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Abstract

Claim reserving is primarily accomplished using macro-level or aggregate models, with the
Chain-Ladder method being the most popular one. However, these methods are heuristically
constructed, rely on oversimplified data assumptions, neglect the heterogeneity of policyholders,
and so lead to a lack of accuracy. In contrast, micro-level reserving leverages on stochastic mod-
eling with granular information for improved predictions, but usually comes at the cost of more
complex models that are unattractive to practitioners. In this paper, we introduce a simplistic
macro-level type approach that can incorporate granular information at the individual level.
We do so by considering a novel framework in which we view the claim reserving problem as a
population sampling problem and propose an estimator using inverse probability weighting tech-
niques, with weights driven by policyholder attributes. The framework provides a statistically
sound method for aggregate claim reserving in a frequency and severity distribution-free fash-
ion, while also incorporating the capability to utilize granular information via a regression-type
framework. The resulting reserve estimator has the attractiveness of resembling the Chain-
Ladder claim development principle, but applied at the individual claim level, and so it is easy
to interpret by actuaries, and more appealing to practitioners as an extension of a macro-models.

Keywords— Claim reserving, Survey Sampling, Inverse Probability Weighting, Chain Ladder,
Survival modeling

1 Introduction

Claim reserving is a crucial aspect of insurance and risk management, and is vital for ensuring
solvency, assessing risk, and setting appropriate premiums. The insurance industry employs several
types of reserves but is primarily interested in the reserve for outstanding claims, which cover the
estimated costs of unsettled and non-reported claims, representing the insurer’s liability for future
payments related to already occurred accidents. This reserve can be split into subcomponents
depending on the source of the claim i.e. whether it is from a reported claim or not, and it is
of interest to create this distinction for accounting purposes. These reserves play a vital role in
maintaining financial stability and ensuring the availability of funds for future claim payments.

Reserving in general insurance is one of the most studied problems in actuarial research. See
for e.g. Schmidt (2011) for an extended list of most of the research covering this topic. Taha et al.
(2021) and references therein provide a friendly overview of methods used in insurance reserving.
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Briefly, two primary approaches to reserving, namely micro and macro approaches, have been widely
studied in the actuarial literature. The theoretical foundations of these methods can be found in
the literature of stochastic claim reserving, such as Wüthrich and Merz (2008).

On one hand, the macro approach to reserving focuses on estimating claim payments at an
aggregate level. Among the macro approaches, Chain-Ladder-based techniques are widely employed
in the insurance industry due to their ease of implementation, interpretation, and reliance on
intuitive assumptions. See for e.g Mack (1994), Quarg and Mack (2004), Mart́ınez-Miranda et al.
(2012). These methods avoid the need for complex mathematical concepts, such as predictive
models or stochastic processes, instead relying on simple operations that can be implemented using
spreadsheets. Additionally, they only require estimating development factors, which can be easily
obtained from aggregate data without the need for specialized software. Consequently, the Chain-
Ladder method is favored by insurance companies and regulators, with more than 90% of insurers
relying on it as their primary reserving method (Francis (2016)).

However, these aggregate methods overlook the actual composition and heterogeneity of the
insurance portfolio. The Chain-Ladder assumes homogeneity among claims within a given group,
disregarding valuable insights that can be gained by considering factors such as relevant attributes
associated with the risk of each policyholder ( Wüthrich (2018b) ). In fact, the most recent literature
on claim reserving (e.g Crevecoeur et al. (2022) and literature therein ) highlights the importance
of using all the information available (i.e the granular data) for the estimation of accurate reserves,
and how ineffective is ignoring it. Consequently, the Chain-Ladder and similar macro-level models
exhibit clear limitations and modest accuracy of estimation of the reserves when compared to
models that do account for granular information i.e micro-level models.

On the other hand, the micro approach to reserving involves estimating individual claim pay-
ments by considering detailed characteristics such as policyholder information, claim type, severity,
and other relevant factors ( Boumezoued and Devineau (2017) ). Micro-level reserving methods
utilize probabilistic models that directly capture the behavior of policyholders and their impact on
reserves, resulting in accurate forecasts. See for e.g Antonio and Plat (2014), Fung et al. (2021),
Taylor et al. (2008), Wüthrich (2018a).

However, micro-level models pose challenges in terms of complexity, portfolio heterogeneity,
and size, making them difficult to implement in practice. These models incorporate both stochastic
and predictive modeling, adding layers of complexity that may hinder understanding by prac-
titioners and regulators. Moreover, micro-level models often require assumptions about model
components, such as distributions and simplifications of reality, which raise concerns about their
validity. Consequently, these models are not widely adopted by actuarial practitioners due to the
additional implementation effort required and the lack of consensus on modeling practices from
a regulatory standpoint, even though these provide more reliable estimations. Indeed, according
to Francis (2016) and related studies, micro-level reserving methods are virtually absent among
insurance companies worldwide, with close to 0% utilizing them as either their primary method or
for informational purposes.

A main obstacle to the consideration of micro-level reserving by practitioners and regulators
is the significant disparity in methodologies with respect to macro-level models, in addition to
the associated effort required for its construction. Macro-level models, such as the Chain-Ladder,
differ significantly from micro-level models in terms of how the reserve estimation is derived. Con-
sequently, the transition from a macro-level to a micro-level model represents a substantial and
challenging undertaking for any insurance company. Furthermore, regulators face difficulties in
validating and accepting a micro-level model when its underlying principles deviate significantly
from the familiar idea of Chain-Ladder and the construction of the reserves via development fac-
tors. Therefore, the substantial gap between these two principal reserving methodologies hinders
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the adoption of micro-level modeling by practitioners.
In this paper, we focus on reducing the gap between macro and micro models by providing a

methodology that enables the use of individual information in a macro model, and so improves its
performance while retaining most of its simplicity and interpretability. To do so, in this paper, we
consider a novel approach to claim reserving by viewing the problem as a survey sampling problem.
By treating the reported claims as a sampling from a larger population of claims, we develop a
statistically justified macro approach based on an inverse probability weighting (IPW) method that
accommodates the introduction of individual claim information via a regression-like model on the
sampling probabilities, similar to how it is achieved to propensity scores. Just as is the case of
traditional aggregate models, the IPW approach to claim reserving only requires the modeling of
the development of the claims (i.e reporting and payment delays), without the need for explicit
models for claim frequency or severity. As a result, the modeling efforts are focused on estimating
policyholder-specific inclusion probabilities based on the observed distribution of the delays.

The resulting IPW estimator exhibits a functional form reminiscent of the Chain-Ladder method
and its development factors. However, it distinguishes itself by having claim-specific factors that
depend on the attributes of the claims. As a result, our methodology can be viewed as a “micro-
level version” of the Chain-Ladder, where the development of each claim up to its ultimate value is
performed at the individual level. Hence, our proposed approach represents a natural extension of
traditional aggregate methods, tailored to incorporate individual claims information in a statisti-
cally justified manner, but in a much friendlier fashion. It is important to note that our approach is
motivated independently of the Chain-Ladder method and differs from other attempts to account
for heterogeneity in macro-level models, such as Wüthrich (2018b) or Carrato and Visintin (2019).
In these approaches, a classification of claims into homogeneous classes is conducted, followed
by the application of the Chain-Ladder method within each class. In contrast, our methodology
seeks to integrate individual claims information without relying on such classification procedures
or applying the run-off triangle development principle.

The IPWmethod represents an improvement over aggregate claim reserving models based on the
Chain-Ladder, while also providing a cost-effective alternative to traditional micro-level reserving
models. It maintains the desirable practicality and interpretability of macro-level models, making
it a more appealing choice for both practitioners and regulators. This approach may serve as an
initial step to encourage practitioners, who typically rely on macro models, to explore the potential
benefits and insights obtained from incorporating individual information in the reserving process.
Ultimately, it paves the way for practitioners and regulators to consider tailored-made models based
on micro-level techniques.

This paper is structured as follows: Section 2 introduces the reserving problem as a sampling
problem, and shows the derivation of IPW estimator for the outstanding claims, and its properties.
Section 3 extends the methodology to consider other types of reserves such as the incurred but
not reported (IBNR) and reported but not settled (RBNS) reserves. Section 4 discusses how to
estimate the required inputs of the model. Section 5 provides a numerical study with real data.
Lastly, Section 6 provides the conclusion and future research directions.

2 Claim reserving via inverse probability weighting

In this section, we present the claim reserving problem and demonstrate how it can be effectively
tackled using inverse probability weighting methods. Since there are various types of reserves in
general insurance, in this section we provide the overall idea of the methodology for the total reserve
of outstanding claims. Section 3 will delve into the specific details of the methodology for the most
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prevalent and significant reserves in general insurance, namely RBNS and IBNR reserves.

2.1 The claim reserving problem

Suppose an insurance company is analyzing its total liabilities associated with claims whose accident
times occur between t = 0 and t = τ , where τ is the valuation time of analysis as defined by
the actuary. In general insurance, accidents are often not immediately reported to the insurance
company for various reasons, resulting in a significant delay between the occurrence of a claimable
accident and the time the insurance company is notified. As a result, at a given valuation time
τ , the insurance company only has information on the claims reported by τ and is unaware of the
unreported claims. Furthermore, the complexity of the problem increases due to another delay in
the payment process. When a claim is reported, it is common for it to be paid in several sub-
payments over time rather than as a lump sum. This is because the impact of an accident can
evolve, requiring additional payments until it is fully settled. Therefore, at a given valuation time
τ , the insurance company is only aware of the claims that were reported on time, and for each one,
it may have paid only a partial amount of the associated claim size, rather than the entire amount
owed.

