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a b s t r a c t

Incurred but not reported (IBNR) loss reserving is an important issue for Property & Casualty (P&C)
insurers. To calculate IBNR reserve, one needs to model claim arrivals and then predict IBNR claims.
However, factors such as temporal dependence among claim arrivals and environmental variation are
often not incorporated inmany of the current loss reservingmodels,whichmay greatly affect the accuracy
of IBNR predictions.

In this paper, we propose to model the claim arrival process together with its reporting delays as a
marked Cox process. Our model is versatile in modeling temporal dependence, allowing also for natural
interpretations. This paper focuses mainly on the theoretical aspects of the proposed model. We show
that the associated reported claim process and IBNR claim process are both marked Cox processes with
easily convertible intensity functions andmarking distributions. The proposedmodel can also account for
fluctuations in the exposure. By an order statistics property, we show that the corresponding discretely
observed process preserves all the information about the claim arrivals. Finally, we derive closed-form
expressions for both the autocorrelation function (ACF) and the distributions of the numbers of reported
claims and IBNR claims. Model estimation and its applications are considered in a subsequent paper,
Badescu et al. (2015b).

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Loss reserving is fundamental for insurance companies because
it affects various aspects of the business, such as ratemaking,
solvency control and capital allocation. With the advent of
Solvency II, insurers are required to not only provide a best
estimate of their future liabilities, but also to have a better grasp
of their uncertainty. For Property & Casualty (P&C) insurance
companies, there are two important types of reserves, namely the
incurred but not reported (IBNR) reserve and the reported but not
settled (RBNS) reserve, which stem respectively from the potential
time delays between the claim occurrence and its reporting time or
between the reporting time and the settlement time. One potential
benefit of separately estimating the RBNS reserve and the IBNR
reserve is that the adequacy of the case reserves set by claim
adjusters can be judged. This is especially important for actuaries
to decide whether to include the case reserves for analysis or not
(Friedland, 2010, page 14).

Although predicting the number of IBNR claims has only been
investigated in a relatively few papers (see Jewell, 1989, 1990;
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Zhao et al., 2009; Zhao and Zhou, 2010), the issue is of practical
importance for several reasons. The number of IBNR claims can be
used to calculate the claim frequency (the total number of reported
and IBNR claims per exposure) and thus allows the incorporation
of exposure information into loss reserving. In addition, estimating
the claim frequency and the severity components separately
makes it feasible to explicitly reflect inflation adjustments for
the severity (Friedland, 2010, page 205) and to stabilize the
uncertainty in projecting the ultimate claim amounts, especially
for the most recent accident years (Friedland, 2010, page 212). In
this paper we focus on modeling and predicting the number of
IBNR claims. Nevertheless, our approach can be easily extended to
incorporate claim amounts as well, as to be described in Section 7.

The existing practice to perform the loss reserving task is based
on the so-called ‘‘run-off triangle’’ which sums up the claim data
per combination of accident year and development year. Various
deterministic algorithms, such as the chain-ladder (CL) method,
the Bornhuetter–Ferguson (BF)method and the frequency-severity
method, can be chosen to apply to this triangular data (see Fried-
land, 2010 from a practitioners’ perspective). Meanwhile, there is a
whole array of stochastic models, so called ‘‘macro-level’’ models,
aiming to interpret these methods and to analyze the uncertainty
of their results (Wuthrich andMerz, 2008, 2015). Due to the limited
number of data points contained in the triangular structure, these
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macro-level models tend to be over-parameterized and thus pro-
duce unstable estimates (Verdonck et al., 2009). Furthermore, they
cannot separately estimate the RBNS reserve and the IBNR reserve
without some further granulation of the current data (Schnieper,
1991; Liu and Verrall, 2009), or the inclusion of new data such as
the numbers of reported claims (Verrall et al., 2010). To resolve
these two issues and other shortcomings, a class of ‘‘micro-level’’
models has emerged to use policy-level data to depict the devel-
opment of individual claims. Norberg (1993a, 1999) proposed a
marked nonhomogeneous Poissonmodel and a generalmathemat-
ical framework for predicting IBNR claims and reserve calculation.
The estimation of the model was considered in Norberg (1993b).
A case study based on Norberg’s model using a liability portfo-
lio was presented in Antonio and Plat (2014). Several papers have
demonstrated the advantages of this type of micro-level models
over themacro-levelmodels through case studies or simulation ex-
periments (e.g., Jin and Frees, 2013; Huang et al., 2015). It is noted
that the separate estimation of the RBNS reserve and the IBNR re-
serve is natural in micro-level models because reporting and set-
tlement delays are explicitly modeled.

Naturally, predicting the IBNR reserve requires the modeling
of the claim arrival process (e.g., Jewell, 1989; Norberg, 1993a).
In actuarial science, a popular model for this purpose is the
nonhomogeneous Poisson process (NHPP), which, to the best of
our knowledge, has been used in all the micro-level loss reserving
models. However, this aspect of modeling loss reserving may be
improved based on several considerations. A NHPP might not be a
reasonable approximation for the claim arrival process of a given
portfolio when there exists dependence among the individual
claim arrivals due to some environmental variations that affect
the whole portfolio (Grandell, 1991). A Cox process is a more
appropriate model in such situations (see the second paragraph of
Section 2 for more details). In addition, modeling the claim arrival
process as a NHPP implies independence among the numbers
of claims from different accident years, which contradicts the
calendar year effect exhibited in the run-off triangle (Holmberg,
1994; Shi et al., 2012; Wuthrich and Merz, 2015). Finally, Mikosch
(2009, Section 2.1.7) held an empirical study of the NHPP by using
the arrival times in the well-publicized Danish fire insurance data.
The distribution of the claim inter-arrival times was found to be
different from which was implied by a NHPP.

