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ABSTRACT
Modeling multivariate time-series aggregate losses is an important actuar-
ial topic that is very challenging due to the fact that losses can be serially
dependent with heterogeneous dependence structures across loss types
and business lines. In this paper, we investigate a flexible class of mul-
tivariate Cox Hidden Markov Models for the joint arrival process of loss
events. Some of the nice properties possessed by this class of models,
such as closed-form expressions, thinning properties and model versatil-
ity are discussed in details. We provide the expectation-maximization (EM)
algorithm for efficient model calibration. Applying the proposed model to
an operational risk dataset, we demonstrate that themodel offers sufficient
flexibility to capture most characteristics of the observed loss frequencies.
By modeling the log-transformed loss severities through mixture of Erlang
distributions, we can model the aggregate losses. Finally, out-of-sample
testing shows that the proposed model is adequate to predict short-term
future operational risk losses.
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1. Introduction

Modeling multivariate time-series aggregate losses is an important actuarial topic that applies to var-
ious actuarial research areas such as claim reserving, credibility premium calculation and operational
risk management. Some of the challenges of modeling such losses are due to the heterogeneous inter-
unit and temporal dependence structures that exist in reality. This paper focusesmainly on amodeling
framework that is motivated by an operational risk application.

Modeling Operational Risk (OR) has been one of the major concerns for insurance and finan-
cial institutions in general. The OR constitutes a significant and growing portion of the total risks
(Ames et al. 2015), and the importance of modeling and managing OR has been highly recognized
by various actuarial organizations and researchers. A research paper from the Society of Actuaries
(SOA) (Samad-Khan et al. 2010) emphasizes the role of OR in catastrophic losses after some serious
operational failures occurred in major insurance companies during the 2008 global financial crisis.
Meanwhile, the Institute and Faculty of Actuaries (IFoA) (see e.g. Kelliher et al. 2017) identifies OR
as a ‘core Risk Management issue’ that covers all practice areas. Further, the modeling framework of
the OR has been investigated by several actuarial papers (see e.g. Buch-Kromann et al. 2007, Peters
et al. 2011).

The advanced measurement approach (AMA) proposed by Basel II Accord (BCBS 2004), that
allows financial institutions to develop their internal models, is widely regarded as a risk sensitive

CONTACT X. Sheldon Lin sheldon@utstat.utoronto.ca Department of Statistical Sciences, University of Toronto,
100 St George Street, Toronto, ON M5S 3G3, Canada

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/03461238.2019.1598482&domain=pdf&date_stamp=2019-08-28
mailto:sheldon@utstat.utoronto.ca


SCANDINAVIAN ACTUARIAL JOURNAL 687

approach to quantify and model OR, and facilitates accurate risk measurement (Lubbe & Sny-
man 2010, Leone et al. 2017). In particular for insurance companies, Solvency II encourages the usage
of internal models similar to those proposed under the AMA, for the calculation of the OR regulatory
required capital. Within the AMA framework, the most commonly used method is the loss distribu-
tion approach (LDA), also called the actuarial approach. Under LDA, financial institutions estimate
the probability distributions of loss frequencies and severities separately for each business line/ event
type combination (called unit of measure (UOM)), in order to obtain the aggregate loss distributions
at UOM level (Frachot et al. 2001). The aggregation across all UOMs will result to the aggregate loss
distribution at the top of the house (TOH) level.

Traditional LDA often implies perfectly positive correlations of losses among UOMs, which leads
to the overestimation of risk (Chernobai et al. 2008). Aue &Kalkbrener (2006) andWang et al. (2017)
for e.g. adopted the copula models to capture the dependence of loss frequencies among UOMs.
Badescu et al. (2015) proposed a multivariate mixed Poisson distribution to capture a wide range
of dependence structures. However, the above LDA models still neglect the time-series dependence
among the losses, which is less studied in the literature. Guegan & Hassani (2018) commented
that autocorrelations among losses are common and intuitive for some event types and proposed
a standard autoregressive and Gegenbauer process to model the serial correlations. Bardoscia & Bel-
lotti (2011) and Gara & Belkacem (2018) modeled OR in a dynamic approach applying clustering
models. For flexible dynamic modeling, Badescu et al. (2016) proposed a univariate marked Cox
process to capture a wide range of temporal dependence structures, with an application to insurance
claim reserving. Nonetheless, very few papers (e.g. Bardoscia & Bellotti 2011) attempted to address
both time series and inter-UOM dependence behavior for operational losses.

In this paper, we propose a multivariate Cox process for the joint arrival process of loss events,
which provides flexible serial and inter-UOM dependence structure among loss frequencies. Condi-
tioned on themultivariate intensity function, the event arrival processes for eachUOMare assumed to
be independent heterogeneous Poisson processes. The intensity function is assumed to be a stochas-
tic piecewise process generated from a hidden Markov model (HMM) with independent Erlang
state-dependent distributions.