As a result, the insurance company is interested in estimating the total claim amount of these
unreported claims, as well as the remaining payments of the reported claims, to construct the overall
reserve of outstanding claims. This reserve is also known in the insurance jargon as the Incurred
But Not Settled (IBNS), and it’s usually decomposed into further subcomponents depending on
whether the payment is associated with a reported or not reported claim. For simplicity, here
we consider the estimation of the overall reserve of outstanding claims without referring to the
components.

That said, let’s describe the payment process as follows:

• Let N(τ) represent the total number of different payments associated with all the claims
whose accident time is before the valuation time τ .

• Let Yi, i = 1, . . . , N(τ) denote the sequence of amounts associated to each payment. Note
that several of these payments may belong to the same claim/accident, but we will not make
any distinction regarding this fact.

• Let Ti, i = 1, . . . , N(τ) denote the sequence of accident times associated with the claim
underlying each payment; let Ri, i = 1, . . . , N(τ) denote the sequence of the associated
reporting times; let Si, i = 1, . . . , N(τ) denote the sequence of the associated times in which
the payments takes place. Clearly, Ti < Ri < Si and note that the values Ti, Ri would be the
same for payments associated with the same claim, but the Si would differ.

• Let Ui = Ri − Ti, i = 1, . . . , N(τ) be the sequence of the reporting delay times associated
with the claim underlying each payment, and Vi = Si − Ri, i = 1, . . . , N(τ) be the sequence
of the associated payment delay time of each payment. Note that Ui is the same for all the
payments associated with the same claim.

• Let Xi, i = 1, . . . , N(τ) be the sequence of information/attributes of relevance, that is asso-
ciated with the accident, the type of claim, the policyholder attributes, or the characteristics
of the payment itself.

• Let NP (τ) the number of payments made by valuation time τ out of the total N(τ) i.e the
number of payments made to the claims reported by τ .
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Along those lines, the total liability of the insurance company associated with accidents occur-
ring before the valuation time τ , which we will denote as L(τ), is given by:

L(τ) =

N(τ)∑
i=1

Yi

Similarly, the portion of liability that is known to the insurance company (i.e the so-called paid
amount) by valuation time τ , which we will denote as LP (τ), is:

LP (τ) =

NP (τ)∑
j=1

Yj

We note that the indices of the payments made might not have the same order as all the
payments, but we write it this way using the index j for the sake of simplicity of the notation.

Along these lines, an actuary is interested in estimating the remaining liability i.e the outstand-
ing claims. We will denote this quantity as LO(τ), and it is given by just the difference:

LO(τ) = L(τ)− LP (τ)

This value is what the insurance company requires to set up the reserve for outstanding claims,
either non-reported, non-settled, or both, and is our goal for estimation. For further details of the
claim reserving problem, we refer the reader to Wüthrich and Merz (2008).

2.2 A survey sampling framework for claim reserving

Our proposal in this paper is based on a simple yet novel idea that allows us to frame the reserving
problem in the context of survey sampling, enabling us to leverage techniques from this field to
our advantage. Survey sampling is a statistical technique used to estimate population totals based
on a smaller sample, especially in contexts where data collection from the entire population is
impractical. The sampling design is the systematic process of selecting individuals or units from
the population to be included in the sample. Different sampling methods are used depending on the
research objectives and resources available. By using statistical techniques based on the sampling
design, researchers can make reliable inferences about the population based on observations from
the sample.

Applying this concept to our reserving problem, we can consider all N(τ) payments as the
population under study, while the current NP (τ) payments made by the valuation date serve as
the selected sample for understanding this population. It is important to note that the sampling
design and the actual sampling process are not determined or performed by the investigator but
are purely driven by the randomness associated with whether a payment is made or not by the
valuation date. Thus, the sample is given rather than being selected by the actuary. This is one of
the distinctions between our setup and typical survey sampling situations.

The sampling mechanism based on the payment data can be conceptualized as a two-stage sam-
pling process (Thompson (2012)). In the first stage, a Poisson sampling design without replacement
is employed to sample the reported claims. This means, for each of the claims in the population,
a Bernoulli experiment is conducted, where success is defined as the claim being reported by the
valuation time, and failure occurs if it is not reported. Refer to Särndal et al. (2003) for more
details on the Poisson sampling.

Moving to the second stage, we focus on the payments associated with each of the sampled
claims from the previous stage (i.e., the reported claims). In this case, another sampling procedure

5

Electronic copy available at: https://ssrn.com/abstract=4499355



is carried out to determine which payments of a claim are made before the valuation time and
which are not. This is also achieved by a Bernoulli like experiments, however do note that these
are not independent because of the ordering of the payments e.g a second payment of a claim can
be sampled as long as the first payment is sampled.

As a result of the sampling, we can assign a dicotomic random variable 1i(τ), i = 1, . . . , N(τ)
with success probability πi(τ), to each payment in the population. Such a variable takes the value
of 1 or 0, indicating whether the payment Yi belongs to the sample of payments made or not,
respectively, by a given valuation time τ . These variables are referred as the membership indicators
of the payments and are determined based on the delay in reporting (for the first stage of sampling)
and the delay in payment (for the second stage) by the valuation time. Mathematically,

1i(τ) = 1{Si≤τ} = 1{Ti+Ui+Vi≤τ} = 1{Ui≤τ−Ti}1{Vi≤τ−Ri}

where the indicators in the product on the right-hand side are the indicators of the first and
second stages of sampling, respectively.

The probabilities πi(τ) are known as inclusion probabilities and can be interpreted as the like-
lihood of payment Yi belonging to the sample or, equivalently, being paid by the valuation time τ .
Mathematically, these are given by

πi(τ) = P (Ui ≤ τ − Ti)× P (Vi ≤ τ −Ri) = πU
i (τ)× πV

i (τ) (1)

where πU
i (τ) = P (Ui ≤ τ − Ti) and πV

i (τ) = P (Vi ≤ τ − Ri) are the inclusion probabilities of the
first and second stage of sampling, respectively. These probabilities are dependent on the valuation
time and are likely to vary across payments due to the different attributes Xi associated with each
payment. While a more formal notation would be π(τ ;Yi, Xi) to highlight this dependency, we
simplify it as πi(τ) to streamline the notation and emphasize that the indexation on i corresponds
to the probabilities being specific for each payment, and determined based on their attributes. In
the literature on survey sampling, this is known as the sampling being informative as the actual
values of the payments may be associated with the sampling design. It is important to note that
these probabilities are not predefined and are therefore unknown to the investigator. We will delve
into this matter further in Section 4.

Finally, note that the sample size in the design is not a fixed quantity. The sample size, which
in our case is equivalent to the number of payments currently made NP (τ), is a random variable

defined as NP (τ) =
∑N(τ)

i=1 1i(τ), which we can identify as the thinning of the counting process of
the total number of payments.

2.3 Point estimation using the Horvitz-Thompson estimator

As motivated by the population sampling literature (Thompson (2012) or Särndal et al. (2003)),
a well-established unbiased estimator of the population total of payments (i.e L(τ)) under the
aforementioned sampling design is provided by the Horvitz-Thompson (HT) estimator described as
follows:

L̂(τ) =

NP (τ)∑
j=1

Yj
πj(τ)

and therefore an unbiased estimator of the outstanding claims is the difference between the esti-
mated total and the currently paid liability:
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L̂O(τ) = L̂(τ)− LP (τ) =

NP (τ)∑
j=1

Yj
πj(τ)

−
NP (τ)∑
j=1

Yj =

NP (τ)∑
j=1

1− πj(τ)

πj(τ)
Yj (2)

The intuition behind the HT estimator lies in the fact that only a portion of all payments Yj
is reported, proportionally to πj(τ), and so each payment is “augmented” by a factor of 1/πj(τ)
to approximate the actual total amount. It is important to note that the HT estimator is non-
parametric, meaning that it does not require any distributional assumptions about the underlying
distribution of the number of claims (frequency) or the distribution of claim sizes (severity). Addi-
tionally, we emphasise on the fact that even though the estimator is based on the population level
(i.e a macro level scale), the inclusion probabilities are dependent on the individual attributes of
policyholders, claims, and payments. Therefore the estimator incorporates granular information as
part of the estimation.

The HT estimator is widely recognized as one of the most influential estimators in the statistics
literature, having been extensively studied for over 70 years in the field of population sampling
(e.g Arnab (2017)). Consequently, the HT estimator has a solid theoretical foundation and pos-
sesses numerous desirable properties that directly inherit to the claim-reserving problem, including
consistency, unbiasedness, and sufficiency, among others. More recently, it has also been applied
in inverse probability weighting (IPW) methods for estimation under missing data and in causal
inference (e.g Seaman and White (2013) and Yao et al. (2021)), including applications in fairness in
insurance, and so the terminology “IPW estimator” is more extended in and outside the statistics
literature. We will mostly refer to the estimator of the reserve as the IPW estimator, and reserve
the naming of HT estimator when referring to the general concept.

A specific case of interest arises when we set Yi = 1. In this scenario, all the sums above
simplifies to a count of the number of payments, allowing us to obtain an unbiased estimator for
the number of payments yet to make as:

N̂O(τ) := N̂(τ)−NP (τ) =

NP (τ)∑
j=1

1

πj(τ)
−

NP (τ)∑
j=1

1 =

NP (τ)∑
j=1

1− πj(τ)

πj(τ)
(3)

It is worth noting that this particular expression coincides with the one utilized by Fung et al.
(2022) for the specific case of the number of incurred but not reported (IBNR) claims. In their
work, they derived this expression under the assumption that the number of unreported claims
follows a geometric distribution and demonstrated its unbiasedness when the number of claims is
driven by a Poisson process. However, it is important to emphasize that within the framework of
the HT estimator, this result is immediate and does not require of the assumption of the geometric
distributions.

