7.00 1799.00
Upper 24.99 1.00 2.00 4.00 9.00 1801.00

FIGURE 4: Exposure of the portfolio.

drops in the amount of covered policies during the first few years due to many
policies of the same coverage length that expired simultaneously. The feature
disappears slowly as policy signing dates start to vary.

Reporting delay is an important driver for the IBNR claims. Because we
have some claims that are reported the same day of the accident, and as the
exact times that these happen are missing from our data set, we treated this as
a censored observation. We assume that a date in the table indicates that the
corresponding event occurred anywhere between 00:00H and 23:59H on that
day. Since an accident cannot be reported before it has occurred, we floored
the lower limit of the reporting delay by 0.

lower = max{0, Reporting date - Accident date -1}

upper = Reporting date - Accident date + 1
(5.1)

Treating the reporting delay as censored data is not only more realistic but
also more practical, since the IBNR is expected to be affected significantly by
the unreported claims that occurred close to the end of the valuation period.
Due to a large exposure value toward the end of the valuation day, we expect
a significant number of such claims.

Some characteristics of the observed reporting delays after this modifica-
tion are presented in Table 4. As it can be seen, while about three quarters of
the claims were reported around 1 week, the longest reporting delay is about
4.93 years.

Since the maximum reporting delay is less than 5 years, it is reasonable to
assume that most, if not all, of the claims incurred prior to 2010-01-02 have
been reported by 2015-12-31.
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FIGURE 5: Arrivals reported by valuation.

We also plot the observed arrival counts for claims reported by the valua-
tion date in Figure 5, as well as a normalized version, where counts are divided
by exposure at that time. We note that the shape of the un-normalized ver-
sion is roughly similar to the exposure during the valuation period, while the
normalized version reflects a slight decay in reported claims closer to valuation
time.

5.2. Likelihood

According to Theorem 2.1 and our model assumptions, the reported claim pro-
cess {Nr(t), 0≤ t≤ τ } is a marked Cox process whose stochastic intensity func-
tion and mark density function are �(t)PU (τ − t)I{0≤t≤τ } and

pU (u)
PU (τ−t)I{0≤u≤τ−t},

respectively, where �(t) follows the Erlang-HMM described in Section 2.
Without loss of generality, we assume τ = dk. For l = 1, . . . , k, let nrl stand for
the number of claims incurred during period [dl−1, dl) and reported by time τ .
Ordered in terms of their arrival times, these claims together with their report-
ing delays are denoted as {(Tr(l)

i ,Ur(l)
i ), i= 1, . . . , nrl }. Using similar calculations

as those in the proof of Theorem 5.1 in Badescu et al. (2016), the likelihood for
observing all the arrival times and reporting delays of these claims up to time
τ (i.e., those from the training set) is

P
(
Nr
l = nrl ,

(
Tr(l)
i ,Ur(l)

i

)
∈
(
dtr(l)i , dur(l)i

)
, l = 1, . . . , k, i= 1, . . . , nrl

)

=
g∑

i1=1

. . .

g∑
ik=1

P(C1 = i1, . . . ,Ck = ik)

·
k∏
l=1

(∫ ∞

0
λ
nrl
l e

−
(∫ dl

dl−1
PU (τ−t)dt

)
λl f�l |Cl=il (λl)dλl

) k∏
l=1

nrl∏
i=1

(
dtr(l)i pUr(l)

i
(dur(l)i )

)
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=
g∑

i1=1

. . .

g∑
ik=1

P(C1 = i1, . . . ,Ck = ik)

·
k∏
l=1

⎛
⎜⎝∫ ∞

0

((∫ dl
dl−1

PU (τ − t)dt
)

λl

)nrl
e−

(∫ dl
dl−1

PU (τ−t)dt
)
λl

nrl !
f�l |Cl=il (λl)dλl

⎞
⎟⎠

·
k∏
l=1

⎛
⎝nrl !

nrl∏
i=1

(
dtr(l)i∫ dl

dl−1
PU (τ − t)dt

pUr(l)
i
(dur(l)i )

)⎞⎠

=P(Nr
1 = nr1, . . . ,N

r
k = nrk) ·

k∏
l=1

⎛
⎝nrl !

nrl∏
i=1

PU (τ − tr(l)i )dtr(l)i∫ dl
dl−1

PU (τ − t)dt

⎞
⎠ ·

k∏
l=1

nrl∏
i=1

pUr(l)
i
(dur(l)i )

PU (τ − tr(l)i )
.