The afore-mentioned issuesmay be dealt with by incorporating
a temporal dependence structure into amodel for the claim arrival
process. In the loss reserving context, this direction has only been
taken up in a few papers recently. Shi et al. (2012) and Merz et al.
(2013) respectively imposed additive and multiplicative structure
upon a Bayesian Gaussian copula to model both calendar year and
accident year dependence. Although lacking flexibility inmodeling
dependence, their approaches lead to an analytic formula for the
cumulative claim amounts. Avanzi et al. (2015) used the shot noise
Cox process to model the claim arrival process, whose estimation
is dealt with by using a tailor-made reversible jumpMarkov Chain
Monte Carlo (RJMCMC).

In this paper, we propose to model the claim arrival process
together with reporting delays as a marked Cox process. The
intensity function of the process will be a piecewise stochastic
process generated by a hidden Markov model (HMM) with Erlang
state-dependent distributions. The proposed model allows for
the fluctuation of the exposure over time. As a Cox process,
the proposed model shares a similar interpretation as that of
Markov-modulated Poisson process (MMPP). On the other hand,
our model is different from MMPP because its underlying Markov
process is discrete-time based and its piecewise intensity function
consists of random variables instead of constants. Under our
model assumption, the associated reported claim process and
the IBNR claim process are both marked Cox processes with
easily convertible intensity functions and marking distributions.
We also derive an analytical formula for the number of reported
claims and for the number of IBNR claims. Furthermore, the
associated discretely observed process of the proposed model is a
Pascal-HMM. Using an order statistics property for the proposed
model, we show that this discrete-time model preserves all the
information about the claim arrivals. The joint distribution of
the discretely observed process is a multivariate Pascal mixture,
which is known to be extremely flexible in modeling dependence
(Badescu et al., 2015a). A closed-form expression for the ACF of the
discretely observed process is also obtained in steady state.

In a subsequent paper (Badescu et al., 2015b), wewill develop a
fitting procedure to estimate all the model parameters including
the number of states therein and the corresponding transition
probabilities. The efficiency of the fitting procedure is illustrated
through simulation studies. We also fit the model to a real
insurance data set, which obtains very good results.

The paper is structured as follows. In Section 2 we describe the
proposed model for the portfolio claim arrival process and discuss
how it may be interpreted and justified. The associated reported
claim process and IBNR claim process are presented and discussed
in Section 3. The corresponding discretely observed processes
alongwith their desirable properties are presented in Section 4. An
order statistics property of themodel is obtained in Section 5 and is
used to explain how the information from the claim arrival process
is preserved. The distributions for the number of reported claims
and the number of IBNR claims are derived in Section 6. Finally, we
provide some concluding remarks alongwith several directions for
future research in Section 7.

2. Model set-up and description

Following the notation of Norberg (1993a), suppose that the
development of a claim until its reporting time is described as
a pair of random variables (T ,U), where T is the claim arrival
time and U is its reporting delay. In chronology of their arrivals,
{(Ti,Ui), i = 1, 2, . . . , } constitute the claim arrival process of the
portfolio along with reporting delays. We denote the number of
claims process by {Na(t), t ≥ 0}, where Na(t) is the number of
claims up to time t . However, at a given valuation date τ , we are
aware of a claim that has occurred only if it has been reported.
Consequently, one cannot fully observe the claim arrival process
up to time τ : {Na(t), 0 ≤ t ≤ τ }.

As stated in Grandell (1991) and also described in Norberg
(1993a), a Cox process is a natural choice for modeling risk fluc-
tuations exhibited in a portfolio claim arrival process. Depending
on the line of business being considered, the stochastic intensity
function can be interpreted as variations in an appropriate envi-
ronment over time. For example, this environment may include
weather conditions in automobile insurance. The environmental
variation will affect every policy in the portfolio and all policies
are assumed to be independent conditional on the environmen-
tal variation. Since the sum of a large number of independent and
sparse point processes is approximately a Poisson process (Grige-
lionis, 1963; Grandell, 1991) argued that the portfolio claim arrival
process, being unconditional on environmental variation, can be
reasonably modeled as a Cox process.

We here propose to model {Na(t), t ≥ 0} as a marked Cox
process that is described through two components. First, themarks
{U1,U2, . . .} are independent random variables with common
density function pU(u) and cumulative distribution function PU(u).
Second, the stochastic intensity function Λ(t) is a piecewise
stochastic process: Λ(t) = Λl, for dl−1 ≤ t < dl, l = 1, 2, . . . and
d0 = 0. Here dl, l = 1, 2, . . . , are pre-determined time points. In
practice, data collection cannot be conducted in continuous time
and these time points may thus be interpreted as data collecting
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times. As a result, we have a continuous stochastic process
with discrete observation times. We assume that {Λ1, Λ2, . . .} is
generated by an Erlang hidden Markov model (Erlang-HMM) with
the following structure:

• The hidden parameter process {C1, C2, . . .} is a time-homogene-
ous Markov chain with a finite state space {1, 2, . . . , g}.
Its initial distribution and transition probability matrix are
respectively denoted by row vector π1 andmatrix0 = (γij)g×g ,
where γij = P(Cl = j|Cl−1 = i). We assume that the Markov
chain is irreducible, aperiodic and all the states are positive
recurrent. We denote the limiting distribution of the Markov
chain by δ. The assumptions are very natural from a modeling
perspective: each state will be revisited infinitely many times
over time; the time between two consecutive visits to the same
state is irregular; and the mean time is finite.

• The state-dependent process {Λ1, Λ2, . . .} is defined such that
each Λl depends only on the current state Cl. Given that Cl = i,
we assume that Λl follows an Erlang distribution with shape
parameter mi and scale parameter ωlθ whose density function
is given by

fΛl|Cl=i(λ) =
λmi−1e−

λ
ωlθ

(ωlθ)mi(mi − 1)!
, f (λ;mi, ωlθ), (2.1)

where ωl represents the risk exposure of the considered
portfolio for the lth period.

