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a b s t r a c t

In the Property and Casualty (P&C) ratemaking process, it is critical to understand the effect of
policyholders’ risk profile to the number and amount of claims, the dependence among various
business lines and the claim distributions. To include all the above features, it is essential to develop
a regression model which is flexible and theoretically justified. Motivated by the issues above, we
propose a class of logit-weighted reduced mixture of experts (LRMoE) models for multivariate claim
frequencies or severities distributions. LRMoE is interpretable, as it has two components: Gating
functions, which classify policyholders into various latent sub-classes; and Expert functions, which
govern the distributional properties of the claims. Also, upon the development of denseness theory
in regression setting, we can heuristically interpret the LRMoE as a ‘‘fully flexible" model to capture
any distributional, dependence and regression structures subject to a denseness condition. Further,
the mathematical tractability of the LRMoE is guaranteed since it satisfies various marginalization
and moment properties. Finally, we discuss some special choices of expert functions that make the
corresponding LRMoE ‘‘fully flexible". In the subsequent paper (Fung et al., 2019b), we will focus on
the estimation and application aspects of the LRMoE.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Modeling insurance claim frequencies and severities is crucial
in ratemaking for property and casualty (P&C) insurance (Frees
et al., 2016), but it is not coming without its challenges. Poli-
cyholders are highly heterogeneous since they possess different
risk characteristics. Hence, insurers should understand the risk
drivers and perform risk classification based on the policyholders’
information (covariates) obtained to design adequate tariff struc-
tures. Insurance products are sometimes sold in a bundled form,
so that a policyholder may have claims from multiple business
lines due to the same event. Furthermore, since it is impossible to
collect all policyholders’ information, unobserved heterogeneity
still exists among policyholders having the same observed risk
characteristics, leading to complicated distributional phenomena,
such as multimodality and over-dispersion of claim frequencies
and severities.

The afore-mentioned issues have been widely studied in ac-
tuarial literature through parametric modeling approach. The co-
variate influence is commonly incorporated through a General-
ized Linear Model (GLM) regression framework, where the claim
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frequency or severity follows an exponential family of distribu-
tions with the mean function expressed in terms of linear combi-
nations of the covariates (De Jong and Heller, 2008). To improve
the flexibility, GLM can be extended to the Generalized Addi-
tive Model (GAM) that allows for non-linear or even interactive
covariates effects. To model the dependence structures among
business lines, a common shock regression model (Bermúdez
and Karlis, 2011) is introduced to capture the effect that some
accidents trigger multiple types of claims at the same time. To
capture a full range of covariance structure, the use of copulas is
becoming increasingly popular, see for example Shi and Valdez
(2014) and Frees et al. (2016) for the insurance applications of
copulas to the dependence modeling. To model the unobserved
heterogeneity, Yip and Yau (2005), for example, propose a class of
zero-inflated regression models to capture the excess of zeros for
claim frequency data. Assuming particular structures on the claim
frequencies or severities, these parametric models are usually
mathematically tractable, interpretable and easily computable.

In insurance applications, the data characteristics can some-
times be very complicated, therefore it is hard to know what
assumptions should be imposed prior to the modeling process.
In this case, it may be challenging to specify a parametric model
that fits all the underlying data features. To this end, some re-
cent actuarial papers (see e.g. Quan and Valdez, 2018, Wüthrich,
2018 and Diao and Weng, in press) make use of non-parametric
machine learning techniques in the insurance context. Various
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machine learning tools, including neural networks and random
forests, are summarized comprehensively by Wuthrich and Buser
(2019) with potential applications on modeling and predicting
insurance claim counts. Being highly flexible in capturing the co-
variates influence, these models are effective in mitigating model
misspecification risk where the fitted model may not adequately
resemble the data.

Alternative to the above two very distinctive approaches for
modeling multivariate insurance loss frequencies or severities,
recently there is also a growth of interest in mixture-based semi-
parametric modeling. See for instance Lee and Lin (2012), Bade-
scu et al. (2015) and Miljkovic and Grün (2016). On one hand,
mixture-based models act like parametric models that contain
well-specified functional forms. On the other hand, the number
of mixture components can be adjusted as a hyperparameter to
control the distributional complexity, making them very flexible
in catering for multimodality and over-dispersion.

This paper contributes to multivariate regression modeling
under the mixture-based modeling framework. Motivated by the
flexibility of the class of expert models (that is theoretically
justified by e.g. Jiang and Tanner, 1999 and Nguyen et al., 2016),
we start with the class of Generalized Mixture of Experts (GMoE)
models, which is first introduced by Jacobs et al. (1991), as
a candidate model for multivariate claim frequencies/severities
regression. GMoE consists of two major components: a gating
function, which governs how an individual is classified into dif-
ferent latent subgroups; and an expert function, which describes
either the frequency or the severity distributions for an individual
belonging to a particular subgroup. Both functions are influenced
by the covariates. Being closely related to neural networks, GMoE
has been applied to a wide variety of research areas, includ-
ing social science (Gormley et al., 2008) and natural science
(Übeyli, 2005). It also covers a wide range of flexible class of
models, including finite mixtures of GLMs, which is applied to
general insurance frequency modeling (see e.g. Bermúdez, 2009
and Badescu et al., 2015). However, with an excessive number of
parameters and an over-complicated structure, GMoE is undesir-
able in computational feasibility and is likely to cause over-fitting,
hindering its usefulness in the context of general insurance.

To address these issues, in this paper we propose a class of
logit-weighted reduced MoE (LRMoE), a GMoE that removes the
regression relationships for the expert functions and assumes
an exponential linear form of regression for the gating func-
tions. With such a model simplification, the number of param-
eters of the LRMoE is significantly reduced compared to that of
the GMoE. Under this model, each policyholder belongs to one
of the unobserved homogeneous subgroups and the probability
that a policyholder belongs to a certain subgroup depends on
his/her risk characteristics. The regression coefficients for the
gating functions represent the impact of subgroup assignments
on the risk characteristics.

Apart from interpretability, a key motivation of introducing
the LRMoE for insurance predictive modeling is that its versatility
can be theoretically justified by denseness theory. Denseness
property guarantees the existence of a model within the class of
LRMoE that resembles well the input data, potentially avoiding
the need of ad-hoc model selection procedures where multiple
classes of models are fitted by trial and error in order to ob-
tain a model that adequately represents the data. The actuarial
literature discussing the denseness theory is scarce. In severity
modeling (without covariates), the multivariate mixture of Erlang
model proposed by Lee and Lin (2012) is dense in the space of all
positive continuous multivariate distributions, meaning that any
severity distributions can be approximated arbitrarily accurately
by the Erlang mixture model. Similarly, the denseness property is
also satisfied by a class of Phase-type (PH) or log-PH distributions

Asmussen et al. (1996) and Ahn et al. (2012). However, finding
a frequency model that has the denseness property is a more
difficult task because many commonly used actuarial frequency
models (such as Poisson and Negative Binomial distributions) are
not designed to capture under-dispersion. Incorporating covari-
ates into the model makes the denseness problem even more
challenging and it will be completely formulated in this paper.

We first justify the use of the proposed simplified model
instead of the more complicated GMoE. In this paper, we show
that, under very mild conditions, the class of LRMoE is dense in
the space of the GMoE, so the model flexibility is not impeded
when GMoE is simplified to LRMoE. A remarkable feature of the
LRMoE is that it can capture any regression patterns (including
non-linear patterns and covariates interactions) involved in the
GMoE even if the LRMoE contains only linear regressions. Since
the LRMoE is a flexible model with the simplest possible model
structure, it is a parsimonious model. Since the LRMoE mitigates
the overfitting risk without sacrificing its flexibility, we expect
that the LRMoE is robust, meaning that it provides stable fitting
results and good predictive power for any type of data.

We further illustrate the advantage of using the class of LR-
MoE to a practical insurance application, where the data to be
calibrated possesses complicated features. Under some suitably
chosen expert functions, the class of LRMoE is furthermore dense
in the space of any frequency/severity regression distributions,
meaning that any regression true models (subject to mild restric-
tions) can be approximated arbitrarily closely by the LRMoE. In
such cases, we refer to our proposed LRMoE class as to a ‘‘full
flexible’’ class of models that can cater for any distributional,
dependence and regression patterns. By choosing such expert
functions, the proposed model becomes fully data-driven. In prac-
tice, regardless of the complexities of the model generating the
input data, the characteristics of the calibrated model will be
highly synchronous to that of the input data.

Our proposed class of LRMoE is desirable in terms of mathe-
matical tractability, which is important in insurance applications
in terms of premium and risk measure calculations. Firstly, it
is closed under response marginalization, i.e., the marginal fre-
quency/severity for each claim type still follows a univariate
LRMoE. Secondly, it is closed under covariate marginalization,
meaning that even if some important covariates are missing, the
resulting model can still be expressed in the form of mixture
of experts. The marginalization properties facilitate computing
various useful quantities related to the proposed model more
efficiently. Thirdly, various moments and measures of association
under the LRMoE can be written in a simplified form that in-
volves only the quantities corresponding to the individual expert
functions, making them easily computable.

In a subsequent paper (Fung et al., 2019b), we apply the
LRMoE with Erlang Count expert functions to solve the estima-
tion and application problems for multivariate insurance claim
frequency regression. A fitting algorithm is developed for efficient
model calibration, while the effectiveness of the algorithm and
the flexibility of the proposed model are verified through several
simulation studies. We conclude that the proposed model is able
to adequately fit the complicated structures implied by a real
automobile insurance dataset.

The paper is structured as follows. In Section 2, we define
and interpret the class of GMoE and LRMoE respectively. The
use of LRMoE over GMoE as a multivariate insurance claim re-
gression model is further justified. Section 3 defines ‘‘denseness’’
in the context of multivariate regression problems and proves
several denseness properties possessed by the class of LRMoE.
Other desirable properties such as marginalization and moment
properties are discussed in Section 4. Section 5 provides a few
choices of expert functions in the attempt of modeling frequency
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or severity distributions. By checking the denseness condition
for each expert function, we can evaluate whether or not an
LRMoE with such an expert function can achieve ‘‘full flexibility’’
in modeling. Finally, in Section 6, we summarize our findings,
discuss some practical aspects of the proposed model and provide
a brief description of future work.

2. Model description

In this section, we define and interpret the proposed class
of mixture of experts (MoE) models for multivariate frequency
or severity regression. Denote Y = (Y1, . . . , YK )T and y =

(y1, . . . , yK )T respectively the multivariate response frequency or
severity random column vector and corresponding realization.
We make the following assumption for frequency random vectors
with support {0, 1, . . .}K .

Assumption 2.1. For a frequency random vector, its probability
mass function (pmf) is strictly positive on {0, 1, . . .}K .

For severity random vectors with support (0, ∞)K , we impose
the following assumption.

Assumption 2.2. For a severity random vector, there exists a
continuous cumulative distribution function (cdf).

We also define x = (x0, x1, . . . , xP )T as the covariates column
vector. Restricting x0 = 1, only ‘‘with-intercept’’ regression mod-
els are considered. In the context of insurance, K may represent
the number of attributes for an insurance contract. To begin with,
we introduce a generalized form of MoE (GMoE), which is also
described by Grun and Leisch (2008) as a finite mixture model
with concomitant variables.

Definition 2.1. Under the GMoE, the cumulative probability
distribution (cdf) of Y is given by

H∗(y; x) := H∗(y; x, α∗, β∗, g)

=

g∑
j=1

π∗

j (x; α∗)
K∏

k=1

Fk(yk; θ∗

jk(x; β∗

jk)),
(1)

where g is the number of latent classes, π∗

j (x; α∗) (called the
gating network/function) is the mixing weight for the jth class,
α∗

= (α∗

1, . . . ,α
∗
g ) are the parameters for the regressions of the

mixing weights; β∗
= {β∗

jk; j ∈ {1, . . . , g}, k ∈ {1, . . . , K }} are
the parameters for the regressions of θ∗

jk, which are themselves
the parameters of the univariate cdf Fk(yk; θ∗

jk(x; β∗

jk)) (called the
expert network/function).

From Eq. (1), the pmf/pdf of Y is

h∗(y; x) := h∗(y; x, α∗, β∗, g)

=

g∑
j=1

π∗

j (x; α∗)
K∏

k=1

fk(yk; θ∗

jk(x; β∗

jk)),
(2)

where we also call the univariate pmf/pdf fk(yk; θ∗

jk(x; β∗

jk)) as the
expert function.

Remark 2.1. The number of parameters of the GMoE varies
with the assumptions on the functional forms of π∗

j (x; α∗) and
θ∗

jk(x; β∗

jk). Suppose that the gating function is in an exponen-
tial linear form (will be discussed in Definition 2.2), fk is an
m-parameter expert function and the regressions in the expert
functions are under the GLM framework (linear regression on
only one of the m parameters in the expert functions). Then, we
have β∗

jk ∈ RP+1, θ∗

jk(x; β∗

jk) ∈ Rm and α∗

j ∈ RP+1. The number of
regression parameters for gating functions, regression parameters

for expert functions and non-regression parameters for expert
functions are respectively g × (P + 1), g × K × (P + 1) and
g ×K × (m−1). As shown in Section 5, note that commonly used
expert functions usually contain a small number of parameters
(mostly m ≤ 2). Therefore, the total number of parameters for the
GMoE (NGMoE = g×(P+1)+g×K×(P+m)) is usually dominated
by the term g×K ×P , especially when there are many covariates.