(5.2)

Note that (5.2) generalizes the observable likelihood under the marked Poisson
process assumptions from Verrall and Wüthrich (2016) (Equation 3) breaking
up into three parts. The first part is the likelihood of the discretely observed
reported claim process. The second part can be interpreted as a generalization
of the well-known order statistics property of the non-homogeneous Poisson
process. The last part implies that the reporting delay of a claim occurred at
time t is right-truncated at the threshold of τ − t and they are independent with
each other.

5.3. Estimation results

The maximization of the likelihood in (5.2) is a very complicated task and
cannot be pursued in one piece unless certain classes of reporting delays are
considered and simple numerical integration is involved (see, e.g., Weibull
reporting delays in Antonio and Plat 2014). In this paper, rather than involving
a global maximization of the likelihood in (5.2), we use a two step maximiza-
tion. The price we pay for using this approximation for the likelihood is offset
by the use of the mixture of Erlangs family for the reporting delays. This class
of distributions is dense in the space of positive distributions (Tijms 1994), as
well as it possesses other important properties that make it an ideal candidate
for fitting purposes (see Lee and Lin 2010 for more details). More precisely, by
observing that the terms involving the truncation PU (τ − tr(l)i ) from the second
and third parts of (5.2) cancel each other out, in the first step we maximize the
likelihood of the observed reported delay densities

∏k
l=1

∏nrl
i=1 pUr(l)

i
(dur(l)i ). As,

according to (5.1), the reporting delays are interval-censored, we use an EM
algorithm for fitting a censored Erlang mixture (Verbelen et al. 2015).

The final fitted result is a mixture of 15 Erlang components as shown in
Figure 6. Any additional state reduction results in a higher AIC and is thus
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FIGURE 6: Final state reduction and AICs.

FIGURE 7: Observed reporting delays v.s. fitted Erlang mixtures.

not favoured by the fitting algorithm. Figure 7 compares the fitted result with
the observed values of the censored reporting delays, via a QQ-plot and a
histogram, where actual values are assumed to be the average of the lower and
upper bounds. This is reasonable since lower and upper bounds specified above
do not differ by more than 2 days. The histogram is truncated to the data of
less than 60 days, as most of the mass is concentrated till 60. Visual inspection
comparing the histogram to the fitted density as well as the QQ plot shows a
satisfactory fitting both in terms of the body and tail of the data.

After the reporting delay has been fitted, the second part in (5.2) becomes
a constant. Consequently, our next aim in our two-step approximation proce-
dure is to maximize the first part therein, that is, the likelihood for the discretely
observed reported claim process up to the valuation date τ , which is shown in
Figure 5. According to Theorem 2.2, this discretely observed process comes
from a Pascal-HMM with the following state-dependent distribution:
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P(Nr
l = n|Cl = i)= p

(
n;mi,

(∫ dl

dl−1

PU (τ − t)dt
)

ωlθ

)
.

This is in the form of (3.1) for which we have developed an EM algorithm

in Section 3, as the coefficient al equals
(∫ dl

dl−1
PU (τ − t)dt

)
ωl. While ωl can

be calculated directly as shown in Figure 4,
∫ dl
dl−1

PU (τ − t)dt is unknown and

we replace it with its estimator
∫ dl
dl−1

P̂U (τ − t)dt, where P̂U (t) is the cumulative
function of the fitted Erlang mixture for the reporting delays. Here, we assume
that dl = l, that is, the stochastic intensity function �(t) consists of piecewise
random variables over daily time intervals.