If a Poisson process is used to model the portfolio claim
arrival process, then the risk exposure is usually incorporated as a
multiplicative factor into the intensity function (see e.g., Grandell,
1991; Norberg, 1993a). Due to the scaling property of the class
of Erlang distributions, (2.1) is indeed a reasonable way to reflect
the fluctuation of the risk exposure over time for the claim arrival
process.

The mixed Poisson process and the Ammeter process (Amme-
ter, 1948) are two commonly used classes of Cox processes, both
of them being special cases of the proposed model. A mixed Pois-
son process is a Cox process with intensity process Λ(t) ≡ Λ,
a single random variable. Our model reduces to a mixed Poisson
process if d1 = ∞. An Ammeter process is a Cox process with
Λ(t) = Λl, dl−1 ≤ t < dl, where {Λ1, Λ2, . . .} is a sequence
of i.i.d. random variables. When the initial distribution π1 is the
limiting distribution δ, each row of 0 is δ and there are no expo-
sure fluctuation ωl ≡ ω, our model degenerates to an Ammeter
process.

With the above model specifications, one may identify the
density function of each Λl as follows.

Proposition 2.1. For the piecewise stochastic intensity function
following the Erlang-HMM structure described above, Λl is an Erlang
mixture with density function

fΛl(λ) =

g
i=1

πli f (λ;mi, ωlθ), l = 1, 2, . . . , (2.2)

where πli = P(Cl = i) is the ith element of the row vector πl =

π10
l−1.

Proof. It follows immediately from the law of total probability and
the Chapman–Kolmogorov equation. �

Remark 2.2. Since the class of Erlang mixtures is dense in the
space of positive continuous distributions (Tijms, 1994), one
might think of extending the state-dependent density in (2.1) to
that of mixed Erlang. However, the resulting Λl is still Erlang
mixture distributed (Klugman et al., 2013), which implies that
(2.1) is sufficient for constructing a flexible model of the piecewise
stochastic intensity function.
3. Reported claim process and IBNR claim process

As stated in Section 2, we are aware of a claim that has occurred
only if it has been reported. As a result, even though we specify
the proposed model based on the claim arrival process, it can only
be estimated through its associated reported claim process. The
IBNR claim process plays a key role in predicting the number of
IBNR claims. In this section, we show that both processes are still
marked Cox processes and we identify their intensity functions.
Although both the reported claim process and the IBNR claim
process should be indexedwith their corresponding valuation date
τ , for notational simplicity we drop this index hereafter.

We denote the reported claim process with respect to valuation
date τ as {N r(t), 0 ≤ t ≤ τ }. This process comprises thosemarked
points from {(Ti,Ui), i = 1, 2, . . .} which satisfies the condition
Ti + Ui ≤ τ . The total number of reported claims is then N r(τ ).
When ordered in chronology of their arrival times, the selected
marked points are denoted by {(T r

i ,U
r
i ), i = 1, 2, . . . ,N r(τ )}. In

a similar way, we can define the IBNR claim process with respect
to valuation date τ , which is denoted by {N IBNR(t), 0 ≤ t ≤ τ } and
consists of marked points {(T IBNR

i ,U IBNR
i ), i = 1, 2, . . . ,N IBNR(τ )},

where N IBNR(τ ) is the total number of IBNR claims. It is noted that
{N r(t), 0 ≤ t ≤ τ } is observable while {N IBNR(t), 0 ≤ t ≤ τ } is
not.

In the following, we first prove that the marked Cox processes
are closed under thinning. More discussions about the thinning
operation of point processes can be found in Grandell (1997). For
this, we will mainly use the tool of Laplace functional transform
(LFT). For a point process N = {Xi, i = 1, 2, . . .}, its LFT is given by

LN(f (x)) = E(e
−

i
f (Xi)

),

where f (x) is a nonnegative function of the point process. Just
like the fact that the Laplace transforms have a one-to-one
correspondencewith randomvariables, themapping between LFTs
and point processes is also one-to-one. For more properties about
LFT, see Mikosch (2009).

Theorem 3.1. Assume that N̄ is a marked Cox process on [0, ∞)
with a marking space of Rd. Its intensity function is Λ(t) and its
marks Zi, i = 1, 2, . . . , are independent but position-dependent
with density function pZ |t(z). Now consider the following thinning
probabilities:

p(t, z) =


1 if (t, z) ∈ D,
0 if (t, z) ∉ D,

(3.1)

where D is a subset of [0, ∞) × Rd. Then the resulting thinned
point process N̄p is still a marked Cox process with intensity function
Λ(t)P(Z ∈ Dt)I{t∈TD} and independent yet position-dependent marks
having density function pZ |t (z)

P(Z∈Dt )
I{z∈Dt }, where Dt = {z ∈ Rd

|(t, z) ∈

D} and TD = {t ∈ [0, ∞)|∃z s.t. (t, z) ∈ D}.

Proof. By Eq. (1.33) in Karr (1991), for any nonnegative func-
tion f (t, z) on [0, ∞) × Rd, the LFT of N̄p equals LN̄


− log


1 −

p(t, z) + p(t, z)e−f (t,z)


. Combining the results in Examples
1.16 and 1.28 in Karr (1991), this can be calculated as E
e−


∞

0


1−

Rd (1−p(t,z)+p(t,z)e−f (t,z))pZ |t (z)dz


Λ(t)dt


.

Since the thinning probabilities are given in (3.1), the previous
equation can be further simplified as given in Box I.