A “Micro-level” Chain-Ladder method

From an actuarial standpoint, the IPW estimator can be perceived as an individual-level adaptation
of the Chain-Ladder method. In fact, by expressing the estimator as:

L̂(τ) =

NP (τ)∑
j=1

fj(τ)Yj

we can interpret fi(τ) := 1/πi(τ) as an individual development factor assigned to each pay-
ment Yi. These factors serve to project the payment to its ultimate value which aligns with the
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fundamental principle of the Chain-Ladder method. As the factors fi(τ) are influenced by the
policyholder’s attributes, we can think of this methodology as a “micro-level” version of the Chain-
Ladder method, as it applies the development on an individual level while retaining the essential
characteristics of the Chain-Ladder. Indeed, we note that if no information of attributes is incor-
porated in the inclusion probabilities, then the development factors would be uniform across all
claims. Consequently, the ultimate liability would be determined solely by multiplying the current
paid amount by the development factor, which is nothing but the Chain-Ladder method. The IPW
estimator and the Chain-Ladder method have a very entangled connection, but we will deepen this
discussion in Calcetero-Vanegas et al. (2023).

2.4 Confidence interval of the estimation

Non-parametric confidence intervals for the reserve can be constructed based on the sampling
distribution of the HT estimator, as discussed by Arnab (2017). In summary, under minimal
regularity conditions, the HT estimator follows approximately a normal distribution under the two-
stage sampling design for large populations (Chauvet and Vallée (2018)). Thus, an approximate
1 − α confidence interval can be constructed using normal quantiles. However, as explained by
Särndal et al. (2003), the accuracy of the normal approximation relies on the sample size and
the distribution of Yi, which tends to exhibit skewness and heavy-tails. Consequently, the normal
distribution might provide a suboptimal approximation for our reserving application.

Alternatively, one can construct a confidence interval by applying a log transformation to the
liability. This approach utilizes the delta method to construct an interval for the logarithm of
the liability, which tends to exhibit behavior closer to normality. Subsequently, the interval is
transformed back to the original scale using the reverse transformation. This log-transformed
confidence interval can be a more appropriate choice, considering the distribution of the data and
its potential skewness and heavy-tailed characteristics.

Therefore, an approximate 1− α confidence interval for LO(τ) can be constructed as:exp

log
(
L̂O(τ)

)
− Zα/2

√
V ar(L̂O(τ))

L̂O(τ)

 , exp

log
(
L̂O(τ)

)
+ Zα/2

√
V ar(L̂O(τ))

L̂O(τ)

 (4)

where Zα/2 is the α/2 quantile of the standard normal distribution, and the variance of the estimator
is traditionally estimated using the expression:

ˆV ar1(L̂
O(τ)) =

NP (τ)∑
j=1

(1− πj(τ))
3

π2
j (τ)

Y 2
j +

NP (τ)∑
j=1

NP (τ)∑
k=1,k ̸=j

χjk

πmax(j,k) − πjπk

πmax(j,k)

1− πj(τ)

πj(τ)

1− πk(τ)

πk(τ)
YjYk

where χjk = 1 if the j-th and k-th payment in the data are generated from the same claim, and
χjk = 0 otherwise.

As noted by Thompson (2012), the computation of the expression for the variance above can be
quite laborious. This is because, in the second term, there is a combinatorial component associated
with the covariance between payments belonging to the same claim. To address this challenge,
alternative estimators of the variance can be employed, as suggested by Berger (1998). They
propose the use of a simpler estimator, given by:

ˆV ar2(L̂
O(τ)) =

∑NP (τ)
j=1

(
NP (τ)

1−πj(τ)
πj(τ)

Yj − L̂O(τ)
)2

NP (τ)(NP (τ)− 1)
(5)
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The expression above can be viewed as the jackknife estimator of the variance of the HT
estimator (see for e.g Efron and Stein (1981)). This formulation is computationally simpler to
obtain and, as commented by Thompson (2012), it tends to provide a more conservative estimate
with a larger value compared to the actual variance. Therefore, we consider this estimator of the
variance to be highly preferable over the previously derived one.

Lastly, we note that another approach for the construction of confidence intervals can be ob-
tained using a bootstrapping of the HT estimator as described in Särndal et al. (2003). This
approach, although computationally more expensive, is data-driven and could be a desirable alter-
native.

3 Calculation of RBNS, IBNR, incremental claims and other re-
serves

The reserve for outstanding claims, as discussed earlier, accounts for unreported and partially
paid claims. While Equation (2) provides an estimator for the total reserve, it doesn’t specify the
allocation of the reserve to different types of payments. However, for accounting purposes, cash
management, and risk assessment, actuaries need to specify the components of the overall reserve,
commonly known as the IBNR (Incurred But Not Reported) reserve, the RBNS (Reported But
Not Settled) reserve, and incremental payments over specific time periods.

In this section, we present how the survey sampling framework can be adapted to decompose
the estimation of the total reserve (Equation (2)) into these sub-components as per the actuary’s
requirements. We introduce the “change of population principle” as a general approach to ac-
complish this decomposition within the IPW framework. We then demonstrate its application in
deriving the RBNS, IBNR, incremental claims, and potentially other relevant calculations.

3.1 The change of population principle

In Section 2, we used the fact the currently paid amount can be considered as a sample of the
total amount of payments. As a result, we defined a sampling design within the total amount of
payments along with its corresponding inclusion probabilities. However, it is important to recognize
a simple yet crucial fact: the currently paid amount can also be regarded as a sample from various
sub-populations within the total amount of payments.

Figure 1 demonstrates a method of partitioning the total liability at a given valuation time
τ into sub-populations associated with specific reserves of interest. This figure provides a visual
representation, akin to a run-off triangle, distinguishing reported and non-reported payments at τ .
The x-axis represents the development time, which goes from t = T (i.e. the accident time) up to
time t = T + ω, being ω the maximum settlement time of a claim. This figure can be thought of
as a screenshot of the classification of all the payments at a given valuation date τ .

To illustrate the concept, let’s examine Figure 1. Combining all regions (A to G) yields the
population discussed in Section 2, representing total liabilities. Focusing on the lower half of the
figure, regions A to D, encompasses payments associated with reported claims at τ , where the
current paid amount serves as a sample. Additionally, by narrowing our focus to the lower half of
the figure and considering payments up to a specific time, such as t = τ2 (the union of regions A,
B, and C), we obtain a truncated version of payments. Specifically, this includes total payments
made for currently reported claims, excluding those made after t = τ2. Note that the current paid
amount is a sample from all of this subpopulation.
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Figure 1: Decomposition of the total liability as of valuation time τ into sub-populations

Adopting this approach, estimating the total liability for a specific subpopulation involves treat-
ing it as the main population from which current payments are sampled. Consequently, the IPW
estimator, discussed previously, can be employed to estimate the liability. We refer to this approach
as the change of population principle.

This change in the subpopulation leads to a different sample design and, consequently, different
inclusion probabilities. However, these probabilities can be easily determined using elementary
conditional probability arguments. Specifically, when we limit the analysis to a subpopulation S,
we denote the inclusion probability under this restriction as πS

j (τ). This probability represents the
likelihood of payment Yj being reported at τ , given its membership in subpopulation S. Bayes’
rule allows expressing this probability as

πS
j (τ) =

πj(τ)

Pj(S)

Here, Pj(S) denotes the probability of payment j being sampled in subpopulation S according
to the original sampling design, influenced by factors like reporting delay and claim evolution.
It is important to note that in this context, we assume the subpopulation S is a subpopulation
encompassing the current payments (region A in Figure 1).

We will observe that for the reserves of interest, these probabilities can be straightforwardly
expressed in terms of the probabilities associated with the previously defined delay time random
variables Uj and Vj . Therefore, no additional estimations are necessary.

3.2 Calculation of the RBNS reserve

The Reported But Not Settled (RBNS) reserve represents payments that are yet to be made for
claims already reported at valuation time τ . This reserve corresponds to the combined regions B,
C, and D in Figure 1.

To estimate the reserve, we apply the change of population principle and define the population
S as the total payments associated with reported claims at τ . This population corresponds to the
lower half of Figure 1, specifically S = A ∪ B ∪ C ∪D. In reserving terminology, this corresponds
to the ultimate of incurred losses for claims reported prior to τ .
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Next, we determine the inclusion probabilities. The selection of the subpopulation depends on
claim reporting, which occurs with probability Pj(S) = P (Uj ≤ τ − Tj). Utilizing the previously
mentioned result derived from Bayes’ rule, the new inclusion probabilities for this population are:

πj(τ)

Pj(S)
=

P (Uj ≤ τ − Tj)× P (Vj ≤ τ −Rj)

P (Uj ≤ τ − Tj)
= P (Vj ≤ τ −Rj) = πV

j (τ)

This result is intuitive since the region only considers claims already reported at τ , and the
remaining randomness pertains to the evolution of payment occurrences only. Consequently, we
can utilize the IPW estimator to obtain an unbiased estimator for the total payments of reported
claims as

NP (τ)∑
j=1

Yj

πV
j (τ)

Hence, the RBNS reserve of interest can be obtained by subtracting this quantity from the
current paid amount:

L̂RBNS(τ) =

NP (τ)∑
j=1

Yj

πV
j (τ)

− LP (τ) =

NP (τ)∑
j=1

1− πV
j (τ)

πV
j (τ)

Yj (6)

3.3 Calculation of the pure IBNR reserve

To estimate the Incurred But Not Reported (IBNR) reserve, we cannot directly apply the change
of population principle since the current paid amount is not a subpopulation of the not reported
claims population (Figure 1). However, we can easily overcome this by considering the current
paid amount as the difference between two populations: the total payments (all regions in Figure
1) and the total payments of currently reported claims (lower half of Figure 1). Estimations for the
liabilities associated with these populations have been discussed in Sections 2 and 3.2, respectively.
Therefore, the IBNR liability can be estimated as the difference between these two estimations.