Note that the above model does not impose any assump-
tions on the functional forms of π∗

j (x; α∗) and θ∗

jk(x; β∗

jk). In other
words, we do not restrict any regression patterns (e.g. linear
regression) on either the mixing weights or the expert functions.
The only assumption of GMoE is the conditional independence
among the marginal responses Y1, . . . , YK . One may attempt to
extend it by introducing a dependence structure (e.g. copula) on
the class-dependent distribution. However, the denseness prop-
erty in Section 3 will show that the model flexibility is already
sufficient under such an assumption. Also, such an extension
will impede the model’s mathematical tractability, making the
conditional independence assumption well justified.

The GMoE contains a wide range of highly flexible classes
of models for insurance modeling. For severity modeling, the
multivariate Erlang mixtures model proposed by Lee and Lin
(2012), which is flexible to model any positive continuous mul-
tivariate distributions, is a very special case of the GMoE with
P = 0 (no covariate influence) and Erlang-distributed expert
function. For frequency modeling, the multivariate Pascal mixture
regression model introduced by Badescu et al. (2015), which is
versatile to deal with a wide range of over-dispersed distribu-
tional features and dependence structures, is also a special choice
of the GMoE with linear regressions on the expert functions, but
without regressions on the mixing weights.

Remark 2.2. One may attempt to extend the GMoE to hierar-
chical mixture of experts (HME) introduced by Jordan and Jacobs
(1992), which consists of two levels of expert networks. McLach-
lan and Peel (2000) state that HME can enhance the flexibility
of MoE through an increase of the level of experts, but Propo-
sition 4.2 of this paper suggests that HME can already be rep-
resented in the form of MoE under exponential linear gating
functions, so the flexibility of the class of GMoE is ensured.

Despite its flexibility, the excessive complexity of the GMoE
greatly reduces its usefulness for general insurance applications.
From Remark 2.1, the number of parameters for the GMoE con-
tains the term g × K × P , a product of 3 quantities. If more
complicated features outside the GLM framework (e.g. non-linear
regressions) are incorporated on the expert functions, GMoE in-
volves even more parameters. Such a large number of parameters
will complicate the model interpretation and cause troubles in
model fitting and model selection. Motivated by this issue, we
propose a class of reduced-form MoE (RMoE) models, which is a
special choice of the GMoE.

Definition 2.2. Under the RMoE, the cdf of Y is given by

H(y; x) := H(y; x, α,Θ, g) =

g∑
j=1

πj(x; α)
K∏

k=1

Fk(yk; θjk), (3)

where α = (α1, . . . ,αg ) and αj = (αj0 . . . , αjP )T ∈ RP+1 are
the weight regression parameters; Θ = {θjk; j = 1, . . . , g, k =

1, . . . , K } and θjk ∈ Rm are the parameters associated to the
expert functions. If the mixing weight πj(x; α) follows an expo-
nential linear gating function

πj(x; α) =
exp{αT

j x}∑g
j′=1 exp{α

T
j′x}

, j = 1, . . . , g, (4)

then the resulting model is called the logit-weighted reduced
Mixture of Experts Models (LRMoE).
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From Eq. (3), the pmf/pdf of Y is

h(y; x) := h(y; x, α,Θ, g) =

g∑
j=1

πj(x; α)
K∏

k=1

fk(yk; θjk). (5)

The above model can be interpreted in an insurance context
as the following. The whole population of policyholders is clas-
sified into g unobserved subgroups. The claim behavior varies
among different subgroups but it is homogeneous for policy-
holders within a subgroup. The probability that a policyholder
belongs to subgroup j (πj(x; α)) depends on the covariates, so that
policyholders with more undesirable characteristics (e.g. younger
driver and poorer car model in automobile insurance) are more
likely to belong to a subgroup with high risk profile.

The choice of exponential linear gating function is motivated
by its connection to multivariate logistic regression. For each
policyholder, the log-probability ratio between subgroup j1 and
subgroup j2 is given by

log
(πj1 (x; α)

πj2 (x; α)

)
= (αT

j1 − αT
j2 )x.

Therefore, larger regression coefficient αjp (the (p + 1)st el-
ement of αj, p = 1, 2, . . . , P) represents higher chance for an
individual to be classified as subgroup j when xp is large.

Compared to the GMoE, the LRMoE imposes two specific re-
strictions: The mixing weights take a specific linear regression
form and the expert functions do not consider regressions. The
number of parameters for the LRMoE is NLRMoE = g × (P +

1) + g × K × m, which is reduced by the dominating term
g × K × P compared to that for the GMoE. Moreover, since
the regressions on a distribution of a non-exponential family
are usually computationally intensive, removing the regression
relationships in the expert functions can offer us a greater variety
of choices of expert functions for model fitting with reasonable
computational costs. Therefore, the remaining concern about the
LRMoE is: how does the reduced form of MoE affect the model
flexibility? In the following section, we will demonstrate that the
LRMoE in the form of Eq. (5) can approximate the GMoE in Eq. (2)
arbitrarily closely under very mild conditions, even if the LRMoE
consists of linear regressions only while the GMoE consists of
non-linear regressions. The impact of imposing extra assumptions
to the model versatility is indeed minimal.

3. Denseness property

Model flexibility is an important criteria for a good model. It
is desirable that the model can capture a wide range of char-
acteristics of multivariate regression distributions, so that data
generated from the fitted model will be highly synchronous to the
input data in model fitting perspective, even if the fitted model is
not the true model. In mathematical perspective, such a desirable
property is called ‘‘denseness’’.

The denseness problem is very complicated when regression
is incorporated, because it requires the ability for the model to
cater for any distribution and regression patterns, including but
not limiting to any kinds of interactions among covariates and
the non-linear relationships between the response variable and
the covariates. The main goal of this section is to show several
denseness properties of the LRMoE.

3.1. Definition of denseness

We first define ‘‘denseness’’ mathematically. We start with a
class of distributions (without considering regression).

Definition 3.1. Let C1 and C2 be two classes of distributions. C1 is
dense in C2 if and only if for every F ∈ C2, there exists a sequence
of {Gn}n=1,2,... with Gn ∈ C1 for n = 1, 2, . . . such that Gn

D
−→ F as

n → ∞, where
D
−→ means weakly convergence or convergence in

distribution.

Non-technically speaking, the above definition implies that
C1 is at least as flexible as C2 in modeling perspective, because
any probability distribution in C2 can be approximated by a
distribution in C1 at any precision.

Remark 3.1. One may argue that weak convergence of
{Gn}n=1,2,... to F does not mean there exists a Gn that can approxi-
mate F at any precision, because weak convergence is only a kind
of pointwise convergence. One may suggest uniform convergence,
which means that for all ϵ > 0, there exists a Gn such that
supy |Gn(y) − F (y)| < ϵ. In this case, the whole distribution (body
and tail) of Gn can approximate that of F within the precision
level ϵ (in an absolute scale), which can be freely adjusted. If Gn
and F are either frequency or severity probability distributions
under Assumption 2.1 or 2.2, it can be easily proved that weakly
convergence already implies uniform convergence. The proof
details are discussed in Appendix A.

In regression settings, denseness problem has not been inves-
tigated, which leads us to introduce a new definition of
denseness. Such a definition should be tightly related to the full
flexibility of a class of models to cater for a broad range of both
distributional and regressional patterns. We first define the term
‘‘regression distribution’’.

Definition 3.2. A class of regression distributions C(A) (where
A is the support of the covariates x) is a set, where each element
F (A) := {F (·; x); x ∈ A} in C(A) is itself a set of probability
distributions.

Then, a new definition of denseness in regression settings is
introduced as follows.

Definition 3.3. Let A be the support of the covariates x. Also,
denote C1(A) and C2(A) as two classes of regression distributions.
C1(A) is dense in C2(A) if and only if for every F (A) ∈ C2(A),
there exists a sequence of regression distributions {Gn(A)}n=1,2,...
with Gn(A) ∈ C1(A) for n = 1, 2, . . . such that for every x ∈ A,
Gn(y; x) D

−→ F (y; x) as n → ∞. If the convergence Gn(y; x) →

F (y; x) is uniform on x ∈ Ay for any y, where Ay is the set of x
such that y is a continuity point of F (y; x), then C1(A) is uniformly
dense in C2(A).

Remark 3.2. Note that if Gn(y; x) and F (y; x) are frequency
distributions, then under Assumption 2.1 the set of continuity
points is Sc := (R\{0, 1, . . .})K , regardless of x. Hence, Ay under
Definition 3.3 is A if y ∈ Sc and Ay is null otherwise. For severity
distributions, all points in the Euclidean space are continuity
points under Assumption 2.2, so Ay = A for any x. Overall, Ay
is either A or null, so the continuity point issue suggested in
Definition 3.3 can be ignored.

Definition 3.3 is a direct extension of Definition 3.1. Under
such a definition, C1(A) is flexible in capturing any distributional
and regressional characteristics of C2(A), because convergence of
distribution is required for any choices of covariates x ∈ A.

3.2. Denseness in the class of GMoE

In this subsection, we provide theoretical justifications on the
flexibility of the LRMoE in the form of Eq. (5). We will prove
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that under several mild conditions that are negligible in practical
insurance applications, the LRMoE, which assumes linear regres-
sion patterns on the mixing weights, is already versatile enough
to cater for any distributional and regressional (including non-
linear regressions) patterns of the GMoE in the form of Eq. (2).
Being a flexible yet simple model, the proposed LRMoE is deemed
to be parsimonious. Model parsimony is a crucial feature as it
ensures that the model has a good explanatory predictive power.
The mathematical formulations for such a denseness property are
as follows.

Let G(A) and G0(A) be two classes of regression distributions.
Each element in G(A) (or in G0(A)) is a GMoE regression distri-
bution in the form of Eq. (1) (or a LRMoE regression distribution
in the form of Eq. (3)). Precisely, G(A) = {H∗(y;A, α∗, β∗, g); g ∈

N, α∗, β∗
} with H∗(y;A, α∗, β∗, g) := {H∗(y; x, α∗, β∗, g); x ∈ A},

and G0(A) = {H(y;A, α,Θ, g); g ∈ N, α,Θ} with
H(y;A, α,Θ, g) := {H(y; x, α,Θ); x ∈ A}, where H∗ and H
are the distribution functions corresponding to Eqs. (1) and (3)
respectively, sharing the same, fixed and known expert functions
{fk}k=1,...,K and dimension K . Here, A ⊆ RP+1 and x is a (P + 1)-
dimensional vector. Since the LRMoE is a subclass of the GMoE,
we have G0(A) ⊆ G(A) and hence it is trivial that G(A) is
dense in G0(A). We aim to prove the converse result: G0(A) is
uniformly dense in G(A) under certain mild conditions. To begin
with, we want to demonstrate the possibility to construct an
LRMoE which provides a one-to-one correspondence between the
covariates combination and the subgroup assignment. Hence, the
following technical lemma is first introduced. The rigorous proof
is presented in Appendix B.

Lemma 3.1. Suppose that x ∈ {1} × {m1, . . . ,mL}
P with m1 <

m2 < · · · < mL, and define h(l)(x) = λ
(l)
0 + λ

(l)
1 x1 + · · · + λ

(l)
P xP

for l = (l1, . . . , lP )T ∈ {1, . . . , L}P . Also define φ : {m1, . . . ,mL} ↦→

{1, . . . , L} as a function with φ(ml) = l for every l ∈ {1, . . . , L}.
Denote φ : {1} × {m1, . . . ,mL}

P
↦→ {1, . . . , L}P as a func-

tion with φ(x) = (φ(x1), . . . , φ(xP ))T for every (x1, . . . , xP )T ∈

{m1, . . . ,mL}
P . Then, we can construct {(λ(l)

0 , . . . , λ
(l)
P )T ;

l ∈ {1, . . . , L}P } as the parameters of {h(l)(x); l ∈ {1, . . . , L}P } such
that φ(x) = argmaxl∈{1,...,L}P {h(l)(x)} for every x.

The above lemma can be interpreted as follows. Consider an
LP -component LRMoE, and l in the above lemma represents the
component label. Note that LP is also the number of possible com-
binations for the covariates. Corresponding to each component l,
we first construct a function h(l)(x) that is linear on x. Lemma 3.1
suggests that for every covariates combination x, there exists a
one-to-one corresponding component l (i.e. l = φ(x)) such that
h(l)(x) is greater than the remaining (LP−1) linear functions h(l′)(x)
(l ′ ̸= l). It leads to another lemma.

Lemma 3.2. Construct the component weight πl(x; α) = exp
{nh(l)(x)}/

∑
l′∈(1,...,L)P exp{nh(l′)(x)} for the LP -component LRMoE,

which is also an exponential gating function since nh(l)(x) is still
linear on x. Then, it follows that

πl(x; α)

=

⎛⎝ ∑
l′∈(1,...,L)P

exp{n(h(l′)(x) − h(l)(x))}

⎞⎠−1

n→∞
−−−→ 1{l = φ(x)}.