Remark 5.1. An important point is that due to the fact that we use only the
observed reporting delays for fitting the true reporting delay distribution the like-
lihood in the first part of (5.2) will be underestimated. However, by using a large
training period, we believe that the true reporting distribution will be accurately
approximated, which is confirmed not only by our evaluation and the out of sample
test, but also by the pseudo-residuals plot as a time series which shows no trend at
all. For space reasoning we decided not to include the plot here. Alternatively, one
can employ a similar procedure as in Verrall and Wüthrich (2016) Equation (11)
and within the training period find a certain threshold τm such that PUr

i
(τ − tri )= 1,

for all tri > τm. Using the reporting points until tm only, will have the advantage
that all the time points below will be fully experienced by the reserving time τ .
Obviously this approach will come at the expense of using less data points in the
calibration procedure and for this reason we stick with the first approach.

We adopt the initialization strategy recommended in Section 3.2.3 and
started from 15 components with the spread factor ranging from 1 to 60.
Following the proposed EM algorithm, we found that both AIC is minimized
when starting with an initialization using a spread factor of 30 as seen in
Figure 8.

The fitted model is a six-component HMM with the following parameters
(AIC: 2833.696 loglike: −1374.848), with common scale, θ = 7.19× 10−7. The
initial probability vector is 1 for State 2.

Shapes:

m= (
181 255 305 331 362 427

)
Transition Matrix:

� =

⎛
⎜⎜⎜⎜⎜⎝

. . 1.0000 . . .
0.0561 0.8586 0.0374 . 0.0477 .
0.0293 0.0226 0.9264 0.0215 . .

. . . 0.9366 0.0633 .

. . 0.0231 . 0.8237 0.1531

. 0.1557 . 0.0614 0.1619 0.6208

⎞
⎟⎟⎟⎟⎟⎠

(5.3)
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FIGURE 8: Evaluating fitting results.

Stationary State:(
0.0193 0.1409 0.3905 0.2018 0.0711 0.1761

)
Mean Time to Return:(

51.6148 7.0971 2.5603 4.9529 14.0563 5.6779
)

(5.4)

Most states other than the first state have a higher probability of remaining
in its current state. A perhaps better image on how the transitions are made
among these states can be visualized in the next section when we are decoding
the states for simulation. However, an over-interpretation of the states should
be avoided based on the model properties alone. For the most part, it is more
appropriate to simply deem them as alternatives which can flexibly model
some data characteristics. More relevant comments can be found in Zucchini
and MacDonald (2009), pg 101.

Model Diagnosis
Due to the exposure fluctuations, {Nr

1, . . . ,N
r
τ } is not a stationary time

series. As a result, we consider the goodness-of-fit test based on the “ordi-
nary pseudo-residual” (Zucchini and MacDonald 2009) which computes the
conditional distribution of one point given all other observations.

In our case, these ordinary pseudo-residuals are

zl = �−1
(
P(Nr

l ≤ nrl |N (−l) = n(−l))
)
,

where �( · ) is the standard normal distribution function and N (−l) and n(−l)

stand for all the observations {Nr
1, . . . ,N

r
τ } minus Nr

l . The above cumula-
tive probabilities can be calculated based on the likelihoods of modified
observations:

P(Nr
l = n|N (−l) = n(−l))= π 1P1(nr1)B2 · · ·Bl−1�Pl(n)Bl+1 · · ·Bτ1T

π 1P1(nr1)B2 · · ·Bl−1�Bl+1 · · ·Bτ1T
,
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FIGURE 9: Ordinary pseudo residuals for the fitted Pascal-HMM.

and for l = 1, it is

P(Nr
1 = n|N (−1) = n(−1))= π 1P1(n)B2 · · ·Bτ1T

π 1B2 · · ·Bτ1T
.

Here Bl = �Pl(nrl ), where Pt(n) is defined in (3.2).
Although {Nr

1, . . . ,N
r
τ } are discretely valued, they all have relatively high

means (Figure 5), which means that z1, z2, . . . , zτ should be approximately
N(0, 1) distributed if the fitted Pascal-HMM is valid. In Figure 9, we compare
the distribution of the ordinary pseudo residuals with the standard normal dis-
tribution in terms of histogram and QQ plot. In the left panel, the red curve
represents the standard normal density function. We conclude that the selected
Pascal-HMM provides an adequate fit.

5.4. Model prediction and out-of-sample test

In this section, we aim to conduct an out-of-sample test of the fitted model. We
will compare its predictive distribution of the total number of IBNR claims
with the observed values from the validation set. Finally, we investigate the
impact of temporal dependence on our proposed model.