Again it follows from Examples 1.16 and 1.28 in Karr (1991)
that N̄p is a marked Cox process with intensity function Λ(t)P(Z ∈

Dt)I{t∈TD} and position-dependent marks having density functions
pZ |t (z)
P(Z∈Dt )

I{z∈Dt }. �
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E

e
−

TD


1−

Dt


1−p(t,z)+p(t,z)e−f (t,z)


pZ |t (z)dz−


Dct


1−p(t,z)+p(t,z)e−f (t,z)


pZ |t (z)dz


Λ(t)dt


= E


e
−

TD


1−

Dt

e−f (t,z)pZ |t (z)dz−

Dct

pZ |t (z)dz

Λ(t)dt


= E


e−


TD


Dt

pZ |t (z)dz−

Dt

e−f (t,z)pZ |t (z)dz

Λ(t)dt


= E


e
−

TD


P(Z∈Dt )−


Dt

e−f (t,z) pZ |t (z)
P(Z∈Dt )

dzP(Z∈Dt )


Λ(t)dt



= E


e
−

TD


1−

Dt

e−f (t,z) pZ |t (z)
P(Z∈Dt )

dz


Λ(t)P(Z∈Dt )dt


= E


e
−


∞

0


1−

Rd e−f (t,z) pZ |t (z)

P(Z∈Dt )
I{z∈Dt }dz


Λ(t)P(Z∈Dt )I{t∈TD}dt


.

Box I.
We now show that if the claim arrival process {Na(t), t ≥ 0}
is a marked Cox process, then both the reported claim process
{N r(t), 0 ≤ t ≤ τ } and IBNR claim process {N IBNR(t), 0 ≤ t ≤ τ }

are still marked Cox processes with easily convertible stochastic
intensity functions and mark densities.

Theorem 3.2. Assume that the claim arrival process {Na(t), t ≥ 0}
is a marked Cox process with stochastic intensity function Λ(t) and
independent marks {Ui, i = 1, 2, . . .} following common density
function pU(u). Then for a given valuation date τ , its associated
reported claim process {N r(t), 0 ≤ t ≤ τ } and IBNR claim process
{N IBNR(t), 0 ≤ t ≤ τ } are also marked Cox processes. Their adjusted
stochastic intensity functions are Λr(t) = Λ(t)PU(τ − t)I{0≤t≤τ }

and ΛIBNR(t) = Λ(t)(1 − PU(τ − t))I{0≤t≤τ }, respectively, and
their independent marks follow adjusted position-dependent mark
density functions prU|t(u) =

pU (u)
PU (τ−t) I{0≤u≤τ−t} and pIBNRU|t (u) =

pU (u)
1−PU (τ−t) I{u≥τ−t}, respectively.

Proof. For a given valuation date τ , the reported claim process
{N r(t), 0 ≤ t ≤ τ } is a thinned point process of {Na(t), t ≥ 0}
by thinning probabilities

p(t, u) =


1 if t + u ≤ τ ,
0 if t + u > τ.

By Theorem 3.1, {N r(t), 0 ≤ t ≤ τ } is again a marked Cox process,
whose adjusted stochastic intensity andmark density are as given.
For the IBNR claim process {N IBNR(t), 0 ≤ t ≤ τ }, the argument is
similar except that one chooses D = {(t, u)|t + u > τ }. �

Theorem 3.2 shows that not only are both the reported claim
process and the IBNR claim processmarked Cox processes, but also
that their intensity processes and mark densities have intuitive
interpretations. For example, the intensity for the reported claim
process Λr(t) is the original intensity Λ(t) times the probability
that the claim has been reported by time τ . The mark density
prU|t(u) is the original density pU(u) conditional on the fact that the
claim has been reported by time τ .

4. The corresponding discretely observed processes

Data is usually aggregated in some discrete formbefore analysis
in practice. As described in Section 2, dl, l = 0, 1, . . . , may
be interpreted as data collecting times. Hence, the number of
observable claims are {N1,N2, . . .}, where Nl is the number of
claims that arrived during [dl−1, dl), no matter reported or not.
The argument can be extended to the reported claims and the
IBNR claims. In this section we characterize the three discretely
observed processes, which not only are important in their own
right, but also play a critical role in fitting the model to data.

We begin with the discretely observed claim process. The
following proposition shows that under the model assumptions,
this discretely observed process follows a Pascal-HMM.

Proposition 4.1. With the proposed Cox process {Na(t), t ≥ 0},
its discretely observed process {N1,N2, . . .} follows a Pascal-HMM.
Its hidden parameter process is given by {C1, C2, . . .}. For l =

1, 2, . . . ; i = 1, 2, . . . , g, its state-dependent distribution is Pascal
with

P(Nl = n|Cl = i) = p (n;mi, (dl − dl−1)ωlθ) , (4.1)

where

p(n;m, θ) =


n + m − 1
m − 1


1

1 + θ

m 
θ

1 + θ

n

. (4.2)

Proof. Obviously the hidden parameter process is kept the same
and we only need to check that the state-dependent distributions
are Pascal. Using the law of total probability, we obtain

P(Nl = n|Cl = i) =


∞

0
P(Nl = n|Λl = λ, Cl = i)fΛl|Cl=i(λ)dλ

=


∞

0

((dl − dl−1)λ)n e−(dl−dl−1)λ

n!
f (λ;mi, ωlθ)dλ

= p(n;mi, (dl − dl−1)ωlθ).

Thus {N1,N2, . . .} follows the given Pascal-HMM. �

Without loss of generality, we assume that τ = dk. We denote
the discretely observed reported claim process as {N r

1, . . . ,N
r
k},

where N r
l is the number of claims arrived during [dl−1, dl)

and reported by time τ . Similarly, {N IBNR
1 , . . . ,N IBNR

k } denotes
the discretely observed IBNR claim process, where N IBNR

l is the
number of the claims arrived during [dl−1, dl) but have not yet
reported at time τ . Using similar arguments in the derivations of
Proposition 4.1 and Theorem 3.2, it is straightforward to show that
both discretely observed processes are also Pascal-HMM.