The proposed model possesses several important desirable properties: Firstly, the model has a
natural interpretation. The underlying state in HMM can be viewed as a global environmental fac-
tor that simultaneously affects the event occurrence rates for all UOMs. The evolution of the state
is governed by a transitional probability matrix, which may explain the cluster behavior of the loss
arrival process. Secondly, the proposed model is highly flexible to capture the heterogeneities of var-
ious dependence structures. For the associated discretely observed process, the joint distribution of
the number of events at a specific time interval is a multivariate Pascal-HMM, which can capture a
broad range of inter-UOMdependence structures (Badescu et al. 2015). Further, the proposedmodel
can capture a wide range of serial dependence structures and the changes of inter-UOM correlations
over time. Thirdly, our proposed model is mathematically tractable. Closed-form expressions can be
obtained for the joint distributions and the forecast distributions of loss frequencies. It is also closed
under marginalization and under thinning. In many OR problems, a loss event is not observed if its
severity is below a certain threshold. With the thinning property, no special treatments are needed
to model the event observation processes. Also, model calibration can be easily achieved through an
EM algorithm with minimal computational burden. Fourthly, the class of multivariate Pascal-HMM
is identifiable under mild restrictions, making it a suitable candidate for statistical inference.

Because of its versatility, the proposed model can be applied to solve more generic actuarial prob-
lems, such as a stochastic claim reserving problem with dependent business lines. Note that Badescu
et al. (2016) tackles such an insurance problem with a single business line through a special choice of
our proposed model.

This paper is structured as follows. Section 2 defines and interprets the proposed model, while
Section 3 discusses its desirable properties. The model calibration procedures via an EM algorithm is
presented in Section 4. The application of the proposed model is first discussed in Section 5, which
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explains how the data characteristics of the real OR data motivate the use of the proposed model.
Section 6 provides the estimation results and validates ourmodel through various tests. Finally, poten-
tial research directions are discussed in Section 7. TheAppendix contains the proofs of some theorems
and properties presented in Sections 2 and 3, as well as a simulation study that evaluates the fitting
performance when a very high-dimensional dataset is involved.

2. Modeling

Suppose that there are P types of losses in a financial institution. When a risk event occurs, it
is observed as a (T,Z,X) triplet, where T is the occurrence time of the event, Z ∈ {1, . . . , P} is
the loss type (or the UOM, in the context of operational risk) and X is its loss severity. Hence,
{(Ts,Zs,Xs), s = 1, 2, . . .} constitute thewhole event process.Wemodel such a process through amul-
tivariate Cox process. The Poisson process is commonly used to solve actuarial science problems (see
e.g. Norberg 1993), and it is a very special case of Cox process.Marginally for the pth loss type, denote
{(Tp

s ,X
p
s ), s = 1, 2, . . .} the corresponding event arrival process, and {Np(t), t ≥ 0} the process rep-

resenting the number of risk events occurred up to time t. We assume that for each p = 1, . . . , P, the
arrival process in the pth marginal is a Cox process with the intensity �p(t). Note that Cox point
process is a Poisson process with random intensity.

Mathematically, it is desirable to formulate the Cox process in the context of (marked) point pro-
cess in accordance to Karr (1991) and Daley & Vere-Jones (1988). This will facilitate the analysis of
several nice properties possessed by this class of models, which will be presented in the later sections.
The pth marginal risk event arrival process Np can be represented as a Cox process driven by the
random measureMp on R

+ satisfying the following relationship

Np(Ap) =
∑
s
εTp

s
(Ap) :=

∑
s

1{Tp
s ∈ Ap}, Mp(Ap) =

∫
Ap

�p(t) dt,

where εTp
s
(Ap) and 1{Tp

s ∈ Ap} are denoted as indicator functions such that they are both equal to
1 when Tp

s ∈ Ap and are both equal to 0 otherwise. Therefore, for any time setAp ⊆ R
+, Np(Ap) is

the number of events occurred withinAp. To define themultivariate event arrival process, we need to
first extend the above pth marginal process to incorporate the loss type, such that it is a Cox process
Ñp driven by the random measure M̃p on R

+ × {1, . . . , P}, satisfies

Ñp(A) =
∑
s
ε
(Tp

s ,Z
p
s )
(A) :=

∑
s

1{(Tp
s ,Z

p
s ) ∈ A}, M̃p(A) =

∫
Ap

�p(t) dt

for anyA ⊆ R
+ × {1, . . . , P}, where Zp

s ≡ p andAp = {t : (t, p) ∈ A}. Then, we can properly define
the multivariate process as a point process N on R

+ × {1, . . . , P} such that

N =
P∑

p=1
Ñp. (1)

To complete the formalism of the multivariate Cox process, Proposition 2.1 states thatN is still a Cox
process. It is proved in Appendix 2.

Proposition 2.1: The (multivariate) point process N defined above is a Cox process onR
+ × {1, . . . , P}

driven by the randommeasureM satisfyingM(A) = ∑P
p=1 M̃

p(A) = ∑P
p=1

∫
Ap �p(t) dt for anyA ∈

R
+ × {1, . . . , P} whereAp = {t : (t, p) ∈ A}.

To incorporate severity modeling, the Cox process N is extended to a marked Cox process on
R

+ × {1, 2, . . . ,P} with a marking space of R
+. The marking Xs represents the loss severity of the
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sth point arrival. The loss severities are assumed to be mutually independent and the p-marginal
severities {Xp

s , s = 1, 2, . . .} are assumed to be identically distributed for p = 1, . . . ,P. Conditioned
on the loss type p, the probability density of the loss severity is given by pX | p(x). We can define such
marked point process N̄ and determine the random measure M̄ satisfying

N̄(Ā) =
∑
s
ε(Ts,Zs,Xs)(Ā) and M̄(Ā) =

P∑
p=1

∫
Āp

�p(t)pX | p(x) dt dx

for any Ā ⊆ R
+ × {1, . . . , P} × R

+, where Āp = {(t, x) : (t, p, x) ∈ Ā}. This formulation is crucial
for the analysis of the thinning properties of the proposed Cox process.