The run-off triangle for our data set is shown in Table 5. The numbers in
the upper triangle including the diagonal line are observed from the training
set and the rest (those in bold) come from the validation set. There are 1721
claims incurred before valuation but are reported after.

5.4.1. Predicting the total number of IBNR claims
We use the fitted model to predict the total number of IBNR claims at our cho-
sen valuation date of 2010-01-02. By Proposition 2.2, the discretely observed
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TABLE 5

RUN-OFF TRIANGLE FOR NUMBERS OF CLAIMS.

Accident Development year (DY)

year (AY) 1 2 3 4 5

2005 16882 1003 73 15 17
2006 21747 1241 95 23 30
2007 26577 1845 243 50 48
2008 24806 1831 181 57 20
2009 25082 1180 110 38 7

IBNR claim process comes from a Pascal-HMM with a hidden parameter
process {C1, . . . ,Ck} described in Section 2 and the following state-dependent
distributions (for l = 1, . . . , k; i= 1, . . . , g):

P(NIBNR
l = n|Cl = i)= p

(
n;m̂i,

(∫ dl

dl−1

(
1− P̂U (τ − t)dt

))
ωl θ̂

)
,

where we have replaced all the model parameters by their corresponding
estimators.

The predicted total number of IBNR claims given valuation date τ is∑k
l=1 N

IBNR
l . Although Theorem 6.1 in Badescu et al. (2016) shows that the-

oretically it has a closed-form expression under the model assumptions, there
exist some computational issues. When one uses Proposition 6.2 in Badescu
et al. (2016) to unify the different scale parameters over the time intervals, the
resulting multivariate Pascal mixture will have infinite numbers of terms. There
is no guarantee that keeping the first finite number of terms can give an ade-
quate approximation. More importantly, the truncated terms might play an
important role in deciding the tail shape of the predictive distribution. Due to
these considerations, we choose to use the alternative approach of simulation
to be described below.

As discussed in Section 5.3, we assume that dl = l.

1. Compute the most likely sequence of hidden states ({c̃l}) given our fitted
HMM and our observed reported arrivals process ({nrl }). For this we use the
global decoding method that maximizes P(C (T) = c(T)|N (T) = n(T)) over c(T),
where c(T) = (c1, . . . , cT ). We sample the entire sequence of hidden states
by using the Viterbi algorithm (Viterbi 1967) as described in Zucchini and
MacDonald (2009) and in Viterbi (1967).

2. Calculate the values of
(∫ l

l−1

(
1− P̂U (τ − t)

)
dt
)

ωl, l = 1, . . . , τ .
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FIGURE 10: Viterbi decoding of reported claims process.

3. Conditioned on observing the underlying hidden parameter process (c̃l),
simulate a path of the discretely observed IBNR claim process up to time τ

by (l = 1, . . . , τ )

P(NIBNR
l = n|Cl = c̃l)= p

(
n; m̂i,

(∫ l

l−1

(
1− P̂U (τ − t)dt

))
ωl θ̂

)
.

Denote it as ñIBNR
1 , . . . , ñIBNR

τ .
4.
∑τ

l=1 ñ
IBNR
l is one realization of the total number of IBNR claims at

valuation date τ .

Using Viterbi’s decoding procedure (Viterbi 1967), we obtained the most
likely sequence of hidden states that describes the observed reported claims
process. The sequence of states is shown in Figure 10. The pattern of
decoded states follows approximately the normalized reported claims counts
in Figure 5. As expected the model depicts some sort of seasonality effect
with more claims happening in the winter periods, as the Markov chain jumps
from smaller shape parameter states to larger ones. The red interrupted line in
Figure 10 represents the beginning of each calendar year.

Moreover, in the initial period, we observe states which are associated with
larger shape parameters (States 3,4,5 and 6) while in the period close to val-
uation, we observe that states associated with smaller shape parameters are
decoded (States 1,2 and 3). This trend is in complete agreement with the fact
that the accident arrival rate follows a decreasing trend in the last two years
prior to the evaluation time in 2010 (see also Figure 5 for the accident arrival
rate based on reported claims prior to the evaluation point in 2010). Our model
not only can catch the potential seasonal effect in accidents, but also decreasing

https://doi.org/10.1017/asb.2019.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.15


A MARKED COXMODEL FOR THE NUMBER OF IBNR CLAIMS 735

FIGURE 11: Predicted IBNR process.