Corollary 4.2. For the proposed claim arrival process, the discretely
observed processes of the reported claim process and the IBNR claim
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process are both Pascal-HMMs. They share the same hidden parameter
process {C1, . . . , Ck} and their state-dependent distributions are

P(N r
l = n|Cl = i) = p


n;mi,

 dl

dl−1

PU(τ − t)dt


ωlθ


and

P(N IBNR
l = n|Cl = i)

= p


n;mi,

 dl

dl−1

(1 − PU(τ − t)) dt


ωlθ


,

where l = 1, 2, . . . , k; i = 1, 2, . . . , g.

As a direct consequence, the univariate and multivariate
marginal distributions of {N1,N2, . . .} can be described below.
We denote the k-step transition probability matrix by 0k

=
γij(k)


g×g , that is, γij(k) = P(Cl+k = j|Cl = i).

Corollary 4.3. For l = 1, 2, . . . ,Nl follows a mixed Pascal distribu-
tion with probability function

P(Nl = n) =

g
i=1

πlip (n;mi, (dl − dl−1)ωlθ) . (4.3)

Proof. Can be proved in a similar way to the proof of Proposi-
tion 2.1. �

Corollary 4.4. The k-variate joint distribution of (Nl1 , . . . ,Nlk) is

P(Nl1 = nl1 , . . . ,Nlk = nlk)

=

g
i1=1

· · ·

g
ik=1

β(i1,...,ik)

k
j=1

p(nlj;mij , (dlj − dlj−1)ωljθ), (4.4)

where

β(i1,...,ik) = πl1,i1γi1,i2(l2 − l1) · · · γik−1,ik(lk − lk−1). (4.5)

Proof. We only prove the bivariate case and a similar argument
can be applied to any higher dimension. For l1 < l2, we have

P(Nl1 = nl1 ,Nl2 = nl2)

=

g
i1=1

g
i2=1

P(Nl1 = nl1 ,Nl2 = nl2 , Cl1 = i1, Cl2 = i2)

=

g
i1=1

g
i2=1

P(Cl1 = i1, Cl2 = i2)

× P(Nl1 = nl1 ,Nl2 = nl2 |Cl1 = i1, Cl2 = i2)

=

g
i1=1

g
i2=1

P(Cl1 = i1)P(Cl2 = i2|Cl1 = i1)

× P(Nl1 = nl1 |Cl1 = i1)P(Nl2 = nl2 |Cl2 = i2)

=

g
i1=1

g
i2=1

πl1,i1γi1,i2(l2 − l1)

×

2
j=1

p(nlj;mij , (dlj − dlj−1)ωljθ)

=

g
i1=1

g
i2=1

β(i1,i2)

2
j=1

p(nlj;mij , (dlj − dlj−1)ωljθ). �
Corollary 4.4 shows that k-variate marginal of the discrete
observations of the proposed model is a multivariate Pascal
mixture, which is known to constitute a versatile class of discrete
multivariate distributions (Badescu et al., 2015a). Consequently
the proposed Pascal-HMM provides great flexibility in modeling
temporal dependence. In The following, we provide a closed-form
expression for the auto-correlation function (ACF) of {N1,N2, . . .}.

Theorem 4.5. If we further assume that:

1. (dl − dl−1)ωl = 1, l = 1, 2, . . . ,
2. the eigenvalues of 0 are all distinct and they are ordered as 1 =

e1 > e2 > · · · > eg > −1,

then the ACF (in the limiting sense) for {N1,N2, . . .} is given by

ρ(k) =
Cov(Nl,Nl+k)

Var(Nl)
=

g
i=2

cieki , k = 1, 2, . . . , (4.6)

where

ci =
δMuT

i viM1T

g
i=1

δimi

mi +

1+θ
θ


−

 g
i=1

δimi

2 .

Here M = diag{m1, . . . ,mg}, 1 = (1, . . . , 1), vi and uT
i are the left

and right eigenvectors of 0 associated with ei, and viuT
i = 1.

Remark 4.6. The first assumption ensures that, in the limiting
sense, {N1,N2, . . .} is a stationary time series, which means that
the ACF is sufficient for describing its temporal dependence in
the long run. Since one can adjust the exposure by scaling, this
assumption essentially means that (dl − dl−1)ωl is irrelevant to l,
which can be realized if we narrow/widen the lengths of periods
when portfolio exposure is high/low. The second assumption is not
restrictive in applications asmatrices with distinct eigenvalues are
dense in the matrix space.

Proof. According to the Perron–Frobenius Theorem (e.g., see Bre-
maud, 2013), we have the following decomposition

0k
=

g
i=1

eki u
T
i vi,

where 1 = e1 > · · · > eg > −1 are the distinct eigenvalues of 0

and vi(uT
i ) are the left(right) eigenvectors of 0 associated with ei,

satisfying viuT
i = 1. Since all the eigenvalues are distinct, all the

left and right eigenvectors are determined up to multiplication by
a non-zero scalar. In particular, we have u1 = c1(1, . . . , 1) and
v1 = c2(δ1, . . . , δg), where c1c2 = 1 due to the constraint that
viuT

i = 1.
In a similarway to the proof of Corollary 4.4, onemay check that

Cov(Nl,Nl+k)

= E(NlNl+k) − E(Nl)
2

=

g
i=1

g
j=1

δiγij(k)miθmjθ −


g

i=1

δimiθ

2

= θ2

δ

m1 . . . 0
...

. . .
...

0 . . . mg

0k

m1
...

mg

−


g

i=1

δimi

2


= θ2

δ

m1 . . . 0
...

. . .
...

0 . . . mg

 g
i=1

eki u
T
i vi

m1
...

mg


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−


g

i=1

δimi

2


= θ2δ

m1 . . . 0
...

. . .
...

0 . . . mg

 uT
1v1

m1
...

mg


+ θ2

g
i=2

δ

m1 . . . 0
...

. . .
...