L̂IBNR(τ) = L̂O(τ)− L̂RBNS(τ) =

NP (τ)∑
j=1

(
1

πj(τ)
− 1

πV
j (τ)

)
Yj =

NP (τ)∑
j=1

(
1− πU

j (τ)

πU
j (τ)

)
Yj

πV
j (τ)

(7)

We would like to highlight that this approach to estimating the IBNR is analogous to the
conventional actuarial method using run-off triangles, where the total reserve is estimated using
the incurred claims triangle and subtracting the reserve obtained from the paid claims triangle.
Unlike aggregate approaches that may yield negative reserve estimates, our method ensures non-
negative estimations.

3.4 Calculation of Cumulative and incremental payments

The estimator we have presented so far provides the ultimate amount of liabilities, but insurance
companies require projections of the reserve payments over specific periods. These payments, known
as incremental claims, can be estimated within our framework as follows: we utilize the change
of population principle to estimate cumulative claims for different periods and then calculate the
incremental claims as the difference between these cumulative claims. Although we will demonstrate
this analysis for the total reserve, it can be similarly applied to the RBNS. Notably, our model is
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continuous rather than discrete, allowing for the accommodation of any desired periodicity for
incremental claims.

Let’s consider an insurance company assessing claims incurred before the valuation time τ and
interested in estimating the incremental claims associated with a future period between t1 and t2
(τ < t1 < t2), denoted as L(τ, t1, t2). Visually, L(τ, t1, t2) corresponds to regions C and F in Figure
1.

We start by considering the population of cumulative claims up to time t1 ≥ τ , where only
payments made up to t1 are included i.e L(τ, 0, t1) (regions A, B, and E in Figure 1). Using the
change of population principle, a payment belongs to this population if its payment time is before
t1, which occurs with probability Pj(S) = πj(t1). Thus, the inclusion probability is:

πj(τ)

Pj(S)
=

πj(τ)

πj(t1)

and so the IPW estimator is given by:

L̂(τ, T, t1) =

NP (τ)∑
j=1

πj(t1)

πj(τ)
Yj (8)

The incremental claims between t1 and t2 are then given by L(τ, t1, t2) = L(τ, 0, t2)−L(τ, 0, t1),
and so an unbiased estimator for incremental claims is:

L̂(τ, t1, t2) = L̂(τ, 0, t2)− L̂(τ, 0, t1) =

NP (τ)∑
j=1

πj(t2)− πj(t1)

πj(τ)
Yj (9)

This is a very intuitive expression: The denominator, πj(τ), scales the observed claims Yj to
the total amount, while the difference in probabilities in the numerator, πj(t2) − πj(t1), captures
the proportion of the total observed between t1 and t2.

3.5 Others applications

The IPW framework and the change of population principle extends beyond the reserves discussed
thus far, allowing for the estimation of other types of reserves based on the specific needs of the
actuary. For instance, the incurred but not paid (IBNP) reserve can be estimated as a portion
of the current RBNS estimation. In this case, the payments themselves serve as the population
for analysis using the change of population principle, with an inclusion probability linked to the
occurrence of the first payment in the sequence.

Another example, though less explored, is the unearned premium reserve (UPR). This reserve
pertains to payments for claims where the accident occurs after the valuation time τ , but only for
policies in force at τ . To estimate the UPR, the change of population principle can be applied by
defining a larger superpopulation consisting of all payments associated with claims from policies in
force at τ , regardless of when the accidents occurred.

Finally, it is important to note that the IPW framework provides estimations without assuming
specific meaning for Yi. The quantity of interest represented by Yi can be diverse. For example,
setting Yi = 1 provides an estimation of the number of payments. Alternatively, the actuary
can define Yi as fees, commissions, policy management costs, etc., enabling a cost decomposition
analysis of the reserve estimates.
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4 Estimation of the model

In order to implement the IPW estimator, the key input required is the unknown inclusion proba-
bilities πi(τ). These probabilities are associated with the evolution of a claim, including reporting
and settlement delays and depend on various attributes of the payment, the claim, and the policy-
holder, denoted as Xi, as well as the claim amount Yi itself. In this section, we outline a data-driven
approach to estimating these values. As explained in Section 2, the inclusion probabilities consist
of two separate components: the probability of reporting and the probability of settlement. Each
one is estimated separately, so we discuss the different strategies to achieve this in Sections and .

4.1 Estimation of the reporting delay times probabilities P (Uj ≤ τ − Tj)

To estimate probabilities, it is common to assume that the reporting delay times, conditioned on
claim attributes Xi, follow a common distribution function (see, for example, Verrall and Wüthrich
(2016)), that we will denote with FU |Xi

(u) and that will be the target of estimation in some type
of regression framework to include the dependence on covariates.

The variable of interest, Ui, is a time-to-event random variable commonly studied in survival
modeling. Therefore, existing approaches in survival modeling can be utilized to estimate the
overall distribution function and the desired probabilities. The most popular methods are based on
the family of proportional hazard models, also known as Cox regression models (e.g George et al.
(2014)). These methods aim to directly model the log-hazard function of the random time variable
while accounting for the attributes in the modeling using a linear regression-like model as follows:

log
(
λU |X(u)

)
= log(λ0(u)) + ⟨X,β⟩+ ε (10)

Here, λ0(u) represents the baseline hazard function, which can be chosen from a parametric
family or modeled nonparametrically e.g. using B-spline representation. ⟨X,β⟩ represents the
regression formula involving the covariates X with corresponding regression parameters β, and ε
captures unobserved effects as an error term, also knows as a random effect or frailty. Depending
on the analysis, various structures for the random effect can be considered, such autoregressive
structure to capture trends and dependencies over time, or correlated effects to account for depen-
dencies between claims that evolve together. Further guidance on specifying models for the hazard
function can be found in Argyropoulos and Unruh (2015).

Consequently, the desired probability can be derived using the relationship:

πU
i (τ) = Pr(Ui ≤ τ − Ti) = FU |Xi

(τ − Ti) = 1− exp

(
−
∫ τ−Ti

0
λU |Xi

(u)du

)
(11)

A crucial aspect in the estimation of the model above is accounting for the right-truncation
of the data. Indeed, due to the delay on the reporting times, our observations are limited to the
conditional random variables: Ui|Ui ≤ τ − Ti, and ignoring this fact would result in a downward
bias in the overall distribution. Fortunately, the literature on survival analysis has widely explored
this issue and provided solutions that the user can adopt for the estimation of the model. See for
e.g Shakur et al. (2021), Gui and Li (2005)Dempster et al. (1977), Verbelen et al. (2015), Fung
et al. (2022)).

It is worth noting that not all survival models use linear regression structures or aim to describe
the hazard function, and alternative approaches can offer different and flexible structures inspired
by the machine learning literature (e.g Wang et al. (2019)). For instance, Wiegrebe et al. (2023)
consider non-linear regression on covariates via deep learning approaches, Fung et al. (2022) propose
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a flexible model based on a mixture of experts, while other approaches utilize survival trees such as
Bou-Hamad et al. (2011). These alternatives provide increased flexibility compared to proportional
hazard models but may require additional expertise for model fitting and interpretation. The
choice of the model must be achieved in a data driven fashion aiming for the best fit to the data.
Regardless of the chosen methodology, careful consideration should be given to estimation under
the right truncation of the data.

Lastly, due to the popularity of survival analysis in statistics applications, most of the methods
described above have already been implemented in statistical software packages and are readily
available for its use in our applications. For example, in R, there are various implementations,
including Cox models as in Bender et al. (2018), mixture of experts as in Tseung et al. (2021), and
deep survival models, survival trees, forests, and more as in Sonabend et al. (2021).

4.2 Estimation of the payment times probabilities P (Vj ≤ τ −Rj)

Similarly to the previous case, we assume that the payment times, conditioned on claim attributes
Xi (including the reporting time), follow a common distribution function denoted as FV |Xi

(v) that
we aim to estimate via a regression framework. While estimating this probability might seem
similar to the previous case, a significant difference arises due to the recurrent nature of payment
events for a given claim, as opposed to the one-time event of claim reporting. This recurrent event
process (e.g Cook et al. (2007)) necessitates an appropriately adapted modeling approach. In this
section, we will discuss two closely related yet distinct approaches to address this estimation.

Counting processes

Recurrent events are closely related to counting processes, where the former focuses on event times
and the latter on the number of events. In our case, we can consider the number of payments over
time to be governed by a stochastically defined point process. Numerous works in insurance have
explored modeling such processes in the context of reserving (e.g Antonio and Plat (2014), Maciak
et al. (2021), Yanez and Pigeon (2021)).