The remaining task is to impose assumptions on the intensities �p(t). One may simply assume
that the intensities are non-random, reducing to a Poisson process. However, this implies inde-
pendence of loss frequencies among loss types. Also, data are usually collected on a discrete-time
basis in OR problems. To make the model feasible to implement and calibrate, we model �p(t)
as a piecewise stochastic process with random intensity �lp, for dl−1 ≤ t ≤ dl, l = 1, 2, . . . and
d0 = 0. Here, dl are pre-determined time points for l = 1, 2, . . .. Under this assumption, {Np(t), t ≥
0}, p = 1, . . . , P are marginally dependent, but are independent conditioned on the intensity pro-
cesses �p(t), p = 1, . . . , P. The multivariate intensity vector �(t) = {�1(t),�2(t), . . . ,�P(t)} is
modeled by an Erlang hidden Markov model (Erlang-HMM), which is defined by the following
structure:

• The hidden parameter process {C1,C2, . . .} is a time-homogeneous Markov chain with a finite
state space {1, 2, . . . , g}. Its initial distribution and transition probability matrix are respectively
denoted by row vector δ and matrix � = (γij)g×g , where γij = P(Cl = j |Cl−1 = i). The state
Cl can be interpreted as an unobservable time-varying global environmental factor that affects
the event occurrence rates for all P loss types at the same time. The change of states over time
is governed by �, where large values in its diagonal entries imply high chance of staying at the
same state over time, representing the clustering behavior of operation loss arrival processes.

• The state-dependent vector process �l· = {�l1,�l2, . . . ,�lP} with l = 1, 2, . . ., is defined
such that it depends only on the current state Cl given all the observed histories �(l−1)· =
{�1·,�2·, . . . ,�l−1,·} and the hidden histories C(l) = {C1, . . . ,Cl}, i.e. P(�l·|�(l−1)· ,C(l)) =
P(�l· |Cl). Given that Cl = i, we further assume that�l1,�l2, . . . ,�lP are independent Erlang
distributed random variables with joint density function given by

K�l· |Cl=i(λ1, . . . , λP) =
P∏

p=1
h(λp;mip, θip), with h(λ;m, θ) = λm−1e−λ/θ

θm(m − 1)!
. (2)

Remark 2.1: The conditional independence of random intensities seems to be a strong assumption.
Hence, one may attempt to extend the model by writing the state-dependent density function as a
multivariatemixture of Erlang, understanding that the class ofmultivariatemixture of Erlang is dense
in the space of multivariate positive continuous distributions

K�·l |Cl=i(λ1, . . . , λP) =
K∑

k=1

πk

P∏
p=1

h(λp;mkip, θkip). (3)

However, it is shown in Appendix 1 that the resulting model can be easily converted to our original
proposed model with the joint density function of the state-dependent intensities expressed in the
form of Equation (2). Such an extension does not increase the model flexibility at all.
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3. Properties of the event arrival process

Themultivariate Cox process is defined using themarginal processes as a starting point. By definition,
it is closed under marginalization, meaning that Np is a univariate Cox process with random inten-
sity �p(t) for p ∈ {1, . . . , P} whenever N is a multivariate Cox process with random intensity �(t).
Also, we can easily see that �p(t) follows a univariate Erlang-HMM whereas �(t) follows a multi-
variate Erlang-HMM. This section presents other desirable properties, which are critical to themodel
versatility and the effectiveness of model calibrations.

3.1. Thinning properties

Often in an operational risk problem, an event is recorded only if its loss amount exceeds a certain
threshold level. Immaterial events are not observed and the recorded severities are left-truncated. It
is desirable to identify the relationship between the actual event arrival process (non-truncated one)
and the event observation process (truncated one). This subsection shows that the model structures
of the truncated and non-truncated processes are indeed the same. Therefore, no special treatments
are needed for model calibrations of the event observation process. Precisely, it will be shown that if
the event arrival process N̄ is a marked Cox process with the underlying intensity vector generated
by Erlang-HMM, the event observation process N̄ ′ is still a marked Cox process with Erlang-HMM
intensities. The proof is demonstrated in Appendix 3.

Theorem 3.1: Assume that the risk event arrival process N̄ is a marked Cox process with intensity
vector �(t). Corresponding to each loss event, the loss amounts Xi are independent and are only related
to its loss type p ∈ {1, . . . , P}, with density function pX | p(x). Define the risk event observation process
N̄′, where any event arrived is recorded only if Xi > ψ(p). Here, ψ(p) is the recording threshold and
is assumed to be constant over time. Then, N̄′ also follows a marked Cox process with the underlying
intensity vector�′(t) := {�′

1(t), . . . ,�
′
P(t)} generated by Erlang-HMMwith state-dependent intensity

density function

K�′
l1,...,�

′
lP |Cl=i(λ1, . . . , λP) =

P∏
p=1

h(λp;mip, θ ′
ip),

where θ ′
ip = F̄X | p(ψ(p))θip. The (independent) observed loss amounts follow the adjusted position-

dependent density p′
X | p(x) = (pX | p(x)/F̄X | p(ψ(p)))1{x > ψ(p)}.