0 . . . mg

 uT
i vi

m1
...

mg

 eki − θ2


g

i=1

δimi

2

= θ2

 g
i=1

δimi

2

+

g
i=2

δ

m1 . . . 0
...

. . .
...

0 . . . mg


× uT

i vi

m1
...

mg

 eki −


g

i=1

δimi

2


= θ2
g

i=2

δ

m1 . . . 0
...

. . .
...

0 . . . mg

 uT
i vi

m1
...

mg

 eki

= θ2
g

i=2

δMuT
i viM1T eki .

The result follows by plugging

Var(N) = θ2

 g
i=1

δimi


mi +

1 + θ

θ


−


g

i=1

δimi

2


into the expression for ρ(k). �

Theorem 4.5 reveals that the ACF exhibits a power decaying
pattern, which is similar to that of popular autoregressive inte-
grated moving average (ARIMA) models. As a result, the proposed
Pascal-HMM can achieve a wide range of temporal dependence
structures by judiciously choosing its parameters. Below, we illus-
trate with a toy example that both ρ(k) = 1 and ρ(k) = −1 can
be achieved. For this we choose 0 =


γ 1 − γ

1 − γ γ


. It is easy to

check that δ = (0.5, 0.5), e2 = 2γ − 1, u2 = (1 − γ , γ − 1) and
v2 =


1

2−2γ , −1
2−2γ


. One can calculate that

c2 =

1
4 (m1 − m2)

2

1
4 (m1 − m2)2 +

1+θ
2θ (m1 + m2)

.

If we take m1 = 3m2 and θ = 1, c2 equals to m2
m2+4 , which has a

limit of 1 whenm2 → ∞. We also notice that e2 = 2γ − 1 → 1 if
γ → 1 and e2 → −1 if γ → 0.

5. An order statistics property

When we compress the original data to its discretely observed
process {N1,N2, . . .}, one may be concerned about any potential
loss of information. We again note that here Nl includes all the
claims occurred during [dl−1, dl), no matter reported or not. In
Theorem 5.2 we show that a well-known order statistics property
of the Poisson process holds in this more general case as well.
This shows that the discretely observed process preserves all the
information about the claim arrival epochs. First we present an
intermediate result in Lemma 5.1, which can be easily checked
using the independent increment property of the Poisson process.
Lemma 5.1. Assume that {Na(t)} is a marked Poisson process with
intensity function λ(t) and path-dependent mark U with density
function pU|t(u). The likelihood for the observations up to a given time
t is

P(Na(t) = n, (Ti,Ui) ∈ (dti, dui), i = 1, . . . , n)

= e−
 t
0 λ(s)ds

n
i=1


λ(ti)dti pUi|ti(dui)


.

Theorem 5.2. For l = 1, . . . , k, we assume that there are nl claims
that have occurred during the period [dl−1, dl), together with their
marks ordered chronologically according to the arrival epochs {(T (l)

i ,

U (l)
i ), i = 1, 2, . . . , nl}. We then have

P

(T (l)

i ,U (l)
i ) ∈ (dt(l)i , du(l)

i ),

l = 1, . . . , k, i = 1, . . . , nl|Nl = nl, l = 1, . . . , k


=

k
l=1


nl!

nl
i=1


dt(l)i

dl − dl−1
pU(l)

i
(du(l)

i )


. (5.1)

In other words, given the discrete observations, the joint distribution
of the claim arrival epochs with markings are mutually independent
and the epochs are uniformly distributed.
Proof. Sincewhen givenΛ(t) = λ(t), the proposedmodel {Na(t)}
is amarked Poisson processwith intensity function λ(t), according
to Lemma 5.1 the likelihood for the observations up to time dk is

P

Nl = nl, (T

(l)
i ,U (l)

i ) ∈ (dt(l)i , du(l)
i ), l = 1, . . . , k, i = 1, . . . , nl


= EΛ1,...,Λk


k

l=1


e−(dl−dl−1)Λl

nl
i=1


Λldt

(l)
i pU(l)

i
(du(l)

i )


,

where EΛ1,...,Λk signifies taking expectation with respect to
Λ1, . . . , Λk. This can be further calculated as

g
i1=1

· · ·

g
ik=1

P(C1 = i1, . . . , Ck = ik)

·


∞

0
· · ·


∞

0


k

l=1


e−(dl−dl−1)λl

nl
i=1


λldt

(l)
i pU(l)

i
(du(l)

i )


· fΛ1,...,Λk|C1=i1,...,Ck=ik(λ1, . . . , λk)dλ1 . . . dλk

=

g
i1=1

· · ·

g
ik=1

P(C1 = i1, . . . , Ck = ik)

·

k
l=1


∞

0
λ
nl
l e

−(dl−dl−1)λl fΛl|Cl=il(λl)dλl



×

k
l=1

nl
i=1


dt(l)i pU(l)

i
(du(l)

i )


.

At the same time,

P(N1 = n1, . . . ,Nk = nk)

=

g
i1=1

· · ·

g
ik=1

P(C1 = i1, . . . , Ck = ik)
k

l=1

P(Nl = nl|Cl = il)

=

g
i1=1

· · ·

g
ik=1

P(C1 = i1, . . . , Ck = ik)

·

k
l=1


∞

0

((dl − dl−1)λl)
nl e−(dl−dl−1)λl

nl!
fΛl|Cl=il(λl)dλl


.

Combining these two equations yields the result. �
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According to (5.1), with the discrete observations given, the
joint distribution of the claim arrival times with markings is
completely specified. Furthermore, this order statistics is critical
in the estimation of the proposed model.

6. The distributions of the numbers of reported and IBNR
claims

In this section we derive explicit analytical expressions for the
distribution of the number of reported claims and the distribution
of the number of IBNR claims.