(6)

Proof. Consider for l = φ(x), then n(h(l′)(x) − h(l)(x)) n→∞
−−−→ −∞

if l ′ ̸= l and → 0 if l ′ = l, so πl(x; α) → 1; for l ̸= φ(x), then
there exists an l ̸= φ(x) such that n(h(l′)(x) − h(l)(x)) n→∞

−−−→ ∞,
and hence πl(x; α) → 0. ■

Fig. 1. h(l)(x) versus the covariate x1 for the numerical example.

Lemma 3.2 shows that the proposed LRMoE is flexible enough
to assign individuals with different covariates combinations into
arbitrarily different subgroups, providing a critical foundation
for the subsequent theorems to justify the proposed model’s
flexibility.

Before we state our main theorems, we would like to demon-
strate a simple numeric example to facilitate understandability of
Lemmas 3.1 and 3.2. Consider A = {1}×{2, 5, 10} such that there
is only one covariate (P = 1) taking L = 3 possible values m1 = 2,
m2 = 5 and m3 = 10. Note that we have φ(2) = 1, φ(5) = 2 and
φ(10) = 3. We construct the parameters of the linear functions
{h(l)(x); l ∈ {1, 2, 3}} according to the scheme proposed by the
proof of Lemma 3.1 (Appendix B) as follows.

λ
(1)
0 = 10 > λ

(2)
0 = 6.5 > λ

(3)
0 = 0,

λ
(1)
1 = −1 < λ

(2)
1 = 0 < λ

(3)
1 = 13/15.

(7)

Then, these parameters result in the following linear functions
h(l)(x).

h(1)(x) = 10 − x1, h(2)(x) = 6.5, h(3)(x) = (13/15)x1. (8)

The functions h(l)(x) are also plotted in Fig. 1. When x1 = 2,
x1 = 5 and x1 = 10, it is observed that h(1)(x), h(2)(x) and h(3)(x)
respectively take the greatest value, so Lemma 3.1 is verified. We
then introduce a 3-component LRMoE with component weights
constructed in the way proposed by Lemma 3.2. The subgroup
assignment probabilities across various n are displayed in Table 1.
We see that for sufficiently large n, different covariate values are
classified into different subgroups with almost certainty, verifying
Lemma 3.2.

The main denseness results for the LRMoE are shown in the
following two theorems. Note that the results hold for the ex-
pert networks Fk corresponding to either a frequency or severity
random variable. Theorem 3.1 assumes that the covariates have
a finite support, but no restrictions are imposed on the expert
functions. On the other hand, Theorem 3.2 allows a continuous
compact space for the support of the covariates, but certain mild
conditions are imposed on the expert functions.

Theorem 3.1. If A = {1}×{m1, . . . ,mL}
P , then G0(A) is uniformly

dense in G(A).

Proof. The rigorous proof is displayed in Appendix C, but here we
roughly sketch the proof idea. Given a fixed covariates combina-
tion x, the GMoE regression distribution results to a g-component
finite mixture model. With a total of LP possible combinations
for the covariates, each GMoE regression distribution contains a
total of LP finite mixture distributions. Motivated by the flexibility
for the LRMoE to assign component weights (Lemma 3.2), we
now construct a g × LP -component LRMoE that assigns/classifies
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Table 1
The component weights πl(x; α) constructed under Lemma 3.2.

n = 0.1 n = 1 n = 10

πl(x; α) x1 = 2 x1 = 5 x1 = 10 x1 = 2 x1 = 5 x1 = 10 x1 = 2 x1 = 5 x1 = 10

l = 1 0.418 0.323 0.189 0.816 0.167 0.000 1.000 0.000 0.000
l = 2 0.359 0.375 0.362 0.182 0.748 0.103 0.000 1.000 0.000
l = 3 0.223 0.302 0.449 0.002 0.086 0.897 0.000 0.000 1.000

each (different) covariates combination to the (different) g com-
ponents that constitute the corresponding finite mixture model
resulted from the GMoE. Therefore, each GMoE can be well ap-
proximated by the LRMoE at any precision. ■

Since the theorem above restricts the covariates x to a finite
support, it is useful when all the covariates are categorical. In
general insurance, a wide range of explanatory variables that af-
fect policyholders’ claim behavior, such as gender, location/region
and vehicle brand/type, are categorical. Even if the covariates are
continuous in nature (e.g. age), it is still common and practical to
categorize the explanatory variables before fitting a model. See
the data structure used in Bermúdez (2009) as an example. In the
case where continuous covariates are considered, the following
theorem is needed.

Theorem 3.2. Suppose thatA = {1}×[mmin,mmax]
P , Fk and π∗

j are
Lipschitz continuous on x ∈ A ∀k = 1, . . . , K , ∀j = 1, . . . , g < ∞,
∀y and for any fixed parameters settings under the GMoE. Then,
G0(A) is uniformly dense in G(A).

Proof. The rigorous proof is displayed in Appendix D and the
proof idea is as follows. We first partition [mmin,mmax] into L
intervals to obtain L partition points (namely m1, . . . ,mL). Then
for the covariates space A0 := {1} × {m1, . . . ,mL}

P
⊆ A, we can

construct an LRMoE arbitrarily closely approximating the GMoE
on A0, using the idea from Theorem 3.1. When L is sufficiently
large (i.e. the partitioning intervals are small), for every x ∈ A,
we can find an element x̃ ∈ A0 such that x is very close to
x̃. Through the Lipschitz assumptions, the resulting distributions
given x are very close to those given x̃. Therefore, the accurate
approximations of the LRMoE to the GMoE can be extended to
the continuous covariates space A. ■

The extra conditions required in Theorem 3.2 are indeed very
mild. The Lipschitz-continuity restrictions, which avoid
H∗(y; x, α∗, β∗, g) changing too fast under infinitesimal change
in x, are purely mathematical and hence they are not any issues
in practice. In practical regression models, all functions and pa-
rameters can be safely assumed to be continuously differentiable
with respect to x. This already guarantees the Lipschitz-continuity
conditions when x is bounded. The finite bound for A is also
not a concern in practice, because only finite number of data
can be obtained in reality and the covariates for each data point
are always finite. Even if the covariates are unbounded in nature
(e.g. age), one can easily perform a one-to-one transformation on
the unbounded covariate so that it falls within a bounded interval.

Remark 3.3. One may concern about the assumption that all
covariates take the same range (the domains of each covariate
are {m1, . . . ,mL} in Theorem 3.1 and [mmin,mmax] in Theorem 3.2
respectively). In practice, different covariates obviously have dif-
ferent ranges. For example, the domain of variable ‘‘age’’ can be
{18, 19, . . . , 100} but that of variable ‘‘car fuel’’ can be {0, 1}
(diesel or gasoline). In this case, the covariates domain A0 :=

{1} × {18, 19, . . . , 100} × {0, 1} does not satisfy the assump-
tion of Theorem 3.1, but we can extend the domain and choose
A = {1} × {0, 1, 18, 19, . . . , 100}2 such that the result of Theo-
rem 3.1 holds. Further, as a direct consequence of Definition 3.3,

denseness on a larger domain A implies denseness on a smaller
domain A0, because we need to check the weak convergence
over a smaller region of x to show the denseness property on
A0. The above argument can be easily generalized to any number
of covariates P , so that having multiple covariates with varying
ranges would not affect the denseness properties.

3.3. Denseness in the space of non-negative regression distributions

Although the versatility of the LRMoE is already well justified
based on the theorems proposed in the previous subsection, it
can be still far from a ‘‘full flexibility’’ – the ability to capture
any distributional, dependence and regressional structures. This
subsection derives stronger results compared to Theorems 3.1
and 3.2 – the denseness property of the LRMoE in the space of
any frequency or severity regression distributions. With such a
denseness property, we can be confident that for any datasets
we fit, the fitted model will share similar characteristics as the
input data. We aim to investigate the necessary and sufficient
conditions for the expert functions fk such that the denseness
property holds.

Motivated by the broad applicability of finite mixture models
to claim frequency/severity modeling in general insurance and
the denseness properties of finite mixture models studied in
actuarial literature (see e.g. Lee and Lin, 2012), we start with
investigating the denseness conditions of finite mixture models.
Then, the connections between the denseness properties of finite
mixture models and that of the LRMoE are demonstrated.

Mathematically, define Hk (k = 1, . . . , K ) and H as the classes
of univariate and multivariate finite mixture models respectively,
such that Hk = {hk(yk; π, θk, g) =

∑g
j=1 πjfk(yk; θjk); π, θk, g}

and H = {h(y; π, θ, g) =
∑g

j=1 πj
∏K

k=1 fk(yk; θjk); π, θ, g}. In
finite mixture models, fk (or Fk) is called the component function
instead of the expert function named by LRMoE. The denseness
condition is as follows.

Proposition 3.1. The following statements are equivalent:

1. H is dense in the space of multivariate frequency (or severity)
distributions.

2. Hk is dense in the space of univariate frequency (or severity)
distributions for every k = 1, . . . , K.

3. For every k = 1, . . . , K and q ∈ Qk, there exists a sequence
of parameters {ν

(n)
q }n=1,2,... such that Fk(·; ν

(n)
q )

D
−→ q as

n → ∞, where Qk = {0, 1, 2, . . .} so that Fk corresponds
to a frequency random variable (or Qk = (0, ∞) so that Fk
corresponds to a severity random variable).

Proof. The rigorous proof is displayed in Appendix E but the
proof idea is simple. For frequency distributions, if the compo-
nent function is able to converge to any degenerate distribu-
tions (Statement 3 holds), then the mixture of all the degenerate
functions with arbitrarily set component weights can obviously
recover any frequency distributions. For severity distributions, we
can partition the space Qk into many small intervals and apply
similar yet slightly more complicated approximation techniques
as in the frequency case. ■
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Proposition 3.1 shows that the class of finite mixture models
is fully flexible if and only if the component functions Fk can
converge to any degenerate distributions. For the LRMoE, the fol-
lowing theorem shows that the denseness conditions on the ex-
pert functions Fk is the same as that suggested in Proposition 3.1,
subject to some mild conditions.

Theorem 3.3. Let G1(A) be a class of multivariate frequency
(or severity) regression distributions. For each element G∗(A) ∈

G1(A) where G∗(A) := {G∗(·; x); x ∈ A}, {G∗(·; x)}x∈A is tight
and G∗(y; x) is Lipschitz continuous on x ∈ A for every y. Also,
assume that A = {1} × [mmin,mmax]

P . Let G0(A) be the LRMoE
with expert functions Fk, which also correspond to frequency (or
severity) random variables. Then, G0(A) is uniformly dense in G1(A)
if and only if Statement 3 of Proposition 3.1 is satisfied for the expert
functions.

Proof. The rigorous proof is presented in Appendix F and the
proof idea is as follows. Similar to the proof of Theorem 3.2,
we partition [mmin,mmax] into L intervals with partition points
m1, . . . ,mL. We first denote the covariates subspace A0 := {1} ×

{m1, . . . ,mL}
P and consider a regression distribution G∗(A0) that

consists of a total of LP distributions. If Statement 3 of Proposi-
tion 3.1 holds, then there exists a sufficiently large gϵ such that (a
number of LP ) gϵ-component finite mixture models can accurately
approximate the corresponding LP distributions (up to an error
bound ϵ). Then, construct a gϵ×LP -component LRMoE and use the
same strategy as the proof of Theorem 3.1. Such an LRMoE will
be very ‘‘close’’ to the regression distribution G∗ on A0. Based on
the Lipschitz continuity assumption, now we can implement the
same strategy as the proof of Theorem 3.2 to extend the covari-
ates space from A0 to A. The tightness assumption is required
in order that the weak convergence is uniform on A, but the
mathematical procedures are complicated so we put the details
into the appendix. ■

Remark 3.4. The tightness condition required by Theorem 3.3
is indeed very mild. Let H∗

k (·; x) be the kth marginal distribution
of G∗(·; x) with the corresponding random variable Y ∗

k . Unless
the tail of Y ∗

k is artificially heavy, in practice it is safe to expect
and assume that E

[
log(Y ∗

k + 1); x
]
is finite and continuous on x.

Since x is bounded, {E
[
log(Y ∗

k + 1); x
]
}x∈A is also bounded. Then,

Theorem 3.2.8 of Durrett (2010) shows that {H∗

k (·; x)}x∈A is tight
for every k = 1, . . . , K . From this, basic probabilistic arguments
can show that {G∗(·; x)}x∈A is also tight.

To sum up, Proposition 3.1 and Theorem 3.3 demonstrate
the connection between the denseness property of finite mix-
ture models and that of the LRMoE. Such a connection is State-
ment 3 of Proposition 3.1, which is the possibility of the com-
ponent/expert functions to be arbitrarily close to any degenerate
distributions. Also, it is related to the ability of the expert func-
tions to capture model under-dispersion, which will be discussed
in Section 5 through a series of examples.

3.4. Limitations of denseness theory

In Sections 3.2 and 3.3, we have presented two major dense-
ness properties for the LRMoE: the denseness in the space of
the GMoE, which justifies the parsimony of the LRMoE, and
the denseness in the space of any frequency/severity regression
distributions, which illustrates the potential ‘‘full’’ versatility of
the LRMoE to capture very complicated data characteristics and
alleviates model misspecification risk prevalent in parametric
modeling framework. These are the key theoretical motivations
for us to bring the MoE framework for the insurance predictive
modeling and to propose a reduced structure from the GMoE.