FIGURE 12: Total IBNRs from proposed model.

trends of the true claim arrival rate, and this is remarkable when one just simply
assumes a stationary transition probability in the model.

We repeated the last two steps for 10,000 times to obtain 10,000 sam-
ple paths of the IBNR process as described in Figure 11. Also depicted is
the IBNR predictions averaged for each day over the 10,000 samples as well
as the normalized version, where we divide the counts by the scale parameter
for the appropriate Pascal marginal distribution for the IBNR process. The
predicted 5%, median and 95% quantiles are also plotted for each week. Actual
arrivals are observed to mostly fall within the extreme quantiles. We also
plotted the predictive distribution of the total number of IBNR claims at the
valuation date, which is shown in Figure 12. The solid vertical line represents
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the realized values observed from the validation set, which is the sum of all the
bold numbers in Table 5.

6. CONCLUDING REMARKS

In this paper, we present an EM algorithm for calibrating the marked Cox
model proposed in Badescu et al. (2016). All the model parameters, including
the number of hidden states and the transition probabilities of the Markov
chain, are estimated. The proposed fitting algorithm produces efficient MLEs
and can be implemented at a reasonable computational cost. In particular, the
E-step is equivalent to calculating the forward and backward probabilities,
which are both recursively defined. The estimators in the M-step either have
an explicit form or can be obtained with a minimal numerical effort. The effi-
ciency of the fitting algorithm and the versatility of the marked Cox model are
illustrated through detailed simulation studies. The usefulness of the proposed
marked Cox model is demonstrated by applying it to a real insurance data set.

The work in this paper opens up few research directions that will potentially
further improve the flexibility of the proposed model. One direction we intend
to investigate is the improvement of the calibration procedure by globally max-
imizing the joint likelihood (5.2). The methodology is to treat the complexity
of the data due to missing reporting delays as a missing data problem and to
develop an EM type algorithm as the one proposed in Verbelen et al. (2018).

Another direction will be to focus on the time dependence of the reporting
delay distribution, which is the determinant factor in estimating the number of
IBNR claims (see Verrall andWüthrich 2016). To that end, a natural extension
is to assume a reporting delay distribution introduced via the same HMM that
describes the latent states.

While we have only used information of policy exposure with the accident
and reporting dates for our analysis in this paper, detailed records about claim
amounts, such as case reserves and indicators of open/closed, are also avail-
able from our data set. As a result, one could incorporate these information
as covariates of claim amounts through finite mixture regression techniques.
We also plan to improve the performance of the adjustment procedures (for
the number of hidden states and the shape parameters) in the EM algorithm
by using some penalty functions, e.g., a modified smoothly clipped absolute
deviation (SCAD) penalty function (Fan and Li 2001).

While all the above-mentioned research directions will most likely improve
the flexibility of our model, we are planning to investigate its practical utility
by comparing it to various well-known macro-level models that are still used
by practitioners in most instances. The macro-level models are distribution-
based cell-specific models (see England and Verrall 2002) that underpin the
popular Chain–Ladder method (see Wüthrich and Merz 2008 for a detailed
description). Some of the advantages that such models may present are that
they are easy to interpret and to implement (see, e.g., England and Verrall 2002
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for a detailed study for the well known over-dispersed Poisson model). Despite
this, when using such models, one needs to pay attention to the variance of the
predictive distributions that can be large potentially due to the simple GLM
structure assumptions, or to overparametrization that may occur due the very
small data points used in model calibration. Furthermore, when using these
macro-level models one cannot take full advantage of the time series claim data
that are available these days. The stochastic process approach, such as the one
proposed in this paper, provides an integratedmodeling approach and can fully
use the time series data, and as a result the predictive distributions may be
more accurate. On the other hand, the implementation of such a model and the
parameter estimation in particular may not be as easy as the one shown in the
present paper, and a sophisticated estimation algorithm must be designed to
result in a reasonable computational cost. Therefore, it will be extremely useful
to investigate these comparisons at a much deeper level and this will be part of
our future investigations.
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