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Abstract
This paper explores the underutilized application of population sampling in the realm
of actuarial science, a field where these statistical methodologies have been tradition-
ally overlooked. Focusing on two distinct applications within insurance ratemaking
and reserving, we unveil innovative approaches to address challenges in actuarial con-
texts and provide valuable insights into advancing methodologies in the field. The
first application introduces population sampling as a solution to the computational
complexities inherent in credibility premium calculation, particularly under Bayesian
regression models. By combining population sampling with surrogate modeling, we
present a method to manage computation challenges effectively. The second appli-
cation delves into incurred but not reported reserves, challenging the conventional
Chain–Ladder method and individual reserving models by incorporating popula-
tion sampling. Proposing a reserve estimator based on inverse probability weighting
techniques, we demonstrate a statistically robust, distribution-free method for IBNR
reserving, emphasizing the integration of granular policyholder information

Keywords Population sampling · Surrogate modeling · Credibility premiums · IBNR
reserve

1 Introduction

Population/survey sampling, as an important branch in statistics, has been widely used
in censuses and election predictions and has found applications in other disciplines.
However, its application has not been fully explored in insurance. In this paper, we
will showcase some recent developments on its applications in actuarial science. In
particular, we will present two applications to illustrate how population sampling can
be used in insurance ratemaking and reserving.
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Thefirst application considers credibility premiumcalculation for a large and highly
inhomogeneous non-life insurance (such as auto insurance) portfolio. The goal of cred-
ibility or experience ratemaking in insurance is to determine premiums that account
for both the policyholders’ attributes and their claim history. The underlying model for
such a purpose is usually a Bayesian regression model. When we choose a data-driven
model, the credibility premiums based on a premium principle (e.g., the expectation
or a quantitle of predicted future losses) must be obtained via numerical methods e.g.
simulation via Markov Chain Monte Carlo. Methods of this kind are clearly compu-
tationally expensive for a large portfolio as they must be applied at the policy level.
Population sampling combined with surrogate modelling allows us to address the
computation challenges in a manageable manner.

The second application deals with the calculation of incurred but not reported
(IBNR) reserves that are commonly determined using a Chain–Ladder method in
practice. The Chain–Ladder method constructs a claim triangle heuristically so that
expected future claims are simply computed using development factors but it neglects
the heterogeneity of policyholders. With the help of population sampling, we are able
to incorporate granular information individually into the Chain–Ladder method. In
particular, we view the claim reserving problem as a population sampling problem and
propose a reserve estimator based on inverse probability weighting techniques, with
weights driven by policyholders’ attributes. The framework provides a statistically
sound method for IBNR reserving in a frequency and severity distribution-free way,
while also incorporating the capability to utilize granular information via a regression-
type framework.

This paper is organized as follows. In the next section, we provide a brief overview
of population sampling and general procedure on how population sampling is applied
to actuarial problems. In Sect. 3, we apply population sampling to credibility premium
calculation under any Bayesian regression model and when the credibility premium
has no closed form expressions. Section4 focuses on the application of population
sampling to IBNR reserving. The last section concludes the paper.

2 Brief Overview of Population Sampling and General Procedure for
Actuarial Applications

In this section, we present some known results in population sampling and propose a
general procedure on how to apply them to actuarial applications. For comprehensive
coverage of this topic readers may be referred to Tillé (2011).

Population sampling provides a methodological framework to sample from a pop-
ulation with the goal to make inferences related to the entire population. Consider a
population of size N and let Li , i = 1, . . . , N , denote a quantity of interest associated
with individual i of the population. In the insurance context, N is the total number of
insurance policies and Li may the liability or the premium of policy i . Suppose now
wewant to select a small sample of n � N : L∗

1, . . . , L
∗
n , from the population such that

one can make a good inference to the entire population. Those selected individuals
L∗
1, . . . , L

∗
n must be ‘representative’. A sampling design is to assign a Bernoulli ran-

dom variable Ii , i = 1, . . . , N , to each individual with the probability of success πi .
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Ii is known as the membership indicator, indicating whether the individual i belongs
or not to the sample, respectively, and πi as the inclusion probabilities and is defined
according to the sample design.