Despite the above desirable features, the denseness property
does not guarantee the convergence rate, so there is no con-
trol on the number of components g . For instance, the proof of
Theorem 3.1 constructs an LRMoE involving a large number of
components (g × LP ), which is obviously parameter inefficient
and practically unfeasible. Several existing actuarial papers have
already revealed the limitations of mixture-type models to fit
extremely heavy-tailed distributions despite the denseness prop-
erties. For example, Verbelen et al. (2015) and Fung et al. (2019a)
find that when the mixture of Erlang distribution (relatively light
tailed) is fitted to data with extreme tail behavior, a prohibitively
large number of components will be obtained that obviously
overfits the tail and fails to extrapolate the tail-heaviness. As a
result, the parameter efficiency and model fitting performance of
the LRMoE can be very different among various choices of expert
functions even if they all satisfy the denseness condition.

To address such a practical concern, it is essential to de-
velop an efficient fitting algorithm and control the number of
parameters, which will be presented in Fung et al. (2019b). We
find empirically through various simulation studies and a real
data analysis that (depending on the complexity of the data
structures) only 5 to 36 components are sufficient to cater for
very complicated features, including heterogeneous distribution
(e.g. over- and under-dispersion) and dependence (e.g. positive
and negative correlation) structures across business lines, as well
as non-linear regression patterns with covariates interactions,
verifying the applicability of denseness properties. Also, encoun-
tering data with extreme values, it may be critical to consider
heavy-tailed distributions as the expert functions for the LRMoE
(Section 5), or to transform the dataset before applying the LRMoE
with light-tailed expert functions.

Another limitation of the denseness properties is that the
denseness condition (Statement 3 of Proposition 3.1) is indeed
not a mild restriction. Some commonly used expert functions,
such as Poisson distribution, do not satisfy such a condition.
To preserve the maximum benefits (i.e. ‘‘full flexibility’’ to cap-
ture complex structures) enjoyed by the proposed LRMoE, we
may need to consider alternative less popular choices of expert
functions, which will be discussed in detail in Section 5.

4. Other model properties

4.1. Marginalization properties

Closure under marginalization is a crucial desirable property
because it directly relates to the mathematical tractability and
interpretability of the model. For multivariate regression distribu-
tional models, we need to consider two types of marginalizations:
response marginalization and covariates marginalization.

Proposition 4.1 (Response Marginalization). LRMoE in the form of
Eqs. (3) and (5) is closed under response marginalization, i.e., each
response marginal Yk still follows a univariate LRMoE with expert
function fk. Furthermore, any p-variate (p < K) response marginal
is still a p-variate LRMoE.

Proof. For the sake of conciseness, only univariate case is pre-
sented. Let Hk(y; x, α,Θ, g) be the distribution of Yk. By Eq. (3),
we have

Hk(y; x, α,Θ, g) = lim
yk′→∞;k′ ̸=k

g∑
j=1

πj(x; α)
K∏

k′=1

Fk′ (yk′; θjk′ )

=

g∑
j=1

πj(x; α)Fk(yk; θjk). ■
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Consider a population of policyholders, each has their own
covariates characteristics. If a policyholder is sampled from the
whole population, the covariates x will become random. It is
assumed that x follows a distribution function W (x) with density
w(x). Then, the joint distribution of Y and x is given by

h(y, x; α,Θ, g) = h(y; x, α,Θ, g)w(x).

In practice, it is common that some significant covariates
are missing in regression analysis because of the impossibility
to collect all features of policyholders. Motivated by this, it is
important to derive the distribution of Y conditioned on the
observed covariates xc (h(y; xc) := h(y; xc, α,Θ, g)), where xc is
a subset of the complete covariates x. In particular, if xc = x0 =

1, the distribution obtained is unconditional (i.e. no covariate
information). Also denote xu := x\xc as the missing covariates.
This is called covariates marginalization.

Before that, we demonstrate the following general distribu-
tional result that links two-layer HME (hierarchical MoE) to LR-
MoE. We will show that covariate marginalization is a special case
of the following result. As a by-product, such result also shows
the motivation of using the LRMoE instead of the HME, a more
complicated class of models. This is described in Remark 2.2. HME
is itself an MoE written in the form

h(y; x) =

L∑
l=1

πl(x; β)bl(y), (9)

where πl is still an exponential gating function and the expert
function bl(y) is itself also an LRMoE with

bl(y) =

g∑
j=1

πj(x; α(l))
K∏

k=1

fk(yk; θ
(l)
jk ). (10)

Proposition 4.2. HME in the form of Eq. (9) can be expressed as
LRMoE in the form of Eq. (5).

Proof. From Eqs. (9) and (10), we have equation given in Box I.
where Q = {j1, . . . , jL = 1, . . . , g; l1, . . . , lL = 1, . . . , L} and
Q ′

= {j′1, . . . , j
′

L = 1, . . . , g; l′1, . . . , l
′

L = 1, . . . , L}. Note that
the last equality results from the label switching between l1 and
lq. Therefore, h(y; x) is still an LRMoE with exponential gating
functions. ■

Proposition 4.2 leads to the following marginalization result.

Proposition 4.3 (Covariates Marginalization). If x follows a discrete
distribution W (x) with a finite support and the covariates x are
independent of each other, then the LRMoE in the form of Eqs. (3)
and (5) is closed under covariates marginalization, i.e., h(y; xc)
is still in an LRMoE with exponential linear gating functions for
any dimensions and combinations of xc . Without any distributional
restrictions on x, h(y; xc) is still a g-component RMoE, but the gating
functions are not necessarily exponential.

Proof. Let Du be the support of xu. Regarding the first statement,
let w(xu) and w(xc) be the pmf of xu and xc respectively. We have

h(y; xc) =

∑
xu∈Du

h(y, x)
w(xc)

=

g∑
j=1

∑
xu∈Du

w(xu)πj(x; α)
K∏

k=1

fk(yk, θjk).

(11)

Now, compare Eq. (11) to Eqs. (9) and (10). Choose L as the
number of elements of Du. Also, select βxu,p = [logw(xu)]1{p = 0}
where βxu,p is the pth element of βxu . Further, we can write

πj(x; α) = exp{α
(xu)
j

T
xc}/

∑g
j′=1 exp{α

(xu)
j′

T
xc} = πj(xc; α(xu)) and

choose α
(xu)
jp = αu

j
Txu1{p = 0} + αc

jp, where αu
j and αc

j are
regression coefficients corresponding to xu and xc respectively,
and αc

jp is the pth element of αc
j . Finally, choosing θ

(xu)
jk = θjk,

Eq. (11) can be written as

h(y; xc) =

∑
xu∈Du

πxu (xc; β)
g∑

j=1

πj(xc; α(xu))
K∏

k=1

fk(yk; θ
(xu)
jk ),

which is in the form of Eqs. (9) and (10). Regarding the second
statement, we have

h(y; xc) =

∫
xu∈Du

h(y; x)dW (xu; xc)

=

g∑
j=1

∫
xu∈Du

πj(x; α)dW (xu; xc)
K∏

k=1

fk(yk; θjk),

whereW (xu; xc) is the distribution of xu conditioned on xc . Hence,
it is still a g-component LRMoE with non-exponential gating
functions π̃j(xc; α) :=

∫
xu∈Du πj(x; α)dW (xu; xc). ■

4.2. Moments and common measures of association

In this subsection, we show that the moments and commonly
used measures of association, such as Kendall’s tau and Spear-
man’s rho, can be expressed in a simpler form which can be
computed more easily under the class of LRMoE. Assume that Y =

(Y1, . . . , YK )T follows the LRMoE in the form of Eq. (5). Also, de-
note Y (j)

1 , . . . , Y (j)
K as independent random variables with pdf/pmf

f1(·; θj1), . . . , fK (·; θjK ) (i.e. the jth-component expert functions
of Y1, . . . , YK ) respectively. Further, aligning with the notations
adopted in the proof of Proposition 4.3, we denote π̃j(xc; α) :=∫
xu∈Du πj(x; α)dW (xu; xc) as the non-exponential gating function,

where W (xu; xc) is the distribution of xu conditioned on xc .

Proposition 4.4. For k = 1, . . . , K, let hk(·) be a function where
E[hk(Y

(j)
k )] < ∞ for every j = 1, . . . , g. Then we have

E

[
K∏

k=1

hk(Yk)
⏐⏐⏐x] =

g∑
j=1

πj(x; α)
K∏

k=1

E
[
hk(Y

(j)
k )
]
. (12)

Further, E
[∏K

k=1 hk(Yk)|xc
]
can be obtained through replacing

πj(x; α) by π̃j(xc; α) in Eq. (12). Let µ
(j)
k = E

[
Y (j)
k

]
and σ

(j)
k

2
=

Var
[
Y (j)
k

]
. For k, k1, k2 = 1, . . . , K, some specific moments are given

by

E [Yk|x] =

g∑
j=1

πj(x; α)µ(j)
k ; Var [Yk|x]

=

g∑
j=1

πj(x; α)(σ (j)
k

2
+ µ

(j)
k

2
) −

( g∑
j=1

πj(x; α)µ(j)
k

)2
;

(13)

Cov
[
Yk1 , Yk2 |x

]
=

g∑
j=1

πj(x; α)µ(j)
k1

µ
(j)
k2

−

⎛⎝ g∑
j=1

πj(x; α)µ(j)
k1

⎞⎠⎛⎝ g∑
j=1

πj(x; α)µ(j)
k2

⎞⎠ .

(14)
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h(y; x) =

L∑
l=1

g∑
j=1

exp{(βl + α
(l)
j )Tx}∑L

l′=1
∑g

j′=1 exp{(βl′ + α
(l)
j′ )

Tx}

K∏
k=1

fk(yk; θ
(l)
jk )

=

g∑
j=1

∑L
l=1 exp{(βl + α

(l)
j )Tx}

∏
l∗ ̸=l

∑L
l′=1

∑g
j′=1 exp{(βl′ + α

(l∗)
j′ )Tx}

∏K
k=1 fk(yk; θ

(l)
jk )∏L

l∗=1
∑L

l′=1
∑g

j′=1 exp{(βl′ + α
(l∗)
j′ )Tx}

=

( ∑L
q=1

∑L
lq=1

∑g
jq=1 exp{(βlq + α

(q)
jq )Tx}1{lq = q}∏

l∗ ̸=q
∑L

l′=1
∑g

j′=1 exp{(βl′ + α
(l∗)
j′ )Tx}

∏K
k=1 fk(yk; θ

(q)
jqk)

)
∏L

l∗=1
∑L

l′=1
∑g

j′=1 exp{(βl′ + α
(l∗)
j′ )Tx}

=

∑
Q exp{

∑L
l∗=1(βll∗

+ α
(l∗)
jl∗

)Tx}
∑L

q=1
∏K

k=1 fk(yk; θ
(q)
jqk)1{lq = q}∑

Q ′ exp{
∑L

l∗=1(βl′l∗
+ α

(l∗)
j′l∗

)Tx}

=

∑
Q

exp{
∑L

l∗=1(βll∗
+ α

(l∗)
jl∗

)Tx}∑
Q ′ exp{

∑L
l∗=1(βl′l∗

+ α
(l∗)
j′l∗

)Tx}

K∏
k=1

fk(yk; θ
(l1)
jl1 k

),

Box I.

E [Yk|xc ], Var [Yk|xc ] and Cov
[
Yk1 , Yk2 |x

c
]
are obtained through re-

placing πj(x; α) by π̃j(xc; α).

Proof. Let Z = (Z1, . . . , Zg ) be a latent random vector, where
Zj = 1 when Y belongs to the jth component and Zj = 0
otherwise for j = 1, . . . , g . We have

E

[
K∏

k=1

hk(Yk)
⏐⏐⏐x] = E

[
E

[
K∏

k=1

hk(Yk)
⏐⏐⏐x, Z]]

= E

⎡⎣ g∑
j=1

K∏
k=1

E
[
hk(Y

(j)
k )
]
1{Zj = 1}

⎤⎦
=

g∑
j=1

πj(x; α)
K∏

k=1

E
[
hk(Y

(j)
k )
]
.

Also, the expression of E
[∏K

k=1 hk(Yk)|xc
]

results from the
covariates marginalization property (Proposition 4.3). The spe-
cific moments are easy to obtain after choosing several suitable
hk(·). ■

Proposition 4.4 shows that many commonly used moments for
the LRMoE can be expressed analytically in terms of the moments
corresponding to the individual expert functions, making LRMoE
mathematically and computationally tractable. One may also be
interested in the connections between the moment properties
and the denseness properties under the LRMoE. We first intro-
duce the following results on the characteristics of dispersion
measures: dispersion ratio and coefficient of variation (CV), which
are popular measures of the extent of variability for frequency
and severity distributions respectively.

Proposition 4.5. Let Dk(x) = Var(Yk|x)/E(Yk|x) and CVk(x) =

SD(Yk|x)/E(Yk|x) be the dispersion ratio and the CV of Yk conditioned
on x respectively, where SD(Yk|x) =

√
Var(Yk|x). Also, define D(j)

k =

σ
(j)
k

2
/µ

(j)
k and CV(j)

k = σ
(j)
k /µ

(j)
k as the dispersion ratio and CV of Y (j)

k
respectively. Further, denote Dmin

k = minj=1,...,g D
(j)
k and CVmin

k =

minj=1,...,g CV
(j)
k as the minimum dispersion ratio and CV across all

components. We have the following results.