Proposition 6.1. Recall that N r
l is the number of reported claims in

time interval [dl−1, dl). Then the joint probability of N r
l , l = 1, . . . , k,

where τ = dk is the valuation date, can explicitly be expressed as

P(N r
1 = n1, . . . ,N r

k = nk)

=

g
i1=1

· · ·

g
ik=1

β(i1,...,ik)

k
j=1

p(nj;mij , θ
r
j ), (6.1)

where

β(i1,...,ik) = π1,i1γi1,i2 · · · γik−1,ik

and

θ r
j =

 dj

dj−1

PU(τ − t)dt


ωjθ, j = 1, 2, . . . , k.

Similarly, the joint probability of N IBNR
l , l = 1, . . . , k, the numbers of

IBNR claims in the same time intervals up to valuation date τ = dk
can explicitly be expressed as

P(N IBNR
1 = n1, . . . ,N IBNR

k = nk)

=

g
i1=1

· · ·

g
ik=1

β(i1,...,ik)

k
j=1

p(nj;mij , θ
IBNR
j ), (6.2)

where

θ IBNR
j =

 dj

dj−1

(1 − PU(τ − t)) dt


ωjθ, j = 1, 2, . . . , k.

Proof. It can be easily checked using Corollaries 4.2 and 4.4. �

In the following, we show that the total number of reported
claims and the total number of IBNR claims up to the valuation date
have a univariate Pascal mixture with a common scale parameter.
For notational simplicity, we re-expressed the joint probabilities
(6.1) and (6.2) as infinite series with a finite number of non-zero
coefficients:

P(N r
1 = n1, . . . ,N r

k = nk)

=

∞
m1=1

· · ·

∞
mk=1

β(m1,...,mk)

k
j=1

p(nj;mj, θ
r
j ), (6.3)

and

P(N IBNR
1 = n1, . . . ,N IBNR

k = nk)

=

∞
m1=1

· · ·

∞
mk=1

β(m1,...,mk)

k
j=1

p(nj;mj, θ
IBNR
j ), (6.4)

where β(m1,...,mk) = 0 if one of the integers m1, . . . ,mk is not a
shapeparameter in the Pascalmixture (6.1). DenoteN r

=
k

l=1 N
r
l ,

the total number of reported claims up to the valuation date τ ,
and N IBNR

=
k

l=1 N
IBNR
l , the total number of IBNR claims. Note
that the both distributions are multivariate Pascal mixtures with
scale parameters varying over different dimensions. To show that
N r and N IBNR are univariate Pascal mixtures, we employ a two step
procedure:

• First re-express (6.4) and (6.3) using a common scale parameter
over different dimensions. This is an approach presented
in Willmot and Woo (2015).

• Prove that the sum of the components of a multivariate Pascal
mixture with a common scale parameter is a univariate Pascal
mixture.

We begin with a lemma.

Lemma 6.2. Assume that (N1, . . . ,Nk) is a multivariate Pascal
mixture with varying scale parameters over different dimensions, i.e.,

P(N1 = n1, . . . ,Nk = nk)

=

∞
m1=1

· · ·

∞
mk=1

β(m1,...,mk)

k
j=1

p(nj;mj, θj). (6.5)

Then its probability generating function (PGF) is given by

P(z1, . . . , zk) = Q


1
1 − θ1(z1 − 1)

, . . . ,
1

1 − θk(zk − 1)


,

where

Q (z1, . . . , zk) =

∞
m1=1

· · ·

∞
mk=1

β(m1,...,mk)

k
j=1

z
mj
j .

Proof. The proof is straightforward. �

Proposition 6.3. Assume that (N1, . . . ,Nk) is a multivariate Pas-
cal mixture with varying scale parameters over different dimen-
sions and its joint probability is given by (6.5). For any θ ≤

min{θ1, . . . , θk}, (6.5) can be re-expressed as

P(N1 = n1, . . . ,Nk = nk)

=

∞
m1=1

· · ·

∞
mk=1

β̃(m1,...,mk)p(nj;mj, θ), (6.6)

where

β̃(m1,...,mk) =

m1
n1=1

· · ·

mk
nk=1

β(n1,...,nk)

k
j=1


mj − 1
nj − 1



×


θ

θj

nj 
1 −

θ

θj

mj−nj
.

Proof. The proof is similar to that inWillmot andWoo (2015). The
PGF of (N1, . . . ,Nk) is

P(z1, . . . , zk) = Q


1
1 − θ1(z1 − 1)

, . . . ,
1

1 − θk(zk − 1)



= Q

 1
1 − θ(z1 − 1)

θ

θ1

1

1 −
1− θ

θ1
1−θ(z1−1)

, . . . ,

1
1 − θ(zk − 1)

θ

θk

1

1 −
1− θ

θk
1−θ(zk−1)


= Q̃


1

1 − θ(z1 − 1)
, . . . ,

1
1 − θ(zk − 1)


,
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where

Q̃ (z1, . . . , zk)

= Q

 θ
θ1
z1

1 −


1 −

θ
θ1


z1

, . . . ,

θ
θk
zk

1 −


1 −

θ
θk


zk


=


m1≥1

· · ·


mk≥1

β(m1,...,mk)

k
j=1

 θ
θj
zj

1 −


1 −

θ
θj


zj

mj

=


m1≥1

· · ·


mk≥1

β(m1,...,mk)

×


nj≥mj


nj − 1
mj − 1


θ

θj

mj

1 −

θ

θj

nj−mj

z
nj
j


=


m1≥1

· · ·


mk≥1

β(m1,...,mk)


n1≥m1

· · ·


nk≥mk

×


k

j=1


nj − 1
mj − 1


θ

θj

mj

1 −

θ

θj

nj−mj

z
nj
j



=


n1≥1

· · ·


nk≥1


n1

m1=1

· · ·

nk
mk=1

β(m1,...,mk)

×

k
j=1


nj − 1
mj − 1


θ

θj

mj

1 −

θ

θj

nj−mj


k
j=1

z
nj
j

=


n1≥1

· · ·


nk≥1

β̃(n1,...,nk)

k
j=1

z
nj
j .