In order for the sample to be representative, some criteria are imposed on the
sampling design. One is to ensure the total liabilities/premiums

∑N
i=1 Li are satis-

factorily estimated. A natural choice is the linear estimator
∑n

j=1 w j L∗
j . It is shown

that
∑n

j=1 w j L∗
j is an unbiased estimator estimator of

∑N
i=1 Li , if

∑N
i=1 pi = n and

w j = 1/π j . See Thompson (2012) or Särndal et al. (2003). The estimator
∑n

j=1
1
π j

L∗
j

is called the Horvitz–Thompson (HT) estimator. In addition, the HT estimator is very
attractive due to its simplicity, and it does not rely on assumptions about the underlying
distribution of the population, making it suitable for both finite and infinite popula-
tion settings. It is also been called the IPW estimator where IPW stands for Inverse
Probability Weight.

Another important aspect of having a representative sample is that we want the
sample to be balanced. As mentioned earlier an insurance portfolio is highly hetero-
geneous and each policy has its unique risk profile/attributes. For example, the losses
from an auto insurance policy are highly relayed to the car type, driver’s age and the
years of licensing, etc. The sample must take the composition of the attributes of all
the policies into account, which can be described with the balanceness of the sample.

Let xi be the attributes of individual i . A sample is said to be balanced if its
Horvitz–Thompson estimator satisfies

n∑

j=1

1

π∗
j
x∗
j =

N∑

i=1

xi .

It can be shown that if we assume that Li follows a linear model:

Li = (xi )Tβ + εi , i = 1, . . . , N ,

where the residuals εi ’s are iid with zero means and standard deviation σi , and the
sample is balanced, then the variance of the Horvitz–Thompson estimator has the
minimal variance. That is, The Horvitz–Thompson estimator is a minimum-variance
unbiased estimator (MVUE) estimator of

∑N
i=1 Li .

In Deville and Tillé (2004), they proposed an iterative sampling algorithm termed
the cube method to select a balanced sample. Suppose that each unit is equipped with
r attributes. The algorithm translates the given inclusion probabilities to a vector of at
least (N − r ) zeros (not selected) or ones (selected). Since the balanced condition

n∑

j=1

1

π∗
j
x∗
j =

N∑

i=1

xi .

may be written in a matrix form:

A I = A π , (2.1)
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where A = (x1/π1, . . . , xN/πN ) is a r × N matrix, π = (π1, . . . , πN )T and I =
(I1, . . . , IN )T a random column vectors, where Ii = 1 or 0 indicating the inclusion
of individual i . Equation (2.1) implies that I can be written as π + u where u is in
the kernel of matrix A, i.e. Au = 0. Using this fact. one may adjust the inclusion
probabilities π as a vector randomly iteratively inside the kernel of A until it reaches
to a point that is close to a vertex of the N dimensional hypercube in the following
manner:
First set π(1) = π . For Iteration k,

• randomly generate a vector u(k) in the kernel of matrix A. Set ui (k) = 0 if
π i (k) = 0 or 1.

• compute λ∗
1(k) and λ∗

2(k), the largest values among λ1(k) and λ2(k) such that:

0 ≤ π(k) + λ1(k)u(k) ≤ 1;
0 ≤ π(k) − λ2(k)u(k) ≤ 1.

• compute π(k + 1) as

π(k + 1) = π(k) + λ∗
1(k)u(k) with probability

λ∗
2(k)

λ∗
1(k) + λ∗

2(k)
;

π(k + 1) = π(k) − λ∗
2(k)u(k) with probability

λ∗
1(k)

λ∗
1(k) + λ∗

2(k)
.

The iterations continue until π(k) stops changing. Finally convert all non-integer
values in the final iteration to zero or one via linear programming.

Awell selected balanced sample plays a pivotal role in reducing the computing time
for calculating quantities of interest for a large and highly heterogeneous insurance
portfolio. Instead of running through all the policies, we can now just compute the
quantities on the selected policies and extrapolate them to the entire portfolio. In an
application, we may employ the following procedure:

1. Select a small number of policies (1–5%) from the portfolio using the cubemethod.
As discussed, such policies will represent the portfolio well. We call them repre-
sentative policies.