Var(Yk|x) ≥

g∑
j=1

πj(x; α)σ (j)
k

2
;

Var(Yk|xc) ≥ E
(
Var(Yk|x)|xc

)
≥

g∑
j=1

π̃j(xc; α)σ (j)
k

2
;

(15)

SD(Yk|x) ≥

g∑
j=1

πj(x; α)σ (j)
k ;

SD(Yk|xc) ≥ E
(
SD(Yk|x)|xc

)
≥

g∑
j=1

π̃j(xc; α)σ (j)
k ;

(16)

Dk(x) ≥ Dmin
k ; Dk(xc) ≥ inf

xu∈Du
Dk(x) ≥ Dmin

k ; (17)

CVk(x) ≥ CVmin
k ; CVk(xc) ≥ inf

xu∈Du
CVk(x) ≥ CVmin

k . (18)

Proof. Eq. (15) can be obtained through simple algebraic ma-
nipulations on Eq. (13) and the usage of the conditional variance
formula. Using Eqs. (15), (17) can be obtained as follows.

Dk(x) ≥

∑g
j=1 πj(x; α)σ (j)

k
2∑g

j=1 πj(x; α)µ(j)
k

=

∑g
j=1 πj(x; α)µ(j)

k D(j)
k∑g

j=1 πj(x; α)µ(j)
k

≥ Dmin
k , (19)

Dk(xc) ≥

∫
xu∈Du Var(Yk|x)dW (xu; xc)∫
xu∈Du E(Yk|x)dW (xu; xc)

=

∫
xu∈Du E(Yk|x)Dk(x)dW (xu; xc)∫

xu∈Du E(Yk|x)dW (xu; xc)
≥ inf

xu∈Du
Dk(x).

(20)

Eq. (16) results from Eq. (15) and Jensen’s inequality. Then,
Eq. (18) follows using similar techniques as Eqs. (19) and (20). ■

Eq. (17) shows that the dispersion measure of LRMoE is
bounded below by that of the underlying expert functions. Let
Dk(θk) and CVk(θk) be the dispersion ratio and CV of a ran-
dom variable with pdf/pmf fk(yk; θk) respectively. If a dispersion
measure of the expert function is bounded below by a positive
constant among all parameters (e.g. infθk Dk(θk) = c > 0),
then the corresponding LRMoE is unable to capture distributions
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with even lower dispersion measures. Dispersion measures are
important factors to be considered in both frequency and severity
modeling. Many widely used models, such as Poisson and Ex-
ponential distributions, do not capture under-dispersion. Under-
dispersed modeling highly relates to the denseness condition of
the class of LRMoE on the expert functions (see Theorem 3.3).
Recall denseness requires that the expert functions can be arbi-
trarily close to any degenerate distributions, which always have
zero dispersion measures (except for the case where yk = 0).
Therefore, the key of model flexibility of LRMoE is the versatility
for the expert functions to capture a broad range of under-
dispersions. More details will be discussed in the next section
with a series of motivating examples.

The correlation coefficient, a commonly used measure of de-
pendence, can be obtained analytically from Eqs. (13) and (14).
Since correlation coefficient assumes linear relationships and is
sensitive to outliers, one may suggest other measures of as-
sociation to tackle these problems. Among those, Kendall’s tau
and Spearman’s rho are two of the most widely used measures.
The results regarding the expressions of these measures are as
follows.

Proposition 4.6. Let τk1,k2 (x) and ρk1,k2 (x) respectively be the
Kendall’s tau and Spearman’s rho between Yk1 and Yk2 conditioned
on the covariates x. They are given by

τk1,k2 (x)
:= P

[
(Yk1 − Y ′

k1 )(Yk2 − Y ′

k2 ) > 0
]
− P

[
(Yk1 − Y ′

k1 )(Yk2 − Y ′

k2 ) < 0
]

=

g∑
j=1

g∑
j′=1

πj(x; α)πj′ (x; α)
[
P(Y (j)

k1
> Y (j′)

k1
) − P(Y (j)

k1
< Y (j′)

k1
)
]

×

[
P(Y (j)

k2
> Y (j′)

k2
) − P(Y (j)

k2
< Y (j′)

k2
)
]
,

ρk1,k2 (x) := 3
(
P
[
(Yk1 − Y ′

k1 )(Yk2 − Y ′′

k2 ) > 0
]

− P
[
(Yk1 − Y ′

k1 )(Yk2 − Y ′′

k2 ) < 0
])

= 3
g∑

j=1

g∑
j′=1

g∑
j′′=1

πj(x; α)πj′ (x; α)πj′′ (x; α)

×

[
P(Y (j)

k1
> Y (j′)

k1
) − P(Y (j)

k1
< Y (j′)

k1
)
]

×

[
P(Y (j)

k2
> Y (j′′)

k2
) − P(Y (j)

k2
< Y (j′′)

k2
)
]
,

where Y ′

k and Y ′′

k are iid copies of Yk. Similarly, τk1,k2 (x
c) and

ρk1,k2 (x
c) can be obtained through replacing πj(x; α) by π̃j(xc; α).

The probabilities P(Y (j)
k > Y (j′)

k ) can be computed as: P(Y (j)
k >

Y (j′)
k ) =

∑
∞

y=1 Fk(y − 1; θj′k)fk(y; θjk) for frequency expert functions
or P(Y (j)

k > Y (j′)
k ) =

∫
∞

0 Fk(y; θj′k)dFk(y; θjk) for severity expert
functions.

Proof. For conciseness, we only derive τk1,k2 (x). Let
Z = (Z1, . . . , Zg ) and Z ′

= (Z ′

1, . . . , Z
′
g ) be independent latent

random vectors, where Zj = 1 (or Z ′

j = 1) when Y (or Y ′
=

(Y ′

1, . . . , Y
′

K ) belongs to the jth component and Zj = 0 (or Z ′

j = 0)
otherwise for j = 1, . . . , g . We have

τk1,k2 (x) = E
[
P
[
(Yk1 − Y ′

k1 )(Yk2 − Y ′

k2 ) > 0|Z, Z ′
]

− P
[
(Yk1 − Y ′

k1 )(Yk2 − Y ′

k2 ) < 0|Z, Z ′
]]

=

g∑
j=1

g∑
j′=1

πj(x; α)πj′ (x; α)
[
P
(
(Y (j)

k1
− Y (j′)

k1
)(Y (j)

k2
− Y (j′)

k2
) > 0

)
− P

(
(Y (j)

k1
− Y (j′)

k1
)(Y (j)

k2
− Y (j′)

k2
) < 0

)]
.

The result follows by the independence between (Y (j)
k1

− Y (j′)
k1

)
and (Y (j)

k2
− Y (j′)

k2
). ■

5. Specific choices of expert functions

So far, we have considered a class of LRMoE without specifying
the functional form of the expert function. In applications, it is
necessary to choose an expert function prior to the model fitting
process, so we discuss some of the possible choices of expert
functions throughout this section.

While the proposed LRMoE possesses several important desir-
able properties, we should be aware of its shortcoming discussed
in Section 3.4 that not all expert functions make the LRMoE
‘‘fully flexible’’. Therefore, it is crucial to study various choices of
expert functions. In particular, it is desirable that the denseness
condition (Statement 3 of Proposition 3.1) is fulfilled, ensuring
the versatility of the corresponding LRMoE. We first provide the
following proposition, which will facilitate the checking of the
denseness condition.

Proposition 5.1. If for every k = 1, . . . , K and q ∈ Qk, there
exists a sequence of parameters {ν

(n)
q }n=1,2,... such that E(Y (n)

k ) → q
and Var(Y (n)

k ) → 0 as n → ∞, where Y (n)
k is a frequency (or

severity) random variable with cdf Fk(yk; ν
(n)
q ) and Qk is defined in

Proposition 3.1, then Statement 3 of Proposition 3.1 holds.

Proof. For every k = 1, . . . , K and q ∈ Qk, we have

E
[
(Y (n)

k − q)2
]

= Var
[
Y (n)
k

]
+

(
E
[
Y (n)
k − q

])2
→ 0.

Therefore, Y (n)
k converges to q in the L2-norm. From basic

probability theory, this implies that Y (n)
k converges to q in

distribution. ■

Corollary 5.1. Let D(Y (n)
k ) = Var(Y (n)

k )/E(Y (n)
k ) and CV(Y (n)

k ) =

SD(Y (n)
k )/E(Y (n)

k ) be the dispersion ratio and CV of Y (n)
k respectively.

If for every k = 1, . . . , K and q ∈ Qk, there exists a sequence of
parameters {ν

(n)
q }n=1,2,... such that E(Y (n)

k ) → q and D(Y (n)
k ) → 0

(or CV(Y (n)
k ) → 0) as n → ∞, then Statement 3 of Proposition 3.1

holds.

Corollary 5.1 suggests that expert functions that can capture
any highly under-dispersed distributions will satisfy the dense-
ness condition. Although the reverse of Corollary 5.1 is not always
true (i.e. it is still theoretically possible to construct a series of
over-dispersed distributions converging to degeneracy), in prac-
tice most commonly used expert functions not satisfying the
condition in Corollary 5.1 fail to fulfill the denseness condition.

Several choices of expert functions (for both frequency/severity
distributions) are discussed in the following subsections. For no-
tational convenience, we use Yk as a random variable following an
expert function (instead of the LRMoE) in the following examples.
Also, we assume that the same class of expert functions fk are
used across marginals, i.e., if f1 is a Gamma expert function, then
f2, . . . , fk are all Gamma expert functions. One can easily extend
the results by allowing for different classes of expert functions
across marginals.

5.1. Frequency distributions

For ratemaking purpose, it is legitimate that only the aggregate
claim amounts (severities) for individual policyholders are mod-
eled, because these represent directly the amount to be paid by
the insurers. However, it is still desirable for insurance companies
to also keep track on the claim frequencies because this can help
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the insurers to fulfill regulatory requirements and to get more
insights on the claim characteristics that are useful in decision-
making process. Details about the arguments for modeling claim
frequencies can be found in Frees et al. (2016).

In frequency modeling, since over-dispersed data are more
common in practice, the most used frequency models are as-
sociated with over-dispersed distributions and are not designed
to cater for under-dispersions. Therefore, such frequency expert
functions do not fulfill the denseness condition, raising a chal-
lenge for us to identify expert functions that make the LRMoE
‘‘fully flexible’’.

5.1.1. The (a, b, 0) and (a, b, 1) classes of distributions
The (a, b, 0) class of distributions is a class of frequency mod-

els commonly used in actuarial practice, because it contains sev-
eral popular frequency models (such as Poisson and Negative
Binomial distributions) and has the following simple recursive
relationships on the pmf py := P(Yk = y):

py
py−1

= a +
b
y
, y = 1, 2, 3, . . . ,

where a and b are constants and
∑

∞

y=0 py = 1. It can be shown
that only Poisson, Negative Binomial and Binomial distributions
satisfy the above (a, b, 0) relationship. Since Binomial distribution
always has a finite support, which does not fit into our Assump-
tion 2.1 for frequency distributions, it is not within the scope of
this paper.

Negative binomial (NB) distribution is an (a, b, 0) class model
with a = β/(1 + β) and b = (r − 1)β/(1 + β), where r > 0 and
β > 0 are the parameters of the NB distribution with E(Yk) = rβ
and Var(Yk) = rβ(1 + β). Since the dispersion ratio D(Yk) = 1 +

β > 1, NB is suitable to model over-dispersed data. In the context
of general insurance, such model can explain the unobserved
heterogeneity of the claim behavior among policyholders because
it can be expressed as a mixed Poisson distribution. Its pmf is
given by

fk(y; r, β) := py =

(
y + r − 1

y

)(
1

1 + β

)r (
β

1 + β

)y

;

y = 0, 1, . . . , r > 0 and β > 0.
(21)

Since the dispersion ratio of NB distribution is bounded below
by 1, it is not a model that captures data under-dispersion. To
demonstrate that the denseness condition is not satisfied, we first
show that
py+1/py
py/py−1

=
y(y + r)

(y + 1)(y + r − 1)
≥

1
2

(22)

for y ≥ 1. We now assume that py ≥ 1/2, then we have

py+1/py
py/py−1

≤
(1 − py − py−1)py−1

p2y
≤ 4

(
1
2

− py−1

)
py−1 ≤

1
4
,

y = 1, 2, . . . ,

which contradicts Eq. (22). Therefore, py is bounded above by 1/2
for any parameter settings (for y = 1, 2, . . .) and the denseness
condition fails.

Note that other (a, b, 0) class distributions like Poisson, Ge-
ometric and Pascal distributions are special or limiting cases of
Negative Binomial distribution. From the result above, we can
easily show that denseness condition also fails for such classes
of expert functions.

In practice, it is common that most policyholders never file
any claims, so the probability of zero claims is very large. This
motivates extending the (a, b, 0) class of distributions to the
(a, b, 1) class so that excess zeros can be captured. Under the
(a, b, 1) class, Eq. (21) only holds for y = 2, 3, . . . and p0 can

be freely adjusted. Note that the (a, b, 1) class contains much
richer types of distributions, including any zero-modified forms
of the (a, b, 0) class distributions, extended truncated NB (ETNB)
and logarithmic distributions. Using similar arguments as for the
(a, b, 0) class distributions, we can easily show that they still do
not satisfy the denseness condition.

With simple closed-form expressions, the usage of the afore-
mentioned class of models as the expert functions allows easy im-
plementation and transparent interpretation. On the other hand,
if our main goal is to achieve ‘full flexibility’’ in frequency model-
ing using the LRMoE framework, we may need to pursue alterna-
tive less popular classes of expert functions, which are presented
in the following subsections.

5.1.2. Conway–Maxwell–Poisson (CMP) distribution: Yk ∼ CMP
(λ, ν)

To allow for more flexible frequency modeling, Conway and
Maxwell (1962) propose Conway–Maxwell–Poisson (CMP) distri-
bution, an extension to Poisson distribution, to cater for both
over-dispersion and under-dispersion. Its pmf is

fk(y; λ, ν) =
λy

(y!)ν
1

Z(λ, ν)
, Z(λ, ν) =

∞∑
j=0

λj

(j!)ν
;

y = 0, 1, . . . , λ > 0 and ν > 0.

Note that ν is called the dispersion parameter. For ν > 1,
ν = 1 and ν < 1, the model exhibits under-, equil- and over-
dispersion respectively. To check the denseness condition, we
choose a sequence of parameters λ(n)

= (q + 0.5)n and ν(n)
= n

for each q = 0, 1, . . .. Then, we have

fk(q; λ(n), ν(n)) =

⎛⎝ ∞∑
j=0

(q + 0.5)nj/(j!)n

(q + 0.5)nq/(q!)n

⎞⎠−1

=

⎛⎝ ∞∑
j=0

(
(q + 0.5)(j−q)q!

j!

)n
⎞⎠−1

,

lim
n→∞

fk(q; λ(n), ν(n)) =

⎛⎝ ∞∑
j=0

lim
n→∞

(
(q + 0.5)(j−q)q!

j!

)n
⎞⎠−1

=

⎛⎝ ∞∑
j=0

1{j = q}

⎞⎠−1

= 1.

(23)

Note that the second equality of Eq. (23) arises from the fact
that (q+0.5)(j−q)q!/j! < 1 when j ̸= q and = 1 when j = q. Hence,
denseness condition is satisfied for CMP expert functions. Despite
this, CMP has some undesirable characteristics that hinder its ap-
plications to claim frequency modeling. There exists no physical
interpretations for CMP. Also, The normalizing constant Z(λ, ν) of
the pmf consists of a summation with infinite terms, causing high
computational costs for model calibrations, especially when we
consider the LRMoE with CMP expert functions. These motivate
us to consider the following classes of frequency expert functions,
which are constructed based on a transformation of severity
distributions.

5.1.3. Renewal count model
Renewal Count Model, which can potentially capture both

under- and over-dispersions, is introduced by Winkelmann
(1995). The frequency distribution is modeled through the wait-
ing times {τs; s ∈ N} between the (s − 1)th and the sth event.
Also, let νs =

∑s
s′=1 τs′ be the time of occurrence of the sth event.

Then, the number of events occurring up to time T is given by
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NT = sups∈N{s; νs ≤ T }. We assume that {τs}s=1,2,... iid following
a severity distribution with pdf gτ (t; θ), where θ is the parameter.
Without much loss of generality, we assume T = 1. Then, the
corresponding Renewal Count expert function is written as

fk(y; θ) = P(νy ≤ 1, νy+1 > 1; θ)
= P(νy ≤ 1; θ) − P(νy+1 ≤ 1; θ)

= gτ∗y (1; θ) − gτ∗(y+1) (1; θ); y = 0, 1, 2, . . . , (24)

where gτ∗y is the pdf of the y-fold convolution of τs. Renewal
Count Model has a physical interpretation in general insurance,
when we consider claims as an arrival process but we only
observe the total number of claims within a time period for each
policyholder. To check the denseness condition, the following
theorem is introduced.

Theorem 5.1. For Renewal Count Model, if gτ satisfies the dense-
ness condition (i.e. for all q > 0, there exists a sequence of parame-
ters {θ(n)

}n=1,2,... such that τ (n) D
−→ q, where τ (n) has pdf gτ (t; θ(n))),

then the corresponding Renewal Count expert functions also satisfy
the denseness condition.

Proof. For any q ∈ {0, 1, . . . , }, choose θ(n) such that τ (n) D
−→

1/(q+0.5). Then, ν(n)
q :=

∑q
s′=1 τ

(n)
s′

D
−→ q/(q+0.5) < 1 and ν

(n)
q+1 :=∑q+1

s′=1 τ
(n)
s′

D
−→ (q+1)/(q+0.5) > 1, where τ

(n)
s′ is an iid copy of τ (n).

By the definition of convergence in distribution, we have P(νq ≤

1; θ(n)) → 1 and P(νq+1 ≤ 1; θ(n)) → 0 as n → ∞. From Eq. (24),
we have fk(q; θ(n))

n→∞
−−−→ 1, so the result follows. ■

From Theorem 5.1 and as shown by the following subsection
(Section 5.2) that many severity expert functions indeed satisfy
the denseness condition, we can see that many Renewal Count
Models, such as Gamma Count Model and Weibull Count Model,
satisfy the denseness condition. Among these models, we find
that Erlang Count Model is desirable in terms of mathematical
tractability. It has a closed-form expression for the pmf:

fk(y; θ) = e−β

m−1∑
b=0

βmy+b

(my + b)!
, y = 0, 1, 2, . . . , (25)

where θ = (m, β), m ∈ {1, 2, . . .} is the shape parameter and β >

0 is the rate parameter. The applications of LRMoE with Erlang
Count expert function to multivariate insurance claim frequency
regression will be discussed in the subsequent paper (Fung et al.,
2019b).

5.1.4. Discretized severity model
Another approach to transform a severity distribution to a

frequency distribution is to discretize a severity random variable.
Let Ỹk be the severity random variable with density gk(y; θ),
where θ is the parameter. Denote Yk as the discretized version of
Ỹk, i.e. Yk = ⌊Ỹk⌋, where ⌊x⌋ is the largest integer smaller than or
equal to x. Then, the Discretized Severity expert function is given
by

fk(y; θ) = Gk(y + 1; θ) − Gk(y; θ); y = 0, 1, 2, . . . , (26)

where Gk is the cdf of Ỹk. To check the denseness condition for
such frequency expert functions, we have the following theorem:

Theorem 5.2. For Discretized Severity Model, if gk satisfies the
denseness condition (see the definition of denseness condition in
Theorem 5.1), then the corresponding Discretized Severity expert
functions also satisfy the denseness condition.

Proof. For any q ∈ {0, 1, . . . , }, choose θ(n) such that Ỹ (n)
k

D
−→

(q + 0.5), where Ỹ (n)
k has pdf gk(y, θ(n)). By the definition of

convergence in distribution, we have Gk(q + 1; θ(n)) → 1 and
Gk(q; θ(n)) → 0 as n → ∞. From Eq. (26), fk(q; θ(n))

n→∞
−−−→ 1,

so the result follows. ■

From Theorem 5.2 and the following subsection, we can see
that Discrete Gamma Model, Discrete Weibull Model etc. satisfy
the denseness condition. Many of them have closed-form pmf,
making them desirable in terms of mathematical tractability. One
shortcoming of Discretized Severity Model is that they do not
have a good interpretation in the context of general insurance.
Instead, such models are more meaningful in survival analysis,
especially when the lifetime of an individual is measured and
recorded only in a discrete (e.g. monthly) basis (Chakraborty and
Chakravarty, 2012).

5.2. Severity distributions

In the following examples, we will show that unlike frequency
expert functions, a wide range of commonly used severity expert
functions satisfy the denseness condition. In other words, the
denseness condition is less restrictive in the context of severity
regression.

5.2.1. Gamma distribution: Yk ∼ G(m, θ )
Gamma distribution has long been popular in modeling light-

to-medium-tailed insurance losses. Its density function with
shape parameter m and scale parameter θ is given by:

fk(y;m, θ ) =
1

Γ (m)θm ym−1e−y/θ
; y > 0,m > 0 and θ > 0,

where Γ (z) =
∫

∞

0 uz−1e−udu is a Gamma function. The moments
are given by E(Yk) = mθ and Var(Yk) = mθ2. Therefore, Gamma
distribution covers a full range of dispersion ratios D(Yk) = θ . Let
Y (n)
k ∼ G(m(n), θ (n)). For each q > 0, set the parameter sequence

m(n)
= nq and θ (n)

= 1/n. Then, we have E(Y (n)
k ) = q for all n and

also Var(Y (n)
k ) → 0. From Proposition 5.1, denseness condition of

LRMoE holds for Gamma expert functions.

Remark 5.1. Because of the analytical tractability of the class of
Erlang-based distributions, which corresponds to Gamma distri-
bution with the shape parameter m being an integer, Lee and Lin
(2012) proposed multivariate Erlang mixture models as a suitable
candidate to model correlated insurance losses. In such model, it
is further assumed that the shape parameter θ is constant across
all marginals and mixture components. By Theorem 2.1 of Lee and
Lin (2012), Proposition 3.1 and Theorem 3.3, denseness property
for the corresponding class of LRMoE holds.

5.2.2. Weibull Distribution: Yk ∼ W (m, θ )
Weibull distribution allows for a more flexible tail model-

ing than Gamma distribution. Its density function with shape
parameter m and scale parameter θ is given by

fk(y;m, θ ) =
m
θ

( y
θ

)m−1
e−(y/θ )m

; y > 0,m > 0 and θ > 0.

If m > 1, Weibull distribution will have a lighter tail than
Gamma distribution, and vice versa. The moments are given
by E(Yk) = θΓ (1 + 1/m) and Var(Yk) = θ2 [Γ (1 + 2/m)−
(Γ (1 + 1/m))2

]
. By choosing a sequence of parameters m(n)

= n
and θ (n)

= q for each q > 0, it is easy to see that Weibull expert
functions satisfy the denseness condition.
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5.2.3. Log-normal distribution: Yk ∼ LN(µ, σ 2)
Log-normal distribution is suitable in modeling heavier-tailed

losses. Its density with mean parameter µ and variance parame-
ter σ 2 is

fk(y; µ, σ 2) =
1

σ
√
2πy

e(log y−µ)2/2σ2
;

y > 0, µ ∈ R and σ 2 > 0.

The moments are E(Yk) = exp{µ + σ 2/2} and Var(Yk) =

(exp{σ 2
} − 1) exp{2µ + σ 2

}. Choosing a sequence of parameters
µ(n)

= log q and σ 2(n)
= 1/n for each q > 0, denseness condition

follows.

5.2.4. Inverse burr distribution: Yk ∼ IBurr(τ , θ, γ )
In modeling catastrophic losses, we need a distribution that

can cater for very heavy tails. Inverse Burr distribution is a po-
tential suitable candidate because it has a polynomial tail, which
aligns well with extreme value theory. Its pdf/cdf with shape
parameters τ and γ and scale parameter θ are

fk(y; τ , θ, γ ) =
τγ (y/θ )τγ

y(1 + (y/θ )γ )τ+1 ;

Fk(y; τ , θ, γ ) =

[
1 +

( y
θ

)−γ
]−τ

; y, τ , θ, γ > 0.

Note that E(Yk) = ∞ when 0 < γ < 1, meaning a possibly
for Inverse Burr LRMoE to capture infinite mean models. For
its denseness property, we check Fk directly with a sequence of
parameters τ (n)

= 1, θ (n)
= q and γ (n)

= n for each q. Then,
Fk(y; τ (n), θ (n), γ (n))

n→∞
−−−→ 1{y ≥ q} − 0.5 × 1{y = q}. Since y = q

is not a continuity point, denseness condition holds.

5.2.5. Exponential distribution: Yk ∼ Exp(λ)
Exponential distribution is a simple, mathematically tractable

and interpretable model for insurance loss modeling. However,
this one-parameter expert function is not flexible enough in
terms of dispersion modeling. With the density function fk(y; λ) =

λ exp{−λy}, the CV is always constant CV(Yk) = 1. Hence,
the condition in Corollary 5.1 fails. This motivates us to prove
that denseness condition is violated under exponential expert
function. Standard calculus shows that supλ>0 fk(y; λ) = e−1/y for
all y > 0, meaning that the density is bounded above by a finite
and continuous curve on y ∈ (0, ∞). Therefore, for a sufficiently
small interval Q ⊆ (0, ∞), P(Yk ∈ Q ) < 0.5 for any λ, showing
that denseness condition is not satisfied.

5.2.6. Type II Pareto distribution: Yk ∼ Pareto(α, θ )
Similar to Inverse Burr distribution, Pareto distribution also

consists of polynomial tail. Therefore, it is an alternative candi-
date model for extreme tail risks. Its density with shape param-
eter α and scale parameter θ is

fk(y; α, θ ) =
αθα

(y + θ )α+1 ; y > 0, α > 0 and θ > 0.

Also, we have E(Yk) = θ/(α − 1) for α > 1 and Var(Yk) =

θ2α/(α − 1)2(α − 2) for α > 2. Assuming finite moments, the
CV is CV(Yk) = α/(α − 2), which is bounded below by 1. Failing
to fulfill the condition in Corollary 5.1, Pareto expert function is
not flexible enough to cater for under-dispersions. For denseness
condition, since fk is a decreasing function of y regardless of the
parameters, we have P(Yk ∈ (0, 1)) ≥ P(Yk ∈ (1, 2)) and hence
P(Yk ∈ (1, 2)) ≤ 0.5 for all α, θ > 0. Therefore, Pareto experts fail
to fulfill denseness condition.

6. Concluding remarks

In this paper, we propose a class of logit-weighted reduced
mixture of experts (LRMoE) models for multivariate insurance

claim frequency or severity regression. It acquires a natural inter-
pretation that the classification of latent homogeneous subgroups
is affected by the policyholder’s risk profile. We also formulate
the denseness property with regard to regression and demon-
strate that LRMoE may be interpreted as a ‘‘fully flexible’’ model
under some appropriate choices of the expert functions. With
various marginalization properties and with simplified form of
expressions for moments and common measures of association,
LRMoE is mathematically and computationally tractable.

In Fung et al. (2019b), we consider how the proposed model
can fit a real insurance dataset consisting of multivariate claim
frequencies for each policyholder with covariates. As discussed
in Section 5.1.3, the Erlang Count distribution is chosen as the
expert function for LRMoE because it satisfies the denseness
condition and it is mathematically tractable. An Expectation–
Conditional Maximization (ECM) algorithm is developed to fit the
proposed model to the dataset so that model parameters can
be estimated. Through several simulation studies, the efficiency
of the proposed algorithm and the flexibility of the proposed
model are verified. The proposed model also fits very well a real
automobile insurance dataset, which has rather complicated data
characteristics.

With respect to insurance severity modeling, it is common
in practice to see excessive zeros. In this case, the LRMoE can
be extended to incorporate zero-inflated components for the
severity expert functions, so that the resulting expert function is
a combination of discrete and continuous distributions. Having
proved the denseness properties for both frequency and severity
models under the proposed LRMoE, similar denseness properties
still hold for such an extension.
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Appendix A. Relationship between pointwise and uniform con-
vergence

This section proves the assertion stated in Remark 3.1 that
weakly convergence implies uniform convergence for frequency
or severity distributions under Assumption 2.1 or 2.2. We first
recall from Lemma 3.2 of Rao (1962) that weakly convergence
implies uniform convergence for any distributions with continu-
ous cdf. Under Assumption 2.2, such a result holds naturally for
severity distributions. For frequency distributions, we first define
(multivariate frequency) random vectors Y n ∼ Gn and Y ∼ F with
Gn

D
−→ F , where Gn and F are defined in accordance to Remark 3.1.

We now introduce perturbed random vectors Ỹ n := Y n−Un ∼ G̃n
and Ỹ := Y − U ∼ F̃ where Un and U iid follow Uniform
distribution on [0, 1]K . Note that Ỹ n and Ỹ are continuous random
vectors. Basic probability theory yields G̃n

D
−→ F̃ . We now have

sup
y∈RK

|Gn(y) − F (y)| = sup
y∈NK

|Gn(y) − F (y)|

= sup
y∈NK

|G̃n(y) − F̃ (y)|

≤ sup
y∈RK

|G̃n(y) − F̃ (y)| → 0 as n → ∞,

where N = {0, 1, . . .} corresponds to a set of natural numbers and
the convergence resulted from the uniform convergence property
by Lemma 3.2 of Rao (1962). Therefore, weakly convergence
implies uniform convergence for frequency distributions as well.
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Appendix B. Proof of Lemma 3.1

Denote h(l,p)(xp) = λ
(l,p)
0 + λ

(l,p)
p xp for l = 1, 2, . . . , L and

p = 1, 2, . . . , P . For each p, choose λ
(l,p)
0 and λ

(l,p)
p by the following

scheme:

1. Arbitrarily choose λ
(1,p)
0 and λ

(1,p)
p .

2. Choose λ
(l,p)
p > λ

(l−1,p)
p for l = 2, 3, . . . , L.

3. Choose λ
(l,p)
0 satisfying λ

(l−1,p)
0 + λ

(l−1,p)
p (ml−1+ml

2 ) = λ
(l,p)
0 +

λ
(l,p)
p (ml−1+ml

2 ) for l = 2, 3, . . . , L.

Under the scheme above, we have

h(l,p)(xp) − h(l−1,p)(xp)

=

(
λ
(l,p)
0 + λ(l,p)

p xp
)

−

(
λ
(l−1,p)
0 + λ(l−1,p)

p xp
)

= λ
(l,p)
0 − λ

(l−1,p)
0 +

(
λ(l,p)
p − λ(l−1,p)

p

)
(
ml−1 + ml

2
)

+
(
λ(l,p)
p − λ(l−1,p)

p

)
(xp −

ml−1 + ml

2
)

=
(
λ(l,p)
p − λ(l−1,p)

p

)
(xp −

ml−1 + ml

2
),

which is greater than zero if xp ≥ ml or equivalently l ≤

φ(xp), and is small than zero if l ≥ φ(xp) + 1. As a function
of l, h(l,p)(xp) increases as l until l reaches φ(xp) and decreases
afterwards. Hence, we have argmaxl∈{1,...,L}{h(l,p)(xp)} = φ(xp) for
p = 1, 2, . . . , P . Now, we construct h(l)(x) =

∑P
p′=1 h

(l′p,p
′)(x′

p) =

(
∑P

p′=1 λ
(lp′ ,p

′)
0 )+λ

(l1,1)
1 x1+· · ·+λ

(lP ,P)
P xP . Comparing with the form

h(l)(x) = λ
(l)
0 +λ

(l)
1 x1+· · ·+λ

(l)
P xP stated in the lemma, we can now

choose λ
(l)
0 =

∑P
p′=1 λ

(lp′ ,p
′)

0 and λ
(l)
p = λ

(lp,p)
p for p = 1, 2, . . . , P .

Finally, we complete the proof by considering

argmaxl∈{1,...,L}P {h
(l)(x)}

= argmaxl∈{1,...,L}P {

P∑
p=1

h(lp,p)(xp)}

= (argmaxl∈{1,...,L}{h
(l,1)(x1)}, . . . , argmaxl∈{1,...,L}{h

(l,P)(xP )})T

= (φ(x1), . . . , φ(xP ))T ,

where the second equality follows because the each term of the
summation

∑P
p=1 h

(lp,p)(xp) depends only on individual compo-
nent lp instead of l. Maximizing this summation with respect to
l is equivalent to maximizing each individual term h(lp,p)(xp) with
respect to lp.

Appendix C. Proof of Theorem 3.1

Given a fixed parameters setting in the GMoE, set θ(j,l),k =

θ∗

jk(ml; β∗

jk), where ml is defined by ml = (ml1 , . . . ,mlP )
T and

l ∈ {1, . . . , L}P . Note that while in Eq. (1) θ∗

jk is defined on
a (P + 1)-dimensional vector x, we here have defined it on a
P-dimensional vector ml by making a slight abuse of notation
(writing θ∗

jk((1,m
T
l )

T
; β∗

jk) as θ∗

jk(ml; β∗

jk)) for notational conve-
nience. Consider the following sequence of g × LP -component
LRMoE for n = 1, 2, . . .:

H (n)(y; x) := H(y; x, α(n),Θ, g)

=

g∑
j=1

∑
l∈{1,...,L}P

πj,l(x; α(n))
K∏

k=1

Fk(yk; θ(j,l),k),
(27)

where πj,l(x; α(n)) = exp{α
(n)T
(j,l) x}/

∑g
j′=1

∑
l′∈1,...,LP exp{α

(n)T
(j′,l′)x}.

Now, choose α
(n)
(j,l) = nλ(l)

+ logπ∗

j (ml; α∗)(1 0 . . . 0)T , where
λ(l)

:= (λ(l)
0 , . . . , λ

(l)
P )T is chosen based on the scheme proposed

in the proof of Lemma 3.1 and π∗

j is the GMoE gating function
defined in Eq. (1) (note that for notational convenience we write
π∗

j ((1,m
T
l )

T
; α∗) as π∗

j (ml; α∗) as well). Then we have

πj,l(x; α(n))

= exp{α
(n)T
(j,l) x}/

g∑
j′=1

∑
l′∈{1,...,L}P

exp{α
(n)T
(j′,l′)x}

= π∗

j (ml; α∗)
exp{nλ(l)Tx}∑

l′∈{1,...,L}P exp{nλ(l′)Tx}
→ π∗

j (ml; α∗)1{l = φ(x)} = π∗

j (ml; α∗)1{x = ml} as n → ∞,

where the convergence is directly followed by Lemma 3.2 since
λ(l)Tx above is equivalent to h(l)(x) in Lemma 3.2. Finally, we have

lim
n→∞

H (n)(y; x)

=

g∑
j=1

∑
l∈{1,...,L}P

lim
n→∞

πj,l(x; α(n))
K∏

k=1

Fk(yk; θ(j,l),k)

=

g∑
j=1

∑
l∈{1,...,L}P

π∗

j (ml; α∗)1{x = ml}

K∏
k=1

Fk(yk; θ(j,l),k)

=

g∑
j=1

π∗

j (x; α∗)
K∏

k=1

Fk(yk; θ∗

jk(x; β∗

jk)).

Appendix D. Proof of Theorem 3.2

Partition [mmin,mmax] into L identical intervals with ∆x =

(mmax − mmin)/L. Define mlp = mmin + (lp − 1/2)∆x (lp =

1, . . . , L) as the midpoint of each small interval and a sequence
of LRMoE H (n)(y; x) expressed in the same way as Eq. (27), with
θ(j,l),k = θ∗

jk(ml; β∗

jk), and πj,l(x; α(n)) := π∗

j (ml; α∗)γ (n)
l,x , where

γ
(n)
l,x = exp{nλ(l)Tx}/

∑
l′∈{1,...,L}P exp{nλ(l′)Tx} and ml is defined at

the same way as the proof of Theorem 3.1 (Appendix C).
We choose λ(l) using the scheme presented in the proof of

Lemma 3.1 with λ
(l,p)
p = l and λ

(l,p)
0 = −l(mmin − ∆x/2) −

l2∆x/2. Define D(x) = {l; l ∈ {1, . . . , L}P , |mlp − xp| ≤ ∆x ∀p ∈

{1, . . . , P}} and D′(x) = {l; l ∈ {1, . . . , L}P , ∃p ∈ {1, . . . , P} s.t.
|mlp − xp| > ∆x}. We first aim to find λ(l′)Tx−λ(l)Tx if: we choose
l ′ such that xp−ml′p := δp and |δp| ≤ ∆x/2 for every p = 1, . . . , P;
and for l, l ∈ D′(x). Note that l ′ always exist. We have

h(l′p,p)(xp) = −
l′2p
2

∆x + l′p(l
′

p∆x + δp);

h(lp,p)(xp) = −
l2p
2

∆x + lp(l′p∆x + δp);

h∗

p := h(l′p,p)(xp) − h(lp,p)(xp) =
1
2
(l′p − lp)2∆x + (l′p − lp)δp. (28)

We evaluate h∗
p in two cases. In the first case, |mlp − xp| ≤ ∆x,

then |l′p − lp| = 0 or 1. In both cases, h∗
p ≥ 0. In the second case,

|mlp − xp| > ∆x, then |l′p − lp| ≥ 1. If |l′p − lp| ≥ 2, then h∗
p ≥ ∆x.

Otherwise if |l′p − lp| = 1, sign(l′p − lp) = sign(δp) must hold and
so h∗

p ≥ ∆x/2. Since l ∈ D′(x), there must exist at least one p such
that |mlp − xp| > ∆x. Therefore, λ(l′)Tx−λ(l)Tx = h(l′)(x)−h(l)(x) =∑P

p=1 h
∗
p ≥ ∆x/2. Note that such a bound does not depend on x.

Using the above result, for l ∈ D′(x), we have
γ

(n)
l,x ≤ exp{−n(λ(l′)Tx − λ(l)Tx)} ≤ exp{−n∆x/2}. Reformulating

mathematically, ∀ϵ > 0, whenever n is sufficiently large, γ
(n)
l,x <

ϵ/LP for every l ∈ D′(x) and x ∈ {1} × [mmin,mmax]
P . Finally, we

have

|H (n)(y; x) − H∗(y; x)|
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≤ |

g∑
j=1

∑
l∈D(x)

π∗

j (ml; α∗)γ (n)
l,x

K∏
k=1

Fk(yk; θ∗

jk(ml; β∗

jk)) − H∗(y; x)|

+

g∑
j=1

∑
l∈D′(x)

π∗

j (ml; α∗)γ (n)
l,x

K∏
k=1

Fk(yk; θ∗

jk(ml; β∗

jk))

≤ |

g∑
j=1

∑
l∈D(x)

π∗

j (ml; α∗)γ (n)
l,x

K∏
k=1

Fk(yk; θ∗

jk(ml; β∗

jk))

−

g∑
j=1

∑
l∈D(x)

π∗

j (x; α∗)γ (n)
l,x

K∏
k=1

Fk(yk; θ∗

jk(x; β∗

jk))|

+ |H∗(y; x)
∑
l∈D(x)

γ
(n)
l,x − H∗(y; x)| + ϵ

≤ κ1Pg∆x + κ2(y)KP∆x + 2ϵ.

The last inequality holds because of the Lipschitz-continuity
properties of Fk and π∗

j . Note that κ2 depends on y, but is finite
for every y. Also, such upper bound of error does not depend on
x. Hence, choosing ∆x ↓ 0, ϵ ↓ 0 and (for each chosen ∆x and
ϵ) sufficiently large n, the probability distribution of the LRMoE
converges to that of the GMoE uniformly on x.

Appendix E. Proof of Proposition 3.1

We only prove the univariate case (2 ↔ 3) for conciseness
and the arguments can be extended to the multivariate case. To
simplify the notations, we drop the subscript k throughout the
whole proof. For example, Qk is written as Q, fk is written as f
and θk is written as θ. We first consider the discrete (frequency)
distributions.

3 → 2: ∀ϵ > 0, ∃Q0
⊆ Q with finite support such

that
∑

q∈Q0 ξ (q) ≥ 1 − ϵ, where ξ (·) represents the probability
masses of any univariate discrete distribution with support Q. We
approximate the density ξ by the finite mixture h(y; π, θ(n), g) :=∑

q∈Q0∪q∗ πqf (y; θ(n)
q ) with (∥Q0

∥+1) components. Choosing πq =

ξ (q) for q ∈ Q0, πq∗ = 1 −
∑

q∈Q0 ξ (q) where q∗ /∈ Q0 (note that
we can arbitrarily choose q∗ as well as it falls outside the set Q0)
and suitable parameters θ(n)

q such that f (y; θ(n)
q )

n→∞
−−−→ 1{y = q},

we have

lim
n→∞

|ξ (y) − h(y; π, θ(n), g)|

= lim
n→∞

|ξ (y) −

∑
q∈Q0∪q∗

πqf (y; θ(n)
q )|

= |ξ (y) −

∑
q∈Q0

ξ (q)1{y = q} − (1 −

∑
q∈Q0

ξ (q))1{y = q∗
}|

≤ ξ (y)(1 − 1{y ∈ Q0
}) + (1 −

∑
q∈Q0

ξ (q)) ≤ 2ϵ.

The result follows since ϵ is arbitrary.
2 → 3: Assume that Statement 3 is false. Then, ∃δ > 0 and

q ∈ Q such that for every parameters setting θ, f (q; θ) < 1 − δ.
Since h(q; π, θ, g) < 1−δ, h cannot approximate ξ (y) = 1{y = q}
arbitrarily accurately.

For the continuous (severity) case, we have the following
3 → 2: Denote Ξ (·) as a continuous univariate cdf. We

want to approximate Ξ (·) by the finite mixture distribution
H(y; π, θ(n), g) :=

∑g
j=1 πjF (y; θ

(n)
j ) with g = (ϵ−1

− 1) compo-
nents, where ϵ > 0 is chosen as an arbitrarily small quantity. We
choose πj = ϵ for j = 1, . . . , g − 1 and πg = 2ϵ. We further
select suitable parameters θ

(n)
j for every j = 1, . . . , g such that

F (·; θ
(n)
j )

D
−→ Ξ−1(jϵ), where Ξ−1(a) = inf{y : Ξ (y) ≥ a}. Then,

we have

lim
n→∞

|Ξ (y) − H(y; π, θ(n), g)|

= lim
n→∞

|Ξ (y) −

g∑
j=1

πjF (y; θ
(n)
j )|

= |Ξ (y) −

g∑
j=1

ϵ1{y ≥ Ξ−1(jϵ)} +

g∑
j=1

cjϵ1{y = Ξ−1(jϵ)}

− ϵ1{y ≥ Ξ−1(1 − ϵ)}|

≤ |Ξ (y) −

∑
j:Ξ (y)≥jϵ

ϵ| + ϵ + ϵ = |Ξ (y) − ϵ

⌊
Ξ (y)

ϵ

⌋
| + 2ϵ ≤ 3ϵ,

where ⌊·⌋ represents the floor function, the term cjϵ1{y =

Ξ−1(jϵ)} in the first equality is an adjustment term as F (y; θ
(n)
j ) →

1{y ≥ Ξ−1(jϵ)} may not hold true when y = Ξ−1(jϵ) (discon-
tinuity point), and cj is either zero or one. Choosing arbitrarily
large n and small ϵ, we are able to approximate Ξ (y) by the finite
mixture distribution H(y; π, θ(n), g), and hence the result follows.

2 → 3: Assume that Statement 3 is false. Then, ∃δ > 0,
ω > 0 and y ∈ Q such that for every parameters setting θ,
F (y+ω; θ)−F (y−ω; θ) < 1−δ. Then, choose Ξ (·) which satisfies
Ξ (y+ω)−Ξ (y−ω) = 1. If Statement 2 is true, then ∃π, θ(n) and
g (n) such that

∑g(n)
j=1 πjF (y+ω; θ(n)) → Ξ (y+ω) and

∑g(n)
j=1 πjF (y−

ω; θ(n)) → Ξ (y − ω) as n → ∞. Taking a difference, we have∑g(n)
j=1 πj(F (y+ω; θ(n))−F (y−ω; θ(n))) → Ξ (y+ω)−Ξ (y−ω) = 1.

However, the
∑g(n)

j=1 πj(F (y + ω; θ(n)) − F (y − ω; θ(n))) < 1 − δ

if Statement 3 is false, leading to a contradiction, so the result
follows.

Appendix F. Proof of Theorem 3.3

For the ‘‘only if’’ condition, if Statement 3 of Proposition 3.1
fails, then Proposition 3.1 states that the class of multivariate
finite mixture model with component functions Fk is not dense
in the space of multivariate frequency (or severity) distribu-
tions. Since the class of finite mixture models and the space of
multivariate distributions are special cases of G0(A) and G1(A)
respectively with A = {1} (or P = 1), the statement that G0(A) is
uniformly dense in G1(A) is disproved just by using this special
example.

For the ‘‘if’’ condition, we first consider frequency case. Parti-
tion [mmin,mmax] and define ml at the same way as the proof of
Theorem 3.1 (Appendix C). Denote g∗(y; x) as the density of G∗.
G∗(A) is tight implies that for all ϵ′ > 0, there exists a sequence
of integers s1, . . . , sU such that

∑
u={1,...,U}K g∗(su; x) ≥ 1 − ϵ′

∀x, where su = (su1 , . . . , suK )
T . u∗ is defined such that su∗ /∈

{s1, . . . , sU }
K . Also, define a (UK

+ 1) × LP -component LRMoE as
follows.

H (t,n)(y; x) =

∑
u∈{1,...,U}K∪u∗

∑
l∈{1,...,L}P

πu,l(x; α(n))
K∏

k=1

Fk(yk; θ
(t)
(u,l),k).

The problem is to approximate G∗(y; x) by H (t,n)(y; x). We can
choose suitable regression coefficients α(n) such that the expert
functions are in the form of πu,l(x; α(n)) = [g∗(su;ml)1{u ∈

{1, . . . ,U}
K
} + (1 −

∑
u′={1,...,U}K g∗(su′;ml))1{u = u∗

}]γ
(n)
l,x ,

where γ
(n)
l,x is defined at the same way as the proof in Theo-

rem 3.2 and u∗ /∈ {1, . . . ,U}
K . Also note that we have written

g∗(su; (1,mT
l )

T ) as g∗(su;ml) for notational convenience. Since
Statement 3 of Proposition 3.1 is satisfied, θ

(t)
(u,l),k can be chosen
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such that Fk(yk; θ
(t)
(u,l),k)

t→∞
−−−→ 1{yk ≥ suk}. Defining D(x) and D′(x)

at the same way and using similar approaches as the proof in
Theorem 3.2, we have for sufficiently large n:

lim
t→∞

|H (t,n)(y; x) − G∗(y; x)|

≤ |

∑
u∈{1,...,U}K

∑
l∈D(x)

g∗(su;ml)γ
(n)
l,x

K∏
k=1

1{yk ≥ suk} − G∗(y; x)|

+

∑
u∈{1,...,U}K

∑
l∈D′(x)

g∗(su;ml)γ
(n)
l,x

K∏
k=1

1{yk ≥ suk}

+

∑
l∈{1,...,L}P

(1 −

∑
u′={1,...,U}K

g∗(su′;ml))γ
(n)
l,x

K∏
k=1

1{yk ≥ su∗
k
}

≤ |

∑
l∈D(x)

min{y1,sU }∑
y′1=s1

· · ·

min{yK ,sU }∑
y′K=s1

g∗(y ′
;ml)γ

(n)
l,x − G∗(y; x)| + ϵ + ϵ′

≤ |

∑
l∈D(x)

G∗(y;ml)γ
(n)
l,x − G∗(y; x)| + ϵ + 2ϵ′

≤ |

∑
l∈D(x)

G∗(y; x)γ (n)
l,x − G∗(y; x)| + ϵ + κ2(y)P∆x + 2ϵ′

≤ 2ϵ + κ2(y)P∆x + 2ϵ′,

where the extra ϵ′ of the third inequality resulted from the
tightness property of G∗(y; x) and the extra κ2(y)P∆x of the
fourth inequality is based on the Lipschitz-continuity of G∗(y; x)
w.r.t. x. It suffices to show that H (t,n)(y; x) uniformly converges
to x as t → ∞. Write H (t,n)(y; x) =

∑
l∈D(x) a(t, l)γ

(n)
l,x , where

a(·, ·) is a function depending on t but not on x. Since 0 ≤

γ
(n)
l,x ≤ 1 and

∑
l∈D(x) γ

(n)
l,x ≤ 1, we have the upper error bound

|H (t,n)(y; x) − H (∞,n)(y; x)| ≤ supl∈D(x) |a(t, l) − a(∞, l)|. As D(x)
takes a finite support and the upper error bound does not depend
on x, the result follows.

We then consider the severity case. Partition [mmin,mmax] and
define any notations at the same way as frequency case. Tightness
of G∗(A) implies ∀ϵ′ > 0, ∃s0, sU such that
G∗([(sU , . . . , sU )T , (s0, . . . , s0)T ]; x) ≥ 1 − ϵ′ for all x. Here, for
two vectors a = (a1, . . . , aK )T , b = (b1, . . . , bK )T and a random
vector Y ∗ following cdf G∗, we define G∗([a, b]) := P(Y ∗

∈

[a, b]), where [a, b] = [a1, b1] × · · · × [aK , bK ]. Also, partition
[s0, sU ] into U identical intervals such that ∆s = (sU − s0)/U and
define su = s0 + u∆s for u = 1, . . . ,U . Further, u∗ is defined
such that su∗ /∈ {s1, . . . , sU }

K . Define the LRMoE and choose the
corresponding component weights:

H (t,n)(y; x) =

∑
u∈{1,...,U}K∪u∗

∑
l∈{1,...,L}P

πu,l(x; α(n))
K∏

k=1

Fk(yk; θ
(t)
(u,l),k),

πu,l(x; α(n))

=

[
G∗([su, su − ∆s1];ml)1{u ∈ {1, . . . ,U}

K
}

+
(
1 − G∗([(sU , . . . , sU )T , (s0, . . . , s0)T ];ml)

)
1{u = u∗

}

]
γ

(n)
l,x ,

where 1 is a K -dimensional column vector of ones. Also, choose
θ
(t)
(u,l),k such that Fk(yk; θ

(t)
(u,l),k)

D
−→ 1{yk ≥ suk} as t → ∞. For

sufficiently large n, we have

lim
∆s→0

lim
t→∞

|H (t,n)(y; x) − G∗(y; x)|

≤ lim
∆s→0

|

∑
u∈{1,...,U}K

∑
l∈D(x)

G∗([su, su − ∆s1];ml)γ
(n)
l,x

K∏
k=1

1{yk ≥ suk}

− G∗(y; x)|

+ lim
∆s→0

∑
u∈{1,...,U}K

∑
l∈D′(x)

G∗([su, su − ∆s1];ml)γ
(n)
l,x

K∏
k=1

1{yk ≥ suk}

+

∑
l∈{1,...,L}P

(
1 − G∗([(sU , . . . , sU )T , (s0, . . . , s0)T ];ml)

)
× γ

(n)
l,x

K∏
k=1

1{yk ≥ su∗
k
}

+ lim
∆s→0

K∑
k=1

∑
l∈D(x)

G∗

k([yk, yk − ∆s];ml)γ
(n)
l,x

≤ |

∑
l∈D(x)

G∗([(s0, . . . , s0)T , (min{y1, sU }, . . . ,min{yK , sU })T ];ml)

× γ
(n)
l,x − G∗(y; x)|+ϵ + ϵ′

≤ 2ϵ + κ2(y)P∆x + 2ϵ′,

where G∗

k is the kth marginal cdf of G∗. The last term of the first
inequality comes from the fact that Fk(yk; θ

(t)
(u,l),k) → 1{yk ≥ suk}

may not be true when yk = suk . Such term, however, will con-
verge to zero as ∆s → 0. The first term for the second inequality
results from Dominated Convergence Theorem. Moreover, it is
easy to see that H (t,n)(y; x) uniformly converges to x as ∆s → 0
and t → ∞ using the same technique as the frequency case, so
the result follows.
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