The conclusion follows from Lemma 6.2 and the uniqueness of the
PGF. �

Lemma 6.4. If (N1, . . . ,Nk) is a multivariate Pascal mixture with
common scale parameter given by (6.6), then each marginal Ni has
the following stochastic representation:

Ni =

Mi
j=1

Gij, i = 1, 2, . . . , k,

where Gij are i.i.d geometric random variables with mean θ , and the
count variables (M1, . . . ,Mk) have a joint probability function

P(M1 = m1, . . . ,Mk = mk) = β̃(m1,...,mk).

Proof. It is easy to check by calculating the PGFs of both
representations. �

Proposition 6.5. If (N1, . . . ,Nk) is a multivariate Pascal mixture
with common scale parameter and its joint probability function given
by (6.6), then N = N1 + · · · ,Nk is a univariate Pascal mixture with
the same scale parameter and its mixing weights are

β̃N
m =


m1+···+mk=m

β̃(m1,...,mk).

Proof. By Lemma 6.4, N = N1 + · · · + Nk =
M1+···+Mk

i=1 Gi. As a
result, N is a univariate Pascal mixture whose mixing weight for
the ith component equals

β̃N
m = P(M1 + · · · + Mk = m)

=


m1+···+mk=m

P(M1 = m1, . . . ,Mk = mk)

=


m1+···+mk=m

β̃(m1,...,mk). �
Theorem 6.6. For any 0 < θ r < min{θ r
1, . . . , θ

r
k }, the total number

of reported claims up to the valuation date τ is a univariate Pascal
mixture with probability function

P(N r
= n) =

∞
m=1

 
m1+···+mk=m

β̃(m1,...,mk)


p(n;m, θ r),

where

β̃(m1,...,mk) =

m1
n1=1

· · ·

mk
nk=1

β(n1,...,nk)

k
j=1


mj − 1
nj − 1



×


θ r

θ r
j

nj 
1 −

θ r

θ r
j

mj−nj

.

Similarly, for any 0 < θ IBNR < min{θ IBNR
1 , . . . , θ IBNR

k }, the total
number of IBNR claims up to the valuation date τ is an univariate
Pascal mixture, with probability function

P(N IBNR
= n) =

∞
m=1

 
m1+···+mk=m

β̃(m1,...,mk)


p(n;m, θ IBNR),

where

β̃(m1,...,mk) =

m1
n1=1

· · ·

mk
nk=1

β(n1,...,nk)

k
j=1


mj − 1
nj − 1



×


θ IBNR

θ IBNR
j

nj 
1 −

θ IBNR

θ IBNR
j

mj−nj

.

Proof. It is obvious by Propositions 6.3 and 6.5. �

We remark that although Theorem 6.6 shows that theoretically
it has a closed-form expression under our model assumptions,
there may be some computational issues. When one uses
Proposition 6.3 to unify the different scale parameters over the
time intervals, the resulting multivariate Pascal mixture will have
infinite number of terms. There is no guarantee that a truncation
of this infinite series can give an adequate approximation. More
importantly, the truncated terms might play an important role in
deciding the tail shape of the predictive distribution. Due to these
considerations, onemight resort to the simulation techniquewhen
calculating the distribution in practice.

7. Concluding remarks

In this paper, we proposed a marked Cox model for a portfolio
claim arrival process along with its reporting delays. The model
takes into consideration the exposure fluctuations and permits an
intuitive insurance interpretation. We proved that the associated
reported claim process and the IBNR claim process are alsomarked
Cox processes with easily convertible intensity functions and
marking distributions. Furthermore, the proposedmodel produces
an equivalent discretely observed process by an order statistics
property. All these are critically important from a data fitting
and prediction perspective. The flexibility of the proposed Cox
process in modeling temporal dependence is guaranteed as the
joint distribution of the discretely observed claim arrival process is
a multivariate Pascal mixture (Badescu et al., 2015a). In addition,
we derived an analytical formula for the ACF of the discretely
observed process, whose power-decaying pattern is attractive for
temporal dependence interpretation. Finally, we showed that both
the distributions of the numbers of reported claims and IBNR
claims come from the class of Pascal mixtures with closed-form
expressions for their mixing weights.
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In Badescu et al. (2015b), we will present an algorithm to fit the
proposed model to data and to estimate all the model parameters
including the number of states and the transition probabilities of
the Markov chain. The efficiency of the fitting algorithm and the
versatility of the proposed model are illustrated through detailed
simulation studies. The usefulness of the proposed model is also
tested by applying it to a real insurance data set. We compare the
predictive distribution of the number of IBNR claims by our model
to that of the over-dispersed Poisson model (ODP) (Renshaw and
Verrall, 1998), one of the several stochastic models that underpin
the widely used chain-ladder method. The results show that our
model can yield more accurate best estimates and more realistic
predictive distributions.

Our current work opens several potential research directions.
One could introduce the time trend and the seasonal effect
into the claim arrival process by incorporating time covariates
either in the state-dependent distributions or in the transition
probability matrix. While we only include the reporting delay as
the single marker in the marked Cox model, the model can easily
be extended to the situation that has multiple markers, e.g., the
multiple payments of a reported claim. They can be potentially
modeled as recurrent events or one can generalize the model
to be a marked Cox cluster process. The temporal dependence
structure in the proposed model can also be enhanced in at
least two directions. One could replace the underlying Markov
chain structure in the current model with a Markov process to
make it a full generalization of the Markov-Modulated Poisson
Process (MMPP) (Asmussen and Albrecher, 2010). Another path is
to impose a more complex temporal dependence structure, e.g., at
both the latent process level and the observation level. This would
be related to self-excited processes such as the Hawkes process
(Stabile and Torrisi, 2010).
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