Let’s define M(t), where t ∈ (0, ω), as the counting process associated with the number of
payments for a single claim. This is the counting process associated with the payments times Vj

for a given claim. For the sake of readability, we will omit the dependence on covariates in the
notation, although it is important to acknowledge that all these quantities are dependent on them.

Since our objective is to determine probabilities of the form P (V ≤ t), our goal is to express
the desired probability in terms of the process M(t). The following proposition establishes this
connection:

Proposition 1. Under the above definitions, we have that:

P (V ≤ t) = E

(
M(t)

M(ω)

)
(12)

Proof. Reverse the time of the process Ṽ = ω − V . The reversed time process can be seen as a
mortality process (see Section 4.2 for more details), where the initial number of lives is M(ω) and
the lifetime random variable of a newborn follows the same distribution as Ṽ . Then

P (V ≤ t) = P (Ṽ ≥ ω − t) = E
(
P (Ṽ ≥ ω − t|M(ω))

)
= E

(
E(M(t)|M(ω))

M(ω)

)
= E

(
M(t)

M(ω)

)
where the second last equality holds by the traditional life table relationship tp0 = lt/l0, and

the last equality is the tower property of conditional expectations.
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Equation 12 reveals that the desired probability possesses an intuitive expression associated
to the evolution of a claim up to settlement. In essence, the right-hand side of Equation (12)
represents the probability is the expected proportion of payments made by time t out of total of
payments. Another equivalent interpretations of this quantity is as the inverse of a development
factor for the number of payments from time t to the ultimate value at time ω. It is worth noting
that this expression can be analytically computed only for certain processes. One such example is
the widely used Poisson process (and some extensions), as illustrated in Example 1.

Example 1. Suppose the M(t) is a non-homogeneous Poisson process (NHPP) with intensity rate
µ(t), then

P (V ≤ t) =

∫ t
0 µ(s)ds∫ ω
0 µ(s)ds

Furthermore, the result holds even if we consider an NHPP with frailty eε i.e when conditional
on the random variable eε, the process is NHPP with intensity rate eεµ(t).

Proof. This is a widely known result but can be proven right away using the theorem above. To
do so, use conditional expectation on M(ω). It is wide known for NHPP that M(t)|M(ω) ∼

Binom

(
n = M(ω), p =

∫ t
0 µ(s)ds∫ ω
0 µ(s)ds

)
, and so we simply have:

P (V ≤ t) = E

(
M(t)

M(ω)

)
= E

(
E(M(t)|M(ω))

M(ω)

)
= E

M(ω)
∫ t
0 µ(s)ds∫ ω
0 µ(s)ds

M(ω)

 =

∫ t
0 µ(s)ds∫ ω
0 µ(s)ds

For the frailty, note that conditional on eε, the probability above does not depend on eε as it
cancels out in both the numerator and denominator, so the same expression holds right away.

Along those lines, the actuary must select in a data-driven fashion an appropriate counting pro-
cess (that incorporates the use of attributes) to model the number of payments per claim, and then
proceed to compute the desired probability using Equation (12). Fitting counting processes could
be complex task and can vary depending on the approach used. For a comprehensive discussion on
this matter, we refer to Andersen et al. (1985).

Reversed time counting process

By reversing the time of the counting process for the number of payments using the transformation
Ṽ = ω − V , we can interpret the resulting process as a mortality process, as discussed by Hiabu
(2017). This analogy allows us to describe Ṽ using a mortality model, which simplifies the fitting
of the counting process. Reversing the time is a well-studied approach in the survival modeling
literature Klein and Moeschberger (2003).

Most mortality models belong to the class of survival models, and so can be embedded into the
framework described in Section 4.1. The advantage of working with the reversed time process and
mortality models instead of the counting process directly is the wider range of options available
in terms of statistical modeling, including several readily implementable semi-parametric models
(Mulayath Variyath and Sankaran (2014)).
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In this case, we assume that the reversed hazard function ( e.g Block et al. (1998)) of the time
random variable Ṽ = ω − V , denoted as λ̃V |X(t), is described using a Cox regression-like model
that incorporates attribute information:

log
(
λ̃V |X(t)

)
= log

(
λ̃0(t)

)
+ ⟨X,α⟩+ ε

As before, λ̃0(t) represents a baseline reversed hazard function, ⟨X,α⟩ represents a regression
formula involving the covariates X with parameters α, and ε represents a random effect. This
modeling approach is analogous to the one described in Section 4.1, so we refer the reader to it.

As a result, the desired probability can be derived as:

πV
i (τ) = P (Vi ≤ τ −Ri) = P (Ṽi ≥ ω − (τ −Ri)) = exp

(
−
∫ ω−(τ−Ri)

0
λ̃V |Xi

(t)dt

)
(13)

Similar to the case of the reporting delay time, we face a right truncation problem when con-
sidering payments occurring after the valuation date. However, when reversing the time, this
issue transforms into a left truncation problem. Observations of the variables are only available if
Ṽi|Ṽi ≥ ω − (τ − Ri). Therefore, it is important to estimate the survival model for the reversed
time random variable using a right truncation algorithm. Fortunately, modern implementations of
survival models often include this capability as discussed in Section 4.1.

4.3 Goodness of fit and other considerations

Since the inclusion probabilities are the sole inputs for the IPW estimator, it is essential to have a
well-fitted model for optimal performance. In this section, we discuss the assessment of the model’s
goodness of fit using pseudo residuals. Additionally, we comment on the possible instability of the
resulting estimator and discuss ways of addressing such an issue.

Pseudo-residuals

To assess the accuracy of the resulting predictive distribution from the models in Section 4.1, one
approach is to use uniform pseudo-residuals based on the probability integral transform (Rüschen-
dorf (2009)). These pseudo-residuals are constructed by evaluating the fitted distribution function
at the observed values. They are widely used for goodness of fit assessment in various model families
(e.g Buckby et al. (2020)). Considering that the observations come from a truncated distribution,
the truncated version of the distribution should be taken into account. These pseudo residuals can
be expressed as:

rUi =
F̂U |X(Ui)

F̂U |X(τ − Ti)
rVi =

F̂V |X(Vi)

F̂V |X(τ −Ri)

The uniform pseudo-residuals should exhibit approximate uniformity if the fitted model ade-
quately represents the data. The uniform pseudo-residuals can be transformed to the normal scale
using the quantile function of the standard normal distribution, denoted as Φ−1:

r̃Ui = Φ−1(rUi ) r̃Vi = Φ−1(rVi )

These transformed normal pseudo-residuals allow for easier visualization and detection of de-
viations from the expected distribution when compared with uniform scale, nevertheless they are
equivalent. Note that the Cox-Snell residuals, commonly used in survival analysis, are obtained by

16

Electronic copy available at: https://ssrn.com/abstract=4499355



employing the quantile function of an exponential distribution instead of the normal distribution.
See for e.g Klein and Moeschberger (2003).

The normal pseudo-residuals can be utilized to assess the goodness of fit of the model through
graphical analysis, such as scatter plots, etc, in the same fashion as with ordinary residuals in linear
regression. The focus of the assessment is to determine whether the distribution of these residuals
resembles a normal distribution, which can be achieved through QQ and PP plots, or hypothesis
testing techniques.

Adjustments to the IPW estimate

The inclusion probabilities can vary significantly impacting the stability of the estimator. A extreme
case is when the estimated inclusion probability of claim is close to 0, which mostly occurs when a
claim is recently reported. Such circumstances can lead to instability in the estimator, potentially
resulting in abnormally high values of the reserve when compared with experience on previous
reserving exercises. This behavior has been widely documented in survey sampling literature of the
HT estimator. See for e.g., Hulliger (1995), Chen et al. (2017) and references therein.

Trimming the inclusion probabilities is a method proposed to address the behavior of extreme
values. In this approach, if the inclusion probability is too small, it can be replaced with a larger
value to get rid of the instability (Chen et al. (2017)). For reserving applications, the probabilities
can be trimmed by artificially assuming a slightly later valuation date, which would increase the
inclusion probabilities. Alternatively, data-driven methods, such as the algorithm proposed by Zong
et al. (2018), offer a more systematic approach. They propose algorithm 1 as illustrated below, and
demonstrate that the mean square error of the IPW estimator behaves more favorably than when
not performing any correction.

Algorithm 1 Algorithm by Zong et al. (2018) to trimm inclusion probabilities for the IPW esti-
mator
- Obtain the ordered inclusion probabilities

{
π(1), π(2), . . . , π(NP (τ))

}
from smallest to largest.

for j = 1, . . . , NP (τ) do
if π(j) ≤ 1

j+1 and π(j+1) >
1

j+2 then
Modify inclusion probabilities as:

π∗ = {π(j), . . . , π(j)︸ ︷︷ ︸
j−1

, π(j), π(j+1), . . . , π(NP (τ))}

end

end

It is important to note that replacing the inclusion probabilities with larger values may introduce
a downward bias in the reserve estimation. Therefore, it is recommended to perform the adjustment
only if the estimation displays sensitivity to the changes in the inclusion probabilities. If the
estimation remains nearly unchanged after the adjustment, retaining the original estimation would
be preferred over the trimmed one.

5 Numerical study with real data

In this section, we showcase the application of the IPW estimator using a real data set obtained from
a European automobile insurance company. The data-set comprises information on Body Injury
(BI) claims from January 2009 to December 2012. The insurance policy had considerable structural
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changes in terms of coverage, premiums, and administrative handling in the years thereafter, so the
information is not considered. The date in consideration represents the point at which we possess
information regarding all settled claims within this time frame.