Theorem 3.1 shows that the (unmarked) risk event arrival process follows exactly the same model
as the (unmarked) risk event observation process, except that the parameters θip are adjusted to θ ′

ip.
Therefore, the proposed multivariate Cox process is closed under thinning.

3.2. Distributional properties of the corresponding discrete processes

This subsection exhibits some distributional properties of the discretized event arrival process
{N l; l = 1, 2, . . .}, whereN l = (Nl1, . . . ,NlP), andNlp is the number of risk events of type p occurred
during the time interval [dl−1, dl). This ismotivated by the fact that data is only collected on a discrete-
time basis.Without much loss of generality, we assume that dl − dl−1 = 1 for l = 1, 2, . . . throughout
the paper. Because of the thinning property (Theorem 3.1), the following results still hold for the
discretized event observation process with adjusted scale parameters θ ′

ip.

Proposition 3.1: Under the proposed multivariate Cox Process, the discretized event arrival process
{N l; l = 1, 2, . . .} follows amultivariate Pascal-HMM. Its hidden parameter process {C1,C2, . . .} is gov-
erned by the transition probability �. Given that Cl = i, N l follows a multivariate Pascal distribution
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with density function given by

P(N l = n |Cl = i) =
P∏

p=1
p(np;mip, θip),

where n = (n1, . . . , nP) and p(n,m, θ) = (n+m−1
m−1

)
(1/(1 + θ))m(θ/(1 + θ))n.

Using this result, the univariate distribution of Nlp, the k-variate joint distribution of
(Nl1p, . . . ,Nlkp) and the P-variate joint distribution of the number of event arrivals at time l
(Nl1, . . . ,NlP) for p = 1, . . . , P can be easily obtained:

P(Nlp = n) =
g∑

i=1
πlip(n;mip, θip), (4)

P(Nl1p = nl1 , . . . ,Nlkp = nlk) =
g∑

i1=1
· · ·

g∑
ik=1

β(i1,...,ik)

k∏
j=1

p(nlj ;mijp, θijp), (5)

P(Nl1 = n1, . . . ,NlP = nP) =
g∑

i=1
πli

P∏
p=1

p(np;mip, θip), (6)

where πli is the ith element of the vector π l = δ�l−1, β(i1,...,ik) = πl1i1γi1i2(l2 − l1) · · · γik−1ik(lk −
lk−1) and γij(l) is the (i, j)th element of the l-step transition probability matrix �l.

Equations (4) to (6) show that the k-variate marginal of the number of events across time as well
as the P-variate number of events across loss types are multivariate Pascal mixtures. The follow-
ing example, which can be easily generalized to more complicated settings, demonstrates that the
proposed model is versatile in capturing a wide range of dependence structures in terms of second
moments. We aim to show that (almost) perfectly positive and negative correlations can be simulta-
neously attained by the proposed model. For simplicity, we assume P= 2 and g= 2. We set θip = θ as
a constant and choose the following parameters:

δ = (0.5, 0.5, 0, 0), � =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , m =

⎛
⎜⎜⎝

m0 m0
2m0 2m0
m0 2m0
2m0 m0

⎞
⎟⎟⎠ .

Directly computing the moments of multivariate Pascal mixtures, it is easy to show that
Corr(N11,N12) → 1 but Corr(N21,N22) → −1 whenm0 → ∞. Hence, the proposed model is flex-
ible to capture the dependence structure across loss types, as well as the changes of dependence
structures among loss types over time. Moreover, Corr(N11,N21) → 1 and Corr(N12,N22) → −1
when m0 → ∞. Therefore, the proposed model can also cater for a broad range of temporal
dependence structures.

Badescu et al. (2015) demonstrate the versatility ofmultivariate Pascalmixture in capturing depen-
dence structures by a simpler version of the above example. Theorem 4.1 of Badescu et al. (2016)
argues (through the autocorrelation function (ACF)) that univariate Pascal-HMM, a special case of
our proposed model, is flexible in capturing time-series correlations. Such an argument still holds for
multivariate Pascal-HMM because of its closure under marginalization property.

It is also interesting to investigate the properties of the aggregated event arrival process {Na(t), t ≥
0} (i.e. the number of events aggregated across all loss types). Mathematically, Na = N(·, {1, . . . ,P}),
whereN is given by Equation (1). Therefore,Na is a point process onR

+. Appendix 4 shows that such
process still follows univariate Cox-HMM. If θip ≡ θi does not depend on the loss type p, the proposed
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model is ‘closed under aggregation’. Under any choices of θip, the distribution of the corresponding
discretized process Na

l = ∑P
p=1 Nlp can still be written as a Pascal mixture:

P(Na
l = n) =

g∑
i=1

πli

∞∑
k=1

ψ̃kp(n; k, θi), (7)

where θi = min{θi1, θi2, . . . , θiP}, k = (k1, k2, . . . , kP), ψ̃k = ∑
k1+···+kP=k ψk

∏P
p=1 1{kp ≥ mip} and

ψk = ∏P
p=1

( kp−1
mip−1

)
(θi/θip)

mip(1 − θi/θip)
kp−mip .

3.3. Forecast distributions

One important use of modeling the operational risk events is to predict the future losses, so that
financial institutions can set up adequate reserves. Suppose that the discretized loss arrival processes
N(L) := (N1, . . . ,NL) are observed and their realizations are n(L) := (n1, . . . , nL). Introduce

(1) The random sample and observed data up to time l are respectively given by N(l) =
(N1, . . . ,N l) and n(l) = (n1, . . . , nl).

(2) The forward probabilities row vector αl, with its ith element αl(i) = P(N(l) = n(l),Cl = i).
Zucchini&MacDonald (2009) shows that for l = 2, 3, . . . , L,α1 = δP(n1), αl = αl−1�P(nl).

(3) The backward probabilities column vector β l, with its ith element βl(i) = P(NL
l+1 =

nLl+1 |Cl = i). It can be shown that for l = 1, 2, . . . , L − 1, βL = 1, β l = �P(nl+1)β l+1.
(4) The observed data likelihood LL = P(N(L) = n(L)) = δP(n1)�P(n2) · · · �P(nL)1.

Denote an arbitrary finite-dimensional vector N∗ ⊂ {Nl,p; l = L + 1, L + 2, . . . , p = 1, . . . , P},
which represents any future information on the discretized event arrivals. Let n∗ be its corresponding
realizations. Applying simple probabilistic arguments, the forecast distributions are given by

P(N∗ = n∗ |N(L) = n(L)) =
g∑

i=1
δ∗(i)P(N∗ = n∗ |CL+1 = i), (8)

where δ∗(i), the ith element of δ∗, is defined by

δ∗(i) := P(CL+1 = i |N(L) = n(L)) = (αL�)i

LL
. (9)

The predictive multivariate discretized process (NL+1,NL+2, . . .) is a restarted Pascal-HMMwith an
adjusted initial state distribution δ∗, which depends on the past observations.

3.4. Model identifiability

Model identifiability is an important issue in statistical inference. For a non-identifiable class ofmodel,
different sets of parametrization can result to the samemodel distribution, hence causing troubles for
statistical inference. The conditions for the proposed model to be identifiable are discussed in this
subsection. We first provide the definition of identifiability for the class of HMMs. This definition
aligns with that by Teicher (1963) and Yakowitz & Spragins (1968) for the class of finite mixture
through treating the class of models as identifiable under the existence of permutation invariance
and considering only irreducible models, i.e. no components/ states always have zero weight.

Definition 3.1: Let G be the class of all HMMs with state-dependent distributionFξ (ξ corresponds
to the parameters of the state-dependent distribution), so that each elementG� ∈ G has the parameter
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setting� = (δ,�, ξ , g), where ξ = (ξ1, . . . , ξg). A subclass Ḡ ⊆ G is identifiable wheneverG�∗ ,G� ∈
Ḡ with P(CL = i;�) > 0 for some L = 1, 2, . . . for all i = 1, . . . , g and the same for�∗ (irreducibility
condition), if their observable likelihoods match for all L = 1, 2, . . ., i.e.

P(N(L) = n(L); δ∗,�∗, ξ∗, g∗) = P(N(L) = n(L); δ,�, ξ , g)

it implies that g∗ = g, δ∗(i) = δ(c(i)), γ ∗
ij = γc(i),c(j) and ξ∗

i = ξc(i) for i = 1, . . . , g, where
{c(1), . . . , c(g)} is a permutation of {1, . . . , g}.
Theorem 3.2: The proposed model for the discretized event arrival processes (i.e.: Multivariate Pascal
HMM in the form described by Proposition 3.1) is identifiable subject to the restriction that ξ1, . . . , ξg
are distinct, where ξi = (mi1, . . . ,miP, θi1, . . . , θiP) for i = 1, . . . , g.

The proof is detailed in Appendix 5. Consider fitting the proposed model to an OR dataset. By
allowing the scale parameters θip dependent on the state i and the loss type p, the possibilities that
there exists i �= j such that ξi = ξj for the fitted model are eliminated, since θip is taking a continuous
value. By Theorem3.2, the fittedmodel is identifiable. On the other hand, there exists the risk of fitting
a non-identifiable model if a universal scale parameter θ is assumed across all states (e.g. Badescu
et al. 2016), because the shape parametermip is taking a discrete value.

4. Model calibration: an EM algorithm

In this section, we will present an EM algorithm to estimate the parameters of the proposed model
based on the observed discretized loss arrival processN(L). At each run of the EM algorithm, we fix g
andmip. The adjustments of such parameterswill be addressed later in this section. The goal of the EM
algorithm is to efficiently estimate the parameters � = (δ,�, θ) where θ = {θip : i = 1, . . . , g; p =
1, . . . , P}. By introducingZl = (Zl1, . . . ,Zlg) andZli = 1{Cl = i} for i = 1, 2, . . . , g, the complete data
likelihood and log-likelihood can respectively be written as

L(�; n(L), z(L)) =
g∏

i=1
δ
z1i
i

L∏
l=2

g∏
i=1

g∏
j=1
(γij)

zl−1,i×zlj
L∏
l=1

g∏
i=1

P∏
p=1

p(nlp;mip, θip)zli ,

l(�; n(L), z(L)) =
g∑

i=1
z1i log δi +

L∑
l=2

g∑
i=1

g∑
j=1

zl−1,izlj log γij +
L∑
l=1

g∑
i=1

P∑
p=1

zli log p(nlp;mip, θip).

4.1. E-step

The E-step computes the expectation of the complete data log-likelihood at sth iteration given the
observed data, evaluated using the parameters obtained in the previous iteration:

Q(�;�(s−1)) = E[l(�; n(L), z(L)) | n(L),�(s−1)]

=
g∑

i=1
z(s)1i log δi +

L∑
l=2

g∑
i=1

g∑
j=1

z(s)lij log γij +
L∑
l=1

g∑
i=1

P∑
p=1

z(s)li log p(nlp;mip, θip),

where z(s)li = E[Zli | n(L),�(s−1)] and z(s)lij = E[Zl−1,iZlj | n(L),�(s−1)] are respectively given by

z(s)li = αl(i)(s−1)βl(i)(s−1)

L(s−1)
L

, z(s)lij =
α
(s−1)
l−1 (i)γ (s−1)

ij

[∏P
p=1 p(nlp;mjp, θjp)

]
β
(s−1)
l (j)

L(s−1)
L

, (10)

where α(s−1)
l , β(s−1)

l andL(s−1)
L are respectively the forward probabilities, backward probabilities and

complete data log-likelihood computed using �(s−1) as parameters.
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4.2. M-step

The M-step maximizes Q(�;�(s−1)) for the sth iteration, subject to constraints of
∑g

i=1 δ1i = 1 and∑g
j=1 γij = 1 for j = 1, 2, . . . , g. For i, j = 1, 2, . . . , g, the following parameters can be easily updated

using the method of Lagrange’s multiplier and standard calculus

δ
(s)
i = z(s)1i , γ

(s)
ij =

∑L
l=2 z

(s)
lij∑g

j′=1
∑L

l=2 z
(s)
lij′

, θip =
∑L

l=1 z
(s)
li nlp∑L

l=1 z
(s)
li mip

. (11)

The E-step and M-step are repeated until the observed data log-likelihood between two consecutive
iterations is smaller than a tolerance threshold of 10−3.

4.3. Initialization and parameter adjustments

Proper initialization is important as it can affect the performance of the proposed EM algorithm.
In this subsection, we propose a simple initialization strategy that involves randomization and first-
moment matching. For i = 1, . . . , g:

• For p = 1, . . . , P, sample mip uniformly on {1, 2, . . . ,C}, where C is a constant. Based on our
experiments, the fitting result is insensitive to C unless it is too small (say C< 5).

• Set δ(0)i = 1/g, γ (0)ij = 0.01 for i �= j and γ (0)ii = 1 − 0.01 × (g − 1). See Badescu et al. (2019)
for further justifications.

• For p = 1, . . . , P, set θ(0)ip = ∑L
l=1 nlp/(Lmip) to match the first moments.

Remark 4.1: Onemay attempt to initializemip using the spread factor strategy introduced by Verbe-
len et al. (2015) since it is found to provide satisfactory results while fitting univariate data. However,
if this strategy is applied to P-variate data, the number of initial states will become prohibitively large
(g initial states in univariate case means gP states in P-variate case).

Remark 4.2: By allowing the scale parameters θip dependent on i and p, the fitting results are empir-
ically much more stable, since the initialized distribution of the proposed model matches the first
moment of the data (for each state/ loss type). On the other hand, assuming a universal θ , the first
moment of the initialized distribution for some states/ loss types can be very far away from that
implied by the data, causing numerical underflow of the initial observed likelihood.

Remark 4.3: While the proposed initialization strategy is found to be robust and stable for the real
operational risk dataset in Section 5 and also the simulated dataset in Appendix 6, there can be many
other initialization strategies (such as the k-means clustering strategies proposed by Gui et al. 2018)
that may yield even better performances. Yet, it is not the focus of this paper and hence we leave it as
a direction of potential future research.

The remaining task is to findmip and g to optimize the fitting.We adopt the element-wise+1/− 1
variation strategy (Lee&Lin 2010) formip. There aremanyways to control the number of parameters,
for example we can choose the optimal g that minimizes the Akaike Information Criterion (AIC).
Since no further iterations are needed within an EM iteration, it is computationally feasible to try a
wide range of g and find the optimal one. An alternative approach is to follow the backward selection
strategy proposed by Lee & Lin (2010).

5. Overview of data

From this section onwards, we are to fit the operational risk data into the proposedmodel. The dataset
comes from a North American financial institution from April 2007 to March 2012. It consists of the
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occurrence date, the UOM and the loss severities for each operational risk event. While the dataset
consists of a large number of UOMs, many of them are incomplete or contain very few losses, so it is
not material and statistically meaningful to model the losses from these UOMs. Therefore, we choose
to analyze 10 UOMs in total, covering two event types: External Fraud (EF) and Execution, Deliv-
ery and Process Management (EP) and five business lines: Card Service (CS), Commercial Banking
(CB), Retail Brokerage (RB), Private Banking (PB) and Retail Banking (RE). Note that to examine the
versatility of the proposed model and the efficiency of the proposed algorithm when the number of
UOMs is large, a simulation study is performed in Appendix 6.

The losses were left-truncated at $15,000 for UOM2 and $30,000 for other UOMs. Any losses
below the threshold will not be recorded. The loss frequencies are aggregated in monthly bins and
the data is split into two parts: In sample (IS) data consists of information up toDecember 2011, while
Out of sample (OS) data covers the losses for the remaining three months.

5.1. Data summary and challenges

This subsection aims to perform preliminary data analysis on the IS data in terms of the basic obser-
vations on loss frequency characteristics (Table 1), the serial correlation structures (Figure 1), the
inter-UOMdependence structures (Table 2) and the relationships between frequencies and severities
(Figure 2). The tail behavior of the loss severities will also be examined.

These figures and tables reveal great challenges to properly model the operational risk data. The
number of data points for loss frequency is scarce. IS period consists of 57 months, together with
10 UOMs, there are only 570 data features available for multivariate count model fitting. To attempt
increasing the number of data points, one may suggest separating the count data into weekly or daily
bins. This approach, however, is undesirable because majority of operational losses are reported on
the last day of each month due to monthly reporting administrative issues.

Table 1. The summary of the observed monthly number of losses by UOM in IS period.

EF/CS EP/CS EF/CB EP/CB EF/RB EP/RB EF/PB EP/PB EF/RE EP/RE

UOM 1 2 3 4 5 6 7 8 9 10
Mean 118.74 84.14 160.23 19.61 5.75 42.72 6.25 53.96 753.44 567.89
SD 44.16 27.54 111.95 6.44 3.29 20.50 3.01 27.53 160.26 174.20
Trend ↓ ↑ No ↑ No No No No No ↑
Clustering No No Yes No No No No Yes Yes No

Note: The trend (number of losses increasing/ decreasing over time) and clustering (whether or not clustering of losses exists) are
based on observations.

Figure 1. Monthly number of losses aggregated across all UOMs (left), the ACF of number of losses by UOM (middle) and the ACF
of logmonthly average loss severities (right) during IS period. The ACFs are not significantly different from zero if they fall within the
two black dotted horizontal lines.
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Figure 2. Left: The correlation histogram between frequencies and log-severities. For each i and j (in 1 to 10), the correlation coef-
ficients between the number of losses of UOM i and the log-monthly average severities of UOM j is computed. Right: The empirical
survival function S(x) vs. 1/x (in log scale) for loss severities. The curves are parallel shifted such that they pass through the origin.

Table 2. Correlation characteristics of frequency data (left) and log monthly average severities (right) among UOMs for IS data.

Correlations between monthly frequencies Correlations between log monthly average severities

UOM 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 −.10 .49 −.29 .20 .30 −.02 .35 .14 −.15 .06 .04 .01 −.19 −.03 .10 −.06 .01 −.11
2 .45 −.08 .22 −.04 .22 .03 .43 .49 .49 .66 −.03 .06 −.07 .01 .16 −.10 .09 −.01
3 .00 .55 −.17 .39 .48 .14 .54 .54 .12 .74 .84 −.07 .09 .19 .07 .03 .54 .27
4 .03 .10 .21 .02 −.17 −.02 −.25 .13 .40 .95 .65 .60 −.08 −.13 −.01 −.08 .03 −.05
5 .13 .76 .00 .86 .40 .19 .16 .31 .09 .16 .59 .50 .56 .35 −.06 .03 −.02 −.06
6 .02 .10 .00 .20 .00 .05 .73 .40 .19 .85 .95 .16 .35 .01 −.20 .22 −.04 .09
7 .91 .84 .31 .90 .16 .72 .04 .01 −.02 .45 .22 .59 .93 .65 .13 −.26 .22 −.19
8 .01 .00 .00 .06 .24 .00 .75 .51 .29 .67 .48 .80 .54 .82 .10 .05 −.07 .12
9 .31 .00 .00 .33 .02 .00 .91 .00 .68 .96 .52 .00 .81 .89 .77 .10 .63 .00
10 .25 .00 .39 .00 .51 .15 .86 .03 .00 .41 .93 .04 .71 .64 .52 .16 .39 .97

Note: Upper triangle: correlation coefficient; Lower triangle: p-value to examine if the the correlation coefficient significantly
deviates from zero.

Despite of the scarcity of data points, there exists several heterogeneities across UOMs. Firstly,
the total number of losses over the entire IS period differ significantly across UOMs, which can be
explained by different risk exposures amongUOMs. Explicitmeasurement ofOR exposures, however,
are difficult (Reveiz & León 2010). Secondly, the time-series characteristics of loss frequencies varies
greatly across UOMs in terms of the trends, clustering behavior (Table 1) and the ACF properties
(Middle panel of Figure 1). Thirdly, the correlation structure of loss frequencies among UOMs is
complex. Correlation coefficients span widely from −0.29 to 0.68 (Figure 1).

A more general way to examine the dependence structure of a multivariate time-series data is the
use of cross-correlation function, which contains ACF and correlation coefficients as special cases.
While the detailed results are not presented for conciseness, we find some special patterns among
some UOMs. For example, while the correlation coefficient between UOM5 and 8 are insignificant,
the cross-correlations are quite significant for certain lags.

The loss severities exhibit very heavy tails. Figure 2 (right) plots − log(S(x)) vs. 1/x, where S(x)
is the empirical survival function and x is the loss severity. The rationale to do so is the hypothesis
on the tail behavior that S(x) ∼ c/xα for constant c> 0 and α > 0. Then, we have − log(S(x)) =
α(− log(1/x))+ const. The asymptotic slope of the plots represent α. From the plot, the slopes for
some (but not all) UOMs are below the 45 degree line (grey solid line), showing the possibility that
the mean of loss severities can be infinite (α ≤ 1).

5.2. Model descriptions and assumption validations

Due to the complexities of data characteristics, the multivariate Pascal HMM, which is justified as
a versatile model, is a suitable candidate model. This model also automatically caters for various
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risk exposures among UOMs through allowing different scale parameters θip across UOMs. The
data characteristics reveal the shortfalls of modeling operational loss frequencies through tradi-
tional LDA framework, which assumes monthly loss frequencies are serially independent. The
data shows that some UOMs exhibit weak trends on the number of losses, so the time series
count data can be slightly non-stationary for some UOMs. Moreover, there are strong positive
autocorrelations on loss frequencies for some UOMs. Therefore, predictions will be biased using
traditional LDA.

Because of the extreme heavy tail structure demonstrated by Figure 2 (right panel), it is desir-
able to model the log-transformed severities. Motivated by the theoretical justifications by Willmot
& Woo (2007) and Lee & Lin (2010), and the effectiveness of the corresponding fitting algorithm
(Verbelen et al. 2015), we model the log-severities through left-truncated version of mixture Erlang
distributions. The truncation marks are log(15000) for UOM2 and log(30000) for other UOMs. The
density of log-severity for the ith UOM is expressed by

fi(x) =
∞∑
j=1

αij
xj−1e−x/θi

θ
j
i (j − 1)!

. (12)

Thismodel can cater for both finite (θi < 1) and infinite (θi ≥ 1)mean of severities. Althoughmixture
Erlang distributions (without transformations) are dense in the space of positive continuous distri-
bution (Lee & Lin 2010), making it versatile to fit a wide range of distributions, we will show that the
log-transformed model is more effective in modeling heavy-tailed data. The denseness property still
holds for log-transformed mixture Erlang distributions.

The above modeling framework implicitly makes several assumptions, which are validated on our
numerical dataset as follows. Note that all correlations below are computed based on log-transformed
severities. Otherwise, the extreme tail heaviness of loss severities can make the estimations of
dependence structures inconsistent.

• The loss severities are serially independent: Figure 1 (right panel) shows the ACFs of log
monthly average loss severities are very weak and insignificant for most UOMs. Hence, it is
reasonable to use a static distribution to model severities.

• The loss severities are independent among UOM: Table 2 (right panel) shows that the correla-
tions of severities among UOMs are relatively small. Out of the 45 correlation values calculated
for log-severities, only 3 of them are significantly different from zero, compared to 19 signifi-
cant values for frequencies. Hence, most of the severities correlation values are likely caused by
the randomness of data generation. This provides evidence supporting the usage of univariate
distributions to model severities separately.

• Frequencies are independent of severities: Figure 2 (left panel) shows that based on 100 values
computed, the correlations between loss frequencies and log-severities have approximately zero
mean. Fewer than 10 correlation values exceed the 5% significant threshold (around ± 0.26),
making it acceptable to assume independence between frequencies and severities.

An alternativemeasure of dependence structures for the assumption tests above is the kendall’s tau,
which can be robust inmeasuring the correlations among differently scaled datasets. Under this mea-
sure, the results are still aligned with our hypotheses: The correlations among severities and between
frequencies and severities are much weaker than that among loss frequencies.

6. Estimation results

Using the proposed EM algorithm, we find that the optimal frequency model consists of five states.
Some fitted model parameters are shown as follows:
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Figure 3. Fitted averagenumber of losses representedbymipθip , i = 1, . . . , 5,p = 1, . . . , 10. For eachUOM,darker color represents
greater number of losses.

Figure 4. The IS and OS Q–Q plots for log loss severities.

δ = (1 0 0 0 0), � =

⎛
⎜⎜⎜⎜⎝

0.778 0.000 0.222 0.000 0.000
0.000 0.875 0.000 0.125 0.000
0.000 0.066 0.725 0.000 0.208
0.250 0.000 0.000 0.750 0.000
0.000 0.000 0.158 0.000 0.842

⎞
⎟⎟⎟⎟⎠

The fitted model has an intuitive interpretation that the global environment starts at the first state
where losses are expected to occur less frequently (as shown in Figure 3, the colors on the row of
‘State 1’ are mostly light), and then it gradually transits to the other four states which have different
loss characteristics by UOMs. State 4 may represent an ‘unfavorable’ environment for most UOMs
while state 5 is considered as a more ‘favorable’ one. The large values on the diagonal entries of� also
confirms the clustering behavior of OR events.

Moreover, Figure 3 gives some insights on the dependence structures of the fitted model. Consid-
ering UOM1 and UOM4, in the states where UOM1 has a greater average number of losses, fewer
losses are expected to occur in UOM4, and vice versa. The loss frequencies of UOM1 and UOM4
under the fitted model look negatively correlated, matching the empirical correlation coefficient of
−0.29. Similar observations and analyses among other UOMs will help us further understand how
the dependence structure of the fitted model synchronizes those of empirical data.

For the fitting of the log-severity distributions using the AIC, the number of mixture components
varies from 1 to 16 and the scale parameter varies from 0.03 to 1.16 among UOMs. The Q–Q plots
(Figure 4) show that the fitting is adequate. On the other hand, if the severity is not log-transformed,
much more mixture components (from 11 to 54) are required to fit the data.
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Figure 5. Ordinary pseudo residuals for the fitted model.