2. Identify a policy-specific variable or summary statistic that is capable of extracting
information from each policy including the policy attributes and claim history. The
variable/summary statistic is application specific.

3. Use a flexible (surrogate) model/function such as a spline to link the statistic to
the quantity of interest to be computed (premium, predicted liability for reserve
calculation, etc.).

4. Perform simulation on each of the representative policies.
5. Estimate the parameters of the surrogate function using the representative policies.
6. Make use of the estimated surrogate model to compute the quantity of interest

across the entire portfolio (extrapolation) and apply the result for specific applica-
tions (predictions, reserves, profit and loss analysis, etc.).

In the next two sections, we use two applications to illustrate the aforementioned
approach.
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3 Application to Credibility Premium Calculation

3.1 Overview on Experience Rating and the Surrogate Model Approach

In insurance, a Bayesian model is employed to upgrade premiums by integrating
a policyholder’s existing risk behavior understanding ("a priori" information) with
their actual claims experience (“a posteriori” information). See for e.g Bühlmann
and Gisler (2005). This Bayesian approach allows for a more nuanced calculation of
upgraded premiums compared to traditional methods. However, the practical imple-
mentation of Bayesian models faces significant computational challenges. Insurance
data is characterized for its complexities, including but not limited to big data concerns,
non-neglible heterogeneity, and the inclusion of diverse sources of information e.g.
telematics Pechon et al. (2018), Chan et al. (2023). As such, many of the models that
provide a realistic fit to insurance data are mathematically complex and analytically
intractable. Deriving Bayesian premiums often requires computationally intensive
numerical approximations, such as simulations using Markov Chain Monte Carlo
methods. See for e.g Xacur and Garrido (2018), Zhang et al. (2018), Ahn et al.
(2021). Handling large and diverse insurance portfolios exacerbates these challenges,
necessitating a considerable number of simulations for each policyholder. Moreover,
the resulting premiums are obtained through numerical approximations, leading to a
"black-box" scenario that lacks practical interpretability, posing a barrier towidespread
adoption among practitioners who seek transparent and explainable results for clients
and regulators.

Here we illustrate the surrogate modeling approach from the previous section
to overcome computational challenges and the absence of analytical expressions in
Bayesian credibility models. We particularly focus on efficient and transparent expe-
rience rating on complex insurance data sets and large portfolios. This discussion
follows directly from our work in Calcetero-Vanegas et al. (2024), and refer the reader
to it for the technical details or further information.

To introduce the main idea, note that any Bayesian pricing formula for the risk in
the next period Yn+1 given the claim history Yn = (Y1, . . . ,Yn) under any premium
principle (see for e.g (Kaas et al., 2008, p. 115)) can be generally expressed as:

�(Yn+1|Yn) = G�(Yn, n,O) (3.1)

where G�(·) is the theoretical or true functional form that links the claim history of
the policyholder Yn and the set of model parameters and policyholder attributes O
with the Bayesian premium, under the premium principle �. The functional form of
G�(·) entirely depends on the premium principle and the underlying Bayesian model,
and as we mentioned earlier, it likely lacks an analytical expression. This function is
the ultimate target of the surrogate model.

To streamline the estimation of the surrogate function and effectively link the poli-
cyholderwith their corresponding premium,we employ an experience-based summary
statistic, denoted as T (Yn). This statistic encompasses both the policyholder attributes
and their associated claim history. We select this statistic to be approximately suffi-
cient, making it suitable for representing these two factors with minimal information
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loss. This summary statistic serves as the primary input for the surrogate model. As
demonstrated by Calcetero-Vanegas et al. (2024), one choice for such experience-
based summary statistic is derived from the conditional log-likelihood function of a
policyholder’s claim history:

T (Yn) =
n∑

j=1

log f (Y j |� = θ̃ ,O) (3.2)

where f (Y j |� = θ̃ ,O) is the underlying model distribution of the Y j , � is the
latent random variable of the Bayesian model, and θ̃ acts as tunning parameter that is
policyholder specific.

That said, the aim is to find an approximation of the Bayesian premiums via a
surrogate such that:

�(Yn+1|Yn) ≈ Ĝ�(T (Yn), n,O). (3.3)

In this vein, the procedure for estimating Bayesian premiums for the portfolio of
policyholders is straightforward. We first choose a sample of representative policies,
typically around 1% to 5%, and then proceed to fit the Bayesian model. Using the
standard Markov Chain Monte Carlo (MCMC) procedure, we estimate the associated
Bayesian premiums of the representative policies. Finally, a surrogate model is then
derived from these estimates. The algorithm provided below delineates the general
procedure to define the surrogate function (i.e. step 3 in the general framework form
the previous section) through a least squares estimation. The specific structure of the
surrogate is user-dependent, and while Gaussian processes are commonly utilized,
other methodologies, such as B-Splines, can be equally applied. We refer to Gramacy
(2020) for more information on the process of fitting a surrogate function. We will
illustrate this process in the next section with a numerical illustration.

Algorithm 1 Fitting of the surrogate function
MSE ← Tol + 1
θ̃i ← Random number ∀i = 1, . . . , M(Number of policyholders) � Start with random values for θ̃i
while MSE ≥ Tol do

T (Yi,n) ← ∑n
j=1 log f (Yi, j |θ̃i ,O) ∀i = 1, . . . , M � Compute the experience-based statistic

Ĝ(·) ← argming
∑M

i=1

(
�̂

p
i − Ĝ�(T (Yi,n), ni ,O)

)2 � Update the function Ĝ(·) via LS
θ̃i ← argmin

θ̃i

(
�̂

p
i − Ĝ�(T (Yi,n), ni ,O)

)2 ∀i = 1, . . . , M � Update values θ̃i

MSE ← ∑M
i=1

(
�̂

p
i − Ĝ�(T (Yi,n), ni ,O)

)2 � Upgrade current interpolation error

end while

After obtaining the well-fitted surrogate function Ĝ�(·), evaluating a new policy-
holder’s experience rating involves a direct evaluation of this function. This simplifies
the calculation of Bayesian premiums for extensive portfolios. The surrogate function
provides an analytical link between the policyholder’s attributes and claims history,
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enhancing transparency in the ratemaking process. Utilizing Ĝ�(·) for sensitivity anal-
ysis allows for interpreting premium adjustments and quantifying the impact of claim
history and attributes.

3.2 Numerical Illustration with Real Data

We will now demonstrate this framework using actual data obtained from a European
auto insurance company. The dataset covers policyholder contract details from January
2007 to December 2017, encompassing claim frequencies for Third Party Liability
insurance (TPL) and Physical Damage (PD). The focus is on policies with both TPL
and PD coverages, where the number of claims in each line may be interrelated, often
stemming from the same car accident. A substantial number of policyholders renew
their contracts, prompting the insurance company to conduct an experience rating
analysis during contract renewal, evaluating the claims history of policyholders at that
juncture.

The Bayesian model at the core of this application is a bivariate mixed negative-
binomial regression model. Here, Y (d)

j represents the number of claims from a specific
policyholder in year j , linked to the dth line of business, where d = 1 corresponds to
PD and d = 2 to TPL. The associated covariates are denoted as x , and the vector of
regression coefficients for the d-th coverage is represented by β(d). Additionally, ω(d)

is used to signify the time exposure of the contract for each coverage. This hierarchical
model considered in our analysis is below, which corresponds to a bivariate negative
binomial mixed model as proposed by Tzougas and di Cerchiara (2021). The fitting
of this model can be easily accomplished using implementations of mixed model in
R such as glmer.nb. We refer the reader to such literature for further details on
estimation of the model.

Y j =
(
Y (1)
j

Y (2)
j

)

∼i id f (y|�, 〈x,β〉)

= NegBinom(y(1);μ(1)�, r (1)) ∗ NegBinom(y(2);μ(2)�, r (2))

where, for d = 1, 2

logμ(d) = logω(d) + β
(d)
0 + β

(d)
1 CarWeight + β

(d)
2 EngineDisplace

+β
(d)
3 CarAge + β

(d)
4 Age + β

(d)
5 EnginePower + β

(d)
6 Fuel

and� ∼ P(θ) = InvGauss(1, σ 2). The notationNegBinom(y;μ, r) is used to signify
the probability mass function of a negative binomial distribution with mean μ and
dispersion r . Similarly, InvGauss(1, σ 2) represents an Inverse-Gaussian distribution
with mean 1 and variance σ 2. Note that this model could be seen as particular case of
themodel proposed by Pechon et al. (2018), and literature therein. It is essential to note
that the model lacks analytical expressions for both the posterior and the predictive
distribution. Consequently, numerical methods are indispensable for obtaining any
desired quantity of interest.
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Table 1 Comparison of the CPU time (in seconds) required for the calculation of premiums

Process Total portfolio Representative policyholders

Selecting a sample – 32.94

Simulation for the premium 919,008.00 50,976.00

Fitting surrogate function – 2480.22

Extrapolation – 3.39

Total time 919,008.00 (≈ 255h) 53,492.55 (≈ 15h)

Here, we examine the implementation of the Exponential premium principle as an
illustration, incorporating a 5% surcharge. This method is utilized by the insurance
company to determine actuarial premiums.

�(Yn+1|Yn) = 1

0.05
log(E

(
exp(0.05 ∗ (Y (1)

n+1 + Y (2)
n+1))|Yn

)
).

To fit the surrogate model, we employ the cube method using the samplecube()
function in R to extract a sub-portfolio of representative policies of around 5% of
the total portfolio. To ensure the sample is representative of the heterogeneity of the
attributes of the policies, we guarantee the balance property with respect to the average
number of claims for PD and TPL, capturing claim history, as well as the average fitted
values of μ(1) and μ(2), reflecting policyholder attributes. The computational cost of
this process is minimal, as shown in Table 1.

The estimation of the premiums of the representative policies is performed via a
Monte Carlo simulation scheme. It’s important to note that this step is only required for
the 5% sub-portfolio. However, we conduct the computationally intensive simulation
for the entire portfolio to enable a comparison of premiums obtained from the surrogate
model. Regarding simulation time, a single replication on the entire portfolio takes
approximately 18 times longer than on the representative policyholder, as detailed in
Table 1. This closely alignswith the empirical ratio of 20 associatedwith the proportion
of 5% vs. 100% of the representative portfolio.

The surrogate model is constructed by employing a multidimensional B-Splines

representation for the function ˆ̃G�. This is fitted via least squares using the gam()
function in R. See for e.g Wood (2017) for more details. The features for this model
include the manual premium, the experience-based statistic, and the number of known
periods in each policy. In this case, the experience-based statistic is given by the log
of the probability mass function of a Negative binomial distribution, as follows

T (Yn) =
n∑

j=1

log
(
NegBinom(Y (1)

j ;μ(1)θ̃ , r (1)) ∗ NegBinom(Y (2)
j ;μ(2)θ̃ , r (2))

)

The performance accuracy of the surrogatemodel is illustrated in Fig. 1 and detailed
in Table 2. The outcomes presented in such table reveal that the surrogate model
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Table 2 Error metrics of the surrogate model with unstructured surrogate function

At individual level At aggregate level
Sub-portfolio ME MAE MAPE R2 Error MPE

Out of sample − 0.0005 0.0036 0.018 0.99 71.78 0.0041

In sample − 0.0006 0.0036 0.017 0.99 42.66 0.0024

Individual level means the metric is calculated at the policyholder level and then averaged. At the portfolio
level, the metric is calculated on the aggregate premiums directly
ME mean error,MAE mean absolute error,MAPE mean absolute percentage error, R2 coefficient of deter-
mination, Error True − Predicted, MPE mean percentage error

Fig. 1 Comparison of approximated premiums vs true premiums for the unstructured model. Left-hand
side dispersion plot and Right-hand side QQ-plot

achieves a favorable fit with low error metrics and a high coefficient of determination
of 99%, indicating almost perfect interpolation. Similarly, the graph on the left side
of Fig. 1 illustrates that the fitted premiums closely align with the true premiums,
displaying minimal fluctuation around the 45-degree line. Likewise, the QQplot on
the right side of Fig. 1 indicates that the distribution of the fitted premiums closely
resembles the pattern of the true premiums. Moreover, the results at the aggregate
level in Table 2 show nearly insignificant differences with the total premiums. Lastly,
it is noteworthy that the overall methodology of surrogate modeling yields favorable
results in a cost-effective manner.

4 Application to IBNR Reserving

4.1 The Reserving Problem and the Sampling Approach

Consider an insurance company conducting an analysis of its total liabilities attributed
to claims with accident times falling between t = 0 and t = τ , where τ denotes the
valuation time defined by an actuary. In the realm of general insurance, accidents
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are often not immediately reported to the insurance company for various reasons,
introducing a significant delay between the occurrence of a claimable accident and the
moment the insurance company is notified. Consequently, at the given valuation time
τ , the insurance company possesses information solely on the claims reported by τ

and remains unaware of the unreported claims. In light of this, the insurance company
seeks to estimate the total claim amount for these incurred but not reported (IBNR)
claims to construct the reserve.

Let us describe the payment process as follows:

• Let N (τ ) represent the total number of claims whose accident times precede the
valuation time τ .

• Let Yi , where i = 1, . . . , N (τ ), denote the sequence of the total claim amounts,
or the so-called case estimates per claim if the former is not available. We assume
that the indices i are arranged based on the accident time for simplicity.

• Let Ti , where i = 1, . . . , N (τ ), denote the sequence of accident times linked to the
claims, and let Ri , where i = 1, . . . , N (τ ), denote the sequence of the associated
reporting times.

• Let Ui = Ri − Ti , where i = 1, . . . , N (τ ), represent the sequence of reporting
delay times associated with each claim.

• Let xi , where i = 1, . . . , N (τ ), be the sequence of relevant information/attributes
linked to the accident, claim type, policyholder attributes, or characteristics of the
claims themselves.

• Let N R(τ ) represent the number of claims paid by the valuation time τ out of the
total N (τ ), i.e., the number of claims reported by τ .

In a similar vein, the total liability of the insurance company linked to accidents
occurring before the valuation time τ , denoted as L(τ ), is expressed as:

L(τ ) =
N (τ )∑

i=1

Yi .

Likewise, the segment of liability that is known to the insurance company (i.e., the
paid amount) by the valuation time τ , denoted as LR(τ ), is:

LR(τ ) =
N R(τ )∑

i=1

Yi .

Finally, the actuary aims on estimating the remaining liability, associated to incurred
but not reported claims. This quantity, denoted as L I BN R(τ ), is simply given by the
difference below. This quantity defines the reserve of interest.

L I BN R(τ ) = L(τ ) − LR(τ ).

The methods that are used to estimate such reserve can be broadly categorized into
two frameworks: the aggregate approach and the individual approach. On one hand,
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the aggregate approach involves estimating reserves using all aggregate claims data
without utilizing granular information. These methods typically do not necessitate
extensive statistical modeling for their formulation. The Chain–Ladder method serves
as a prime example of this framework, see for e.g Wüthrich and Merz (2008). On the
other hand, the individual approach entails modeling each policy using granular infor-
mation, thereby accounting for heterogeneity. These methods are more sophisticated
from a statistical standpoint and often utilize theories from point process predictive
modeling, among others. See for e.g Pechon et al. (2018).

Our approach in this paper can be seen as a hybrid method that lies between these
two frameworks. It is built upon a simple yet innovative idea of viewing the reserving
problem as a population sampling problem as in Calcetero-Vanegas et al. (2023).
Indeed, we can conceptualize all N (τ ) claims as the population under consideration,
while the current N R(τ ) reported claims by the valuation date serve as the selected
sample for understanding this population. It is crucial to note that the sampling design
and the actual sampling process are not determined or conducted by the investigator
but are solely driven by the randomness associated with whether a claim is reported by
the valuation date. Thus, the sample is given rather than being selected by the actuary.
This distinction sets our setup apart from typical survey sampling situations.

In this analogy, the inclusion probabilities πi (τ ) can be interpreted as the likelihood
of a claim Yi belonging to the sample or, equivalently, being reported by the valuation
time τ . These probabilities depend on the valuation time and are likely to vary across
claims due to the different attributes xi associated with each claim. Along these lines,
the inclusion probabilities are given by:

πi (τ ) = P(Ui ≤ τ − Ti |xi ) (4.1)

These probabilities are unknown to the actuary and must be estimated. To do so we
need an estimation of the cumulative distribution function of the reporting delay times.
By recognizing that the reporting delay time is a time-to-event random variable, we
can use existing approaches from survival analysis to obtain the desired estimations
without the need to develop new models. For instance, Cox regression models are by
far the most popular techniques used in survival analysis (e.g., George et al. (2014)).
We will further illustrate this in the numerical study of the next section.

As motivated by the population sampling literature, the Horvitz–Thompson (HT)
estimator of the aggregate claims is described as follows

L̂(τ ) =
N R(τ )∑

i=1

Yi
πi (τ )

, (4.2)

Consequently, an unbiased estimator of the outstanding claims is the difference
between the estimated total and the currently paid amount.
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L̂ I BN R(τ ) = L̂(τ ) − LR(τ ) =
N R(τ )∑

i=1

Yi
πi (τ )

−
N R(τ )∑

i=1

Yi =
N R(τ )∑

i=1

1 − πi (τ )

πi (τ )
Yi . (4.3)

Confidence intervals for the reserve can be constructed relying on the sampling
distribution of the HT estimator, as noted by Thompson (2012, p. 70). In brief, under
minimal regularity conditions, the HT estimator follows approximately a normal dis-
tribution for large populations. We note that both the point estimator and its inference
do not rely on a model for the frequency or the severity, and so the IPW provides a
distribution-free approach for reserving.

Lastly, we highlight the resemblance between our estimator and the Chain–Ladder
method. The inverse of the inclusion probabilities serve as development factors for
the claims, akin to the Chain–Ladder. However, our approach differs by applying such
development factors at the individual level, using claim-specific factors driven by claim
attributes, instead of a single one for all claims as in the Chain–Ladder. Essentially, we
can interpret the IPW method as an extension of the Chain–Ladder that incorporates
the use of granular information.

4.2 Numerical Illustration

We demonstrate the application of the IPW estimator using a real dataset obtained
from a Canadian automobile insurance company. The dataset includes information on
Physical damage (PD) claims from January 2014 toDecember 2016. The timewindow
from 2014 to 2015 will be utilized for training, while the last year of 2016 will be used
for testing.

The only modeling required for the IPW is associated with the distribution for the
reporting delay times, Ui . For this, we fit a Cox regression in which the associated
hazard function λU |X (u) depends on the attributes of the policyholder as follows:

log(λU |X (u)) = log(λ0(u)) + β1Car_Age + β2Claim_Count

+ β3Horse_Power + β4Car_Weight

+ β5Car_Price + β6Gender + β7Driver_Age + S8(Accident_day)

+ S9(Claim_Amount)

We estimate the log of the baseline hazard function, log(λ0(u)), using a B-
Spline representation. Additionally, we introduce non-linear effects for the covari-
ate "Accident_day" and "Claim_Amount" with the terms S8(Accident-day) and
S9(Claim_Amount) respectively, also estimated through a B-Spline representation.
Our approach involves a generalized additive model implementation via the piece-
wise exponential modeling method, accessible in R packages like flexsurvreg,
pammtools, or GJRM.
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Fig. 2 Estimation for the IBNR reserve per month

Consequently, the desired inclusion probabilities are obtained using the relation-
ship:

πi (τ ) = Pr(Ui ≤ τ − Ti |xi ) = FU |xi (τ − Ti ) = 1 − exp

(

−
∫ τ−Ti

0
λU |xi (u)du

)

.

(4.4)

For the sake of comparison, we also showcase two alternativemodeling approaches.
We include the aggregate reserving method given by the Chain–Ladder (CL), and a
simplistic individual reserving method (IRM), inspired by the collective reserving
model with individual data as in Delong et al. (2022). Briefly, such IRM model is
constructed using a Zero-Inflated Negative Binomial regression for the frequency, a
lognormal regression for the severity, and the same Cox regression illustrated above
for the reporting delay time.

Along those lines, Fig. 2 presents estimations for outstanding claims compared to
the true reserve value for all 12 months in the testing period, and for all models in
consideration. Additionally, Table 3 provides error metrics to evaluate the disparities
between the estimations across all dates.

Figure2 depicts a close similarity between predictions generated by the IPW esti-
mator in expression (4.3) and the actual reserve values across the majority of observed
periods. It’s important to note that the IPW estimator displays amore variable behavior
when compared to the CL method and the IRM. However, there is no discernible pat-
tern of over or underestimation of reserves. Despite this variability, the IPW estimator
consistently outperforms the traditional CL approach and remains competitive with
the IRM. This observation is further supported by the findings presented in Table 3,
where the error metrics for the IPW over the 12-month period exceed those of the
CL and closely approach those of the IRM. This ranking among methods is expected,
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Table 3 Error metrics for the
total of the reserves over the
testing period

Method ME RMSE MAE MAPE (%)

IPW 17,426 57,395 49,829 23.9

CL 55,557 64,125 58,413 33.2

IRM − 34,024 45,595 40,497 23.5

ME mean error, RMSE Root mean square error, MAE mean absolute
error,MAPE mean absolute percentage error

given that the IPW leverages more granular information than the CL, though not to
the extent of the IRM method. Hence, the predictive efficacy of the IPW, combined
with the utilization of individual claims information, falls between that of aggregate
and individual methods.

5 Conclusions

Sampling, a fundamental pillar of statistical methodologies, serves as a linchpin in
unraveling patterns within extensive datasets, a practice of paramount importance in
both general statistics and the specialized field of actuarial science. While widely
utilized in censuses and election predictions, the full extent of its potential remains
underexploredwithin actuarial science. This paper sheds light on recent developments,
specifically focusing on its applications in insurance valuation and reserving. The
judicious use of population sampling emerges as a powerful and efficient approach,
addressing computational challenges associated with large and highly inhomogeneous
non-life insurance portfolios.

On one side, the applications of population sampling extend to pricing assess-
ments, particularly in the context ofBayesian credibilitymodels. The intricate interplay
betweenpolicyholder attributes and claimhistory necessitates a nuanced approach, and
population sampling proves instrumental in refining the calculation of credibility pre-
miums. By adopting a data-driven model, such as Bayesian regression, the challenge
lies in obtaining credibility premiums via computationally expensive methods like
simulation through Markov Chain Monte Carlo. Population sampling, coupled with
surrogate modeling, provides a manageable solution, allowing for the incorporation
of granular information into the premium calculation process. This not only enhances
the efficiency of the computation but also ensures a statistically robust foundation
for determining premiums. The integration of population sampling within Bayesian
frameworks marks a significant stride in advancing the state-of-the-art in actuarial
science, particularly in the domains of pricing and credibility assessments.

In the arena of reserving, particularly in the calculation of IncurredButNotReported
(IBNR) reserves, population sampling emerges as a transformative approach. Tra-
ditional methods, like the Chain–Ladder method, often overlook the heterogeneity
of policyholders. Here, population sampling reframes the claim reserving problem,
providing a statistically robust method for IBNR reserving. By applying inverse prob-
ability weighting techniques, this paper showcases how population sampling can
seamlessly integrate granular information into theChain–Laddermethod, significantly
improving the precision of IBNR reserve estimations. This represents a significant step
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forward, as it enables frequency and severity distribution-free calculations, elevating
the reliability of actuarial predictions.

The applications of population sampling in actuarial science extend beyond the
explored realms of pricing and reserving. Indeed, Lin and Yang (2020a) and Lin and
Yang (2020b) also show an application of the population framework in the context of
valuation and riskmanagement of variable annuities. Looking forward, sampling tech-
niques hold promise in reinsurance strategy assessments, optimizing risk mitigation
plans, and enhancing predictive modeling for underwriting and claims forecasting. As
the landscape of actuarial science continues to evolve, the judicious use of popula-
tion sampling emerges as a linchpin, guiding practitioners through the intricacies of
insurance and risk management with greater precision and efficiency.
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