In line with our methodology’s primary objective of serving as an alternative to traditional
macro-level models while being simpler than fitting a micro-level model, we maintain a simplified
approach to emphasize the practicality of the method in real-world applications.

5.1 Data description

The dataset contains detailed information about claim settlements, policyholder attributes, and
automobile characteristics within the aforementioned time period. This information encompasses
various factors such as car weight, engine displacement, engine power, fuel type (gasoline or diesel),
car age, policyholder age, and region (based on a general classification). Furthermore, the dataset
includes details related to the accidents themselves, such as the time of occurrence and the type
of accident (albeit based on a general classification). Additionally, information regarding the pro-
gression of claim payments is available, including reporting time, the corresponding settlement
amounts, and the corresponding occurrence times.

Our statistical modeling study focuses on the evolution of claims, specifically related to reporting
delay time and payment times. We illustrate some characteristics of these quantities, such as the
distributions in Figure 2 and summarize key statistics in Table 1.
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Figure 2: Density functions by year of the reporting delay time (left panel) and the payment time
(right panel) in months. Plots are in the log scale.

Upon reviewing the information presented in Figure 2 and Table 1, it is evident that the re-
porting delay tends to be relatively short, with an average duration of less than a month. However,
there is notable variability in the tail behavior of this variable. In contrast, the progression of
claim payments typically spans a few months on average, but there are instances where settlement
times can extend over several years. It is important to note that the distributions of these variables
exhibit complexities that are challenging to capture using parametric models. Specifically, they dis-
play significant temporal fluctuations, indicating that historical data may not adequately represent
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Variable Year Mean Std. Dev. Min. 1st Qu. Median 3rd Qu. Max.
2009 1.03 4.09 0.00 0.05 0.10 0.28 43.28

Reporting 2010 0.45 1.85 0.00 0.04 0.07 0.13 25.66
delay time 2011 0.50 2.16 0.00 0.04 0.07 0.17 24.09

2012 0.57 2.34 0.00 0.04 0.08 0.18 32.69
2009 3.32 7.04 0.10 0.93 1.43 2.52 48.05

Payment 2010 2.31 4.37 0.04 0.81 1.31 1.92 35.37
delay time 2011 2.82 5.41 0.03 0.91 1.41 2.14 35.38

2012 2.49 4.95 0.04 0.98 1.44 2.14 40.23

Table 1: Summary statistics per year of the reporting delay time and the payment delay time (both
in months)

future events. To account for this, we define the maximum development time for future analysis as
ω = 24 months, with approximately 99.95% of claims being settled within this timeframe.

5.2 Model fitting

To model the reporting delay time, we employ a Cox regression-type model, as outlined in Section
4.1. Likewise, we adopt the reversed-time approach discussed in Section 4.2 to develop a model for
claim evolution. Due to the limited length of our dataset and the observed variations across different
years, we fit the model using only the last two years (i.e., ω) preceding a given valuation date.
Specifically, we utilize the time window of 2009 and 2010 for training purposes, while evaluating
the models using the years 2011 and 2012.

For the sake of illustration, we calculate reserves on a monthly basis. To ensure that the
estimation data captures the recent evolution of claims as much as possible, we employ a rolling
window approach, where only the last two years are used to fit the model for each month. This
approach aligns with the practices employed by industry professionals in their daily work. We do
not consider a time-series model via correlated frailties due to the short time window of the training
set i.e only 2 years. Although there may be some variations in model parameters across different
periods, the overall fit behaves similarly across time. We proceed to present the fitting processes
for the first two years of data in the training set.

Reporting delay time

For the reporting delay time, U , we fit a Cox regression model as in Equation (10) using the
attributes of the policyholder as covariates:

log
(
λU |X(u)

)
= log(λ0(u)) + β1Car-Weight + β2Engine-Power + β3Fuel-Type + β4Age + β5Car-Age

+ β6Accident-type + β7(Claim-Amount) + S8(Accident-day) + β9Region

The baseline hazard function, denoted as λ0(u), is estimated using a B-Spline representation.
Additionally, we incorporate a non-linear effect of the covariate “Accident-day” with the term
S8(Accident-day), which is also estimated using a B-Spline representation. This inclusion of a
non-linear effect associated with calendar time provides the model with a dynamic alike structure,
allowing it to account for some temporal changes.

To estimate the parameters while considering the right truncation of the data, we utilize a
generalized additive model implementation via the piece-wise exponential modeling approach, as
described by Bender et al. (2018). This approach is readily available in various R packages such
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as flexsurvreg, pammtools or GJRM. The results of the estimation are presented in Table 2 and
Figure 3.

Coefficient β1 β2 β3 β4 β5 β6 β7

Value −3.6 ∗ 10−4 7.37 ∗ 103 0.231 −4.72 ∗ 10−3 2.05 ∗ 10−2 0.398 −1.93 ∗ 10−5

Std. Err. 3.88 ∗ 10−6 4.27 ∗ 10−5 1.39 ∗ 10−3 4.53 ∗ 10−5 2.56 ∗ 10−4 1.905 ∗ 10−3 5.98 ∗ 10−8

p-val < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 2: Estimated coefficients of the Cox regression model for the reporting delay time

Table 2 shows that all the policyholder attributes included in the model are statistically relevant
to describe the behaviour of the reporting delay time. The same conclusion applies to the categorical
variable “Region”, although the detailed results are not presented in the table due to its numerous
categories. The right panel of Figure 3 illustrates the non-linear effect associated with the accident
day, revealing a quarterly seasonal pattern. Specifically, the hazard rate, indicating the reporting
speed, is higher in the second and fourth quarters compared to the other two quarters. Furthermore,
the left panel of Figure 3 displays the baseline hazard function, indicating a large hazard rate during
the initial months, suggesting a concentration of reporting delays within this period. The hazard
rate then decreases rapidly but remains nonzero for large delay times, indicating a heavy tail.
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Figure 3: Fitted baseline hazard function for the reporting delay time (left panel) and fitted effect
of the accident day on the hazard of the reporting delay time (right panel)

To assess the adequacy of the model fit, we employ normal pseudo residuals, as introduced in
Section 4.3. Figure 4 presents QQ and PP plots, comparing these normal pseudo residuals against
the theoretical normal distribution. From both plots, it is evident that the normal pseudo residuals
exhibit no significant deviations from their expected theoretical counterparts. Hence, there is no
evidence suggesting a lack of fit in the fitted distribution function.

Payment delay time

Next, we present the model for claim evolution utilizing the reversed time-counting process estima-
tion approach, in conjunction with a Cox regression model similar to the one previously described.
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Figure 4: Q-Q plot (left panel) and P-P plot (right panel) of the normal pseudo-residuals for the
Cox model for the reporting delay time.

In this case, we consider a maximum settlement time of ω = 24 months, as mentioned earlier, and
proceed to model the reversed time random variable Ṽ = ω−V . The Cox regression model for the
reversed hazard function is defined as follows:

log
(
λ̃V |X(v)

)
= log

(
λ̃0(v)

)
+ α1Car-Weight + α2Engine-Power + α3Fuel-Type + α4Age + α5Car-Age

+ α6Accident-type + α7(Payment-Amount) + S8(Reporting-day) + α9Region

+ α10Reporting-delay-time

the baseline reversed hazard function, denoted as λ̃0(v), is estimated using a B-Spline repre-
sentation. The non-linear effects of the covariate “Reporting-day” are captured through the term
S8(Reporting-day), also estimated using a B-Spline representation.

This modeling approach mirrors the methodology presented in the previous section, and thus,
we refrain from delving into further details. However, we highlight two key distinctions in this
regression model. Firstly, we incorporate the reporting day as a non-linear effect. Secondly, we
include the observed reporting delay time as a covariate. Notably, these probabilities are based on
all the information available at the payment time, which encompasses any additional information
obtained during the reporting process.

The fitted model is presented in Table 3 and Figure 5. The results exhibit similarities to the
previous case, as shown in Table 3, where all policyholder attributes included in the model are
statistically significant in describing the behavior of the reversed payment time. The right panel
of Figure 5 displays the non-linear effect associated with the reporting day, indicating a quarterly
seasonal pattern. However, the pattern is not as distinct as observed for the reporting delay time.
The right panel of Figure 5 illustrates the baseline reversed hazard function, which should be
interpreted in reverse. In this plot, time 24 months corresponds to time 0 in the original scale, and
time 0 in the plot represents 24 months in the original scale. It is evident that the hazard function
is initially high during the first couple of months (in the original scale), implying a significant
number of payments occurring within this period. Subsequently, the hazard rate decreases rapidly,
approaching zero, indicating the occurrence of some payments.
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Coefficient α1 α2 α3 α4 α5 α6 α7 α10
Value −6.609 ∗ 10−5 6.18 ∗ 10−3 0.188 −1.036 ∗ 10−3 −4.56 ∗ 10−2 −0.293 −7.86 ∗ 10−6 −2.57 ∗ 10−2

Std. Err. 3.69 ∗ 10−6 4.47 ∗ 10−5 1.43 ∗ 10−3 4.71 ∗ 10−5 2.81 ∗ 10−4 2.01 ∗ 10−3 5.74 ∗ 10−8 2.74 ∗ 10−4

p-val < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Table 3: Estimated coefficients of the Cox regression model for the reversed payment time
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Figure 5: Fitted baseline hazard function for the reporting delay time (left panel) and fitted effect
of the accident day on the hazard of the reporting delay time (right panel)

To assess the goodness of fit, we employ again the normal pseudo residuals and validate them
accordingly. Figure 6 displays QQ and PP plots, comparing these normal pseudo residuals against
the theoretical normal distribution. Similar to the previous analysis, there is no significant deviation
observed between the normal pseudo residuals and their expected theoretical counterparts in both
plots. Hence, there is no evidence indicating a lack of fit in the fitted distribution function.

5.3 Estimation of the reserve for a single date

Here we show the estimation of the outstanding claims (IBNS), RBNS and IBNR reserves for the
first date of the testing period. To ease the visualization and comparison, we present the estimation
of the reserves in the classical run-off triangle format in Tables 5 and 6, yet however, recall that
our method doesn’t rely on a given periodicity for its calculation or the construction of a triangle.

The inclusion probabilities πi(τ) and πV
i (τ) for the outstanding not settled claims are estimated

directly from the models from the previous section using Equations (11), (13) and (1). Figure 7
displays the histogram of such probabilities and Table 4 displays some summary statistics. Briefly,
we observe that the inclusion probabilities vary drastically from one claim to another due to the
heterogeneity of the claims. Note that the probabilities tend to be closer to 1 than to 0 due to
the low average reporting delay and payment time, and therefore only the most recently reported
claims have a small probability.

Tables 5 and 6 present cumulative run-off triangles for total outstanding claims and reported
but not settled claims, respectively, as of the valuation date. The incurred but not reported claims
reserve estimation is derived from the difference between these triangles, which is not shown to
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Figure 6: Q-Q plot (left panel) and P-P plot (right panel) of the normal pseudo-residuals for the
Cox model for the reversed payment time.
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Figure 7: Histogram of the inclusion probabilities used for the IPW estimator of the total reserve
(left panel) and the RBNS reserve (right panel)

Probability Min. 1st Qu. Median Mean 3rd Qu. Max.
π(τ) 0.116 0.653 0.781 0.736 0.833 0.921
πV (τ) 0.216 0.766 0.820 0.797 0.860 0.927

Table 4: Summary statistics of the inclusion probabilities

avoid redundancy. We completed the lower half of the triangles using observed true reserve values,
the IPW estimator (using Equation (8)), and the Chain-Ladder method for comparison purposes,
employing a monthly periodicity. To maintain readability and practicality, the table is limited to
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13 months, representing approximately 98% of settled claims within this period. To differentiate
between the RBNS and IBNR claims components in the Chain-Ladder method, we utilize the
double Chain-Ladder method Mart́ınez-Miranda et al. (2012).

Analyzing the lower half of the triangles in Tables 5 and 6, we observe that the IPW estimator
provides cumulative payment estimations that exhibit similar trends and magnitudes as the actual
cumulative claims. No evident patterns of under or over estimation are observed. Additionally,
the IPW estimator does not consistently exhibit similar behavior to the Chain-Ladder method, in
terms of both over and under estimations or the occurrence of abnormal values.

M 1 2 3 4 5 6 7 8 9 10 11 12 13 ULT
28,059
32,1701 14,134 14,134 20,211 20,211 26,314 27,371 27,371 27,371 28,059 28,059 28,059 28,059 28,059
29,864

266,273 268,401
268,495 323,7632 30,727 177,519 177,519 220,701 239,987 260,631 262,010 262,010 262,010 264,832 266,273 266,273
266,369 285,454

247,039 247,908 297,541
249,269 272,571 309,4153 87,856 158,587 170,758 170,758 231,602 231,602 235,675 235,675 247,039 247,039 247,039
247,265 252,047 270,071

289,410 290,675 290,675 297,467
291,061 308,302 320,097 360,7884 164,017 205,623 248,124 264,613 264,613 282,013 286,108 286,108 286,108 289,410
289,716 294,460 299,458 320,600

320,340 322,591 322,591 322,591 332,056
322,443 355,560 373,943 388,044 435,4575 119,065 225,436 279,176 296,804 300,808 306,261 314,102 314,102 320,340
320,489 325,380 330,774 335,167 358,063

181,229 212,492 212,492 212,639 212,639 257,430
182,423 194,660 202,168 207,354 211,442 222,5856 12,518 99,082 146,828 156,780 167,589 169,668 170,493 181,229
181,283 182,229 184,534 187,098 190,504 204,108

245,323 273,696 273,696 278,910 294,019 294,909 346,304
247,042 264,234 273,743 284,226 291,805 296,200 314,6297 37,174 132,479 209,631 218,619 232,507 241,423 245,323
245,494 254,273 255,601 258,672 262,410 267,209 286,328

285,608 290,118 295,826 296,713 312,941 312,941 315,764 321,604
290,212 327,506 346,422 369,539 389,189 398,289 408,089 442,8738 40,234 191,089 227,720 241,797 285,608 285,608
286,667 293,846 302,802 304,561 308,474 312,988 318,639 340,750

229,304 233,399 234,422 234,592 235,953 235,953 258,863 259,236 782,474
232,096 257,759 272,238 285,793 324,709 344,994 374,998 386,755 434,5189 14,251 123,802 176,626 217,705 229,304
230,700 234,301 239,968 247,470 248,875 252,014 255,766 260,134 278,538

372,005 408,322 411,377 413,752 413,806 415,288 417,411 417,411 417,411 483,132
368,019 412,041 437,451 447,627 496,137 549,596 629,822 658,452 672,707 788,01810 22,408 188,162 274,916 363,112
367,423 385,109 390,692 399,462 413,096 415,207 421,599 428,037 434,747 465,082

312,148 324,473 345,710 409,621 424,520 426,909 426,909 427,083 435,422 436,328 454,346
319,151 371,166 397,213 408,778 422,950 461,395 492,821 496,838 503,133 513,386 546,34711 22,017 256,833 312,025
315,773 337,649 354,696 359,395 367,446 380,638 382,364 387,143 392,530 400,024 428,665

157,762 258,713 281,683 286,280 291,383 291,383 310,758 329,514 329,940 346,858 348,634 359,294
114,398 172,447 195,043 204,176 217,368 245,751 282,399 287,515 290,146 295,399 300,999 321,81412 11,371 105,591
109,022 125,655 134,820 140,940 143,118 146,415 151,346 152,163 154,078 156,346 159,074 170,367

35,614 169,336 194,656 207,267 230,055 245,208 249,372 249,372 249,372 249,372 250,671 250,671 250,922
30,208 78,756 96,315 102,162 119,705 138,875 168,485 172,777 174,132 176,301 178,786 181,360 190,88713 24,662
24,662 64,017 69,236 72,943 74,363 75,853 78,469 79,224 80,102 81,156 82,654 83,441 88,919

Table 5: Monthly cumulative run-off triangle for all outstanding claims in the valuation date. In
black is the actual value, in blue is the estimation using the IPW estimator, and in green is the
traditional Chain-Ladder

The overall findings indicate that, for the given valuation date, the IPW estimator generally
offers a superior approximation of the reserve compared to the traditional Chain-Ladder method.
However, it is important to note that the IPW estimator does not consistently outperform the
Chain-Ladder method in all cells of the triangle; the latter remains a more accurate method for
certain dates. Although the IPW estimator can provide detailed estimations at the cell level, it may
not possess the same level of precision as the estimation of the reserve as a whole. This limitation
arises from the reliance on population sampling, which necessitates a large and representative
sample for accurate estimation. Consequently, the more granular the estimation (i.e the smaller
the subpopulation of interest), the lower the level of accuracy.
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M 1 2 3 4 5 6 7 8 9 10 11 12 13 ULT
28,059
32,0481 14,134 14,134 20,211 20,211 26,314 27,371 27,371 27,371 28,059 28,059 28,059 28,059 28,059
29,744

266,273 268,401
268,495 316,8762 30,727 177,519 177,519 220,701 239,987 260,631 262,010 262,010 262,010 264,832 266,273 266,273
266,352 283,936

247,039 247,908 295,920
249,269 272,571 303,6663 87,856 158,587 170,758 170,758 231,602 231,602 235,675 235,675 247,039 247,039 247,039
247,233 251,331 267,896

289,410 290,675 290,675 296,975
291,061 308,302 320,097 335,7134 164,017 205,623 248,124 264,613 264,613 282,013 286,108 286,108 286,108 289,410
289,716 294,290 298,562 318,018

320,340 322,591 322,591 322,591 332,056
322,443 355,527 373,910 383,230 402,0495 119,065 225,436 279,176 296,804 300,808 306,261 314,102 314,102 320,340
320,456 324,742 329,669 333,381 354,482

181,229 212,492 212,492 212,639 212,639 257,430
182,423 194,408 201,907 205,999 209,165 219,4086 12,518 99,082 146,828 156,780 167,589 169,668 170,493 181,229
181,265 181,933 183,790 186,288 189,194 201,648

245,323 273,696 273,696 278,910 282,049 282,049 333,444
247,042 263,487 272,968 277,245 280,291 282,707 297,8157 37,174 132,479 209,631 218,619 232,507 241,423 245,323
245,468 252,902 253,831 256,254 259,887 263,961 281,367

285,608 290,118 295,826 296,713 310,655 310,655 313,478 319,318
290,212 327,506 346,422 354,353 358,311 360,353 362,343 391,2508 40,234 191,089 227,720 241,797 285,608 285,608
286,252 291,115 298,601 299,853 303,047 307,302 312,034 332,059

229,304 233,399 234,422 234,592 234,592 234,592 257,501 257,874 259,624
232,096 257,759 272,238 277,845 279,895 280,390 281,496 284,773 309,6789 14,251 123,802 176,626 217,705 229,304
230,261 232,668 236,447 242,690 243,679 246,201 249,730 253,379 269,920

372,005 407,354 410,409 412,784 412,838 414,320 416,443 416,443 416,443 438,292
368,019 412,041 437,451 447,627 451,060 451,101 451,161 454,506 464,323 499,30510 22,408 188,162 274,916 363,112
366,874 378,973 382,687 388,215 399,427 400,865 406,052 411,896 417,404 444,322

312,148 324,473 340,741 404,394 419,293 421,682 421,682 421,856 424,104 424,104 439,958
319,151 371,166 397,213 408,778 413,575 413,949 413,949 413,969 419,168 427,627 452,42511 22,017 256,833 312,025
315,615 336,465 348,095 351,263 356,156 366,992 368,139 371,767 376,883 383,052 408,325

157,762 258,713 280,666 284,373 288,514 288,514 303,401 314,932 315,358 322,242 324,018 333,471
114,398 172,447 195,043 204,176 208,635 209,811 209,811 209,812 211,616 215,341 219,281 231,87212 11,371 105,591
108,806 124,708 133,214 137,359 138,795 140,870 144,880 145,436 146,924 149,019 151,245 161,149

35,614 169,336 184,855 193,175 193,175 205,684 209,848 209,848 209,848 209,848 209,848 209,848 210,100
30,208 77,486 94,635 100,349 103,022 103,997 104,078 104,140 104,880 106,127 107,566 109,055 113,67413 24,662
24,662 61,364 66,154 68,776 69,700 70,561 72,564 73,113 73,740 74,677 75,884 76,486 81,161

Table 6: Monthly cumulative run-off triangle for only reported claims in the valuation date. In
black is the actual value, in blue is the estimation using the IPW estimator, and in green is the
double Chain-Ladder estimation

Reserve Type Method Ultimate Reserve Error % Error

IBNS
True 4,479,030 1,605,716 - -
IPW 4,723,264 1,849,950 -244,234 -15.2%
CL 3,526,809 653,495 952,221 59.3%

RBNS
True value 3,813,048 939,733 - -

IPW 3,905,779 1,032,465 -92,732 -9.9%
CL 3,434,026 560,712 379,022 40.3%

IBNR
True value 665,983 665,983 - -

IPW 817,485 817,485 -151,502 -22.7%
CL 92,783 92,783 573,199 86.1%

Table 7: Error metrics for the estimates of the reserves in the first date of the testing period.

In line with this approach, instead of focusing on cell-level comparisons, our emphasis lies on
the aggregation of cells to determine the actual reserve value, which is the ultimate objective
of estimation. It is noteworthy that the IPW estimator directly provides an estimation of the
total reserves using Equations (2), (6) and (7), eliminating the need for constructing the run-off
triangle. Table 7 presents the aggregated reserve values obtained by summing the lower half of
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the triangles, along with the corresponding estimation errors. Our findings reveal that the IPW
estimator yields reserve values that closely align with their true counterparts for all reserve types,
exhibiting significantly lower estimation errors compared to the Chain-Ladder method.

Furthermore, to evaluate the predictive quality of these estimates from a probabilistic stand-
point, Figure 8 illustrates the predictive distribution of the reserves based on the sampling distri-
bution of the IPW estimators, juxtaposed with the actual observed values. Notably, we observe
that the true values consistently fall within the central region of the distribution, closely align-
ing with the corresponding modes, which represent the predicted reserve values. Consequently,
the IPW-based predictions exhibit consistency with the observed reality, further validating their
reliability.
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Figure 8: Predictive distributions of the IPW method for the RBNS, IBNR and IBNS reserves. In
red is the true observed value.

5.4 Estimation of the reserves for several dates

Here we present the estimation of reserves for all 24 months in the testing period. Figure 9
illustrates the estimations for the outstanding claims compared to the true value of the reserve at
the corresponding month. Additionally, Figures 10 and 11 depict the estimation for RBNS and
IBNR, respectively. To provide a comprehensive analysis, we include 95% confidence intervals for
the estimations and include Chain-Ladder (CL) method estimates for comparison. Furthermore,
Table 8 presents error metrics to assess the disparities between the estimations across all dates.

Reserve Type Method ME RMSE MAE MAPE

IBNS
IPW 68,779 215,368 228,874 14%
CL 540,239 662,345 574,588 40%

RBNS
IPW 183,197 189,087 228,939 17%
CL 140,470 279,493 286,723 33%

IBNR
IPW -114,418 198,679 209,339 37%
CL 399,769 328,503 399,769 76%

Table 8: Error metrics in the testing period. ME: Mean error, RMSE: Root mean square error,
MAE: Mean absolute error, MAPE: Mean absolute percentage error

With respect to the total reserve, Figure 9 demonstrates that the IPW estimator produces
predictions that closely align with the true value of the reserve for the majority of the observed
periods, exhibiting no discernible pattern of under or overestimations. Additionally, the actual
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Figure 9: Estimation for the reserve of outstanding claims per month

reserve value consistently falls within the associated confidence intervals, indicating a good fit with
the predicted value. Notably, the IPW prediction proves to be more accurate than the traditional
Chain-Ladder method during the considered period. This observation is further supported by the
results in Table 8, where the error metrics for the IPW over the 24-month period outperform those
of the Chain-Ladder method.

With respect to the RBNS, we observe in Figure 10 that the IPW estimator provides highly
accurate predictions for the majority of the first year within the time window and for a portion
of the second half of the second year. However, during the intermediate period (8th month to
17th month), the IPW underestimates the reserve, although some data points in this range still
fall within the confidence band. It is worth noting that this period exhibits relatively higher
reserve levels compared to the rest of the considered time window, which may be attributed to
management-related actions of the insurance company that lead to larger reserves. In such cases,
the IPW estimation takes longer to capture these changes, as the distribution estimation relies on
the preceding two years of data. Consequently, it takes several months for the most recent data to
have a significant impact on the estimation. On the other hand, the Chain-Ladder method appears
to be more adept at capturing this particular change. However, outside of this specific period, the
Chain-Ladder method demonstrates considerable underperformance. Finally, as indicated in Table
8, the IPW consistently outperforms the Chain-Ladder method on average throughout the entire
period, as evidenced by the lower error metrics.

Finally, regarding the IBNR reserve, we observe in Figure 11 that the IPW estimator provides a
reasonable estimation for almost the entire considered period, fluctuating around the true reserve.
It is worth noting that the IPW estimator exhibits a more variable behavior compared to previous
scenarios. This variability is expected because the IBNR, in our case, represents a smaller propor-
tion of the subpopulation due to the relatively low reporting delay time. Generally, as the size of
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Figure 10: Estimation for the RBNS reserve per month
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Figure 11: Estimation for the IBNR reserve per month

the subpopulation decreases, the estimation variance of the IPW increases. Despite this variability,
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the IPW estimator consistently outperforms the traditional Chain-Ladder method over the entire
24-month period, as indicated in Table 8.

Observation 1. We encountered instability in the behavior of the IPW estimator (i.e absurdly
abnormal large reserves) when performing the estimation on some dates, along the same lines as
the behavior described in Section 4.3. To address this issue, we implemented the adjusted version
of the IPW estimator, as described in algorithm 1, and compared it to the raw IPW estimator. If
the percentual difference between the two estimators exceeded a certain threshold (e.g., more than
3%), we retained the adjusted estimation. For cases where the difference was not significant, we
kept the original estimation. As a result, the estimations become more stable across dates.

Note that the adjustment can be implemented regardless of the threshold rule, but it may intro-
duce a systematic downward bias. Therefore, in practical applications, it is advisable to apply the
adjustment only when necessary.

6 Conclusions

Macro-level reserving models, particularly the Chain-Ladder method, overlook the underlying het-
erogeneity within the portfolio of policyholders, treating all claims equally, and providing modest
estimations. Therefore, the estimation of the reserve does not benefit from the use of the individual
attributes of the policyholders, which have been shown to provide a significant improvement in the
accuracy of the methods.

In this paper, we address the limitation of macro-level reserving models by proposing a statisti-
cally justified macro-level reserve estimator based on Inverse Probability Weighting (IPW). Unlike
traditional macro-level models, our method incorporates individual-level information in the weights
to improve the accuracy of reserve estimation. Moreover, such incorporation is achieved within a
less complex framework compared to micro-level models, in the sense that no explicit assumptions
on claim frequency or severity are made.

The IPW estimator serves as a hybrid approach that bridges the gap between macro and micro-
level methods. It assigns attribute-driven weights to each claim, allowing for a development factor
specific to each claim’s settlement, similar to the familiar principles of the Chain-Ladder method
when applied at the granular level. This estimator represents an initial step towards obtaining more
precise reserves from macro-level models and serves as an intermediate stage in the development of
a customized micro-level reserving model.

We believe that the IPW estimator offers a possibly seamless transition from macro to micro-
level reserving for insurance companies. We hope practitioners find this method appealing as it is
a natural extension of the traditional Chain-Ladder method, accounting for portfolio heterogeneity
in a statistically justified fashion.

Future research should explore alternative approaches for estimation, potentially through the
development of tailored models specifically designed for inclusion probabilities as in the development
factor in Equation (12), which is simpler to interpret. Additionally, investigating the connection
between claim reserving and population sampling techniques holds promise for further advance-
ments in estimating reserves. We are currently engaged in related research, Calcetero-Vanegas
et al. (2023), delving deeper into the implications of survey sampling theory on the claim reserving
problem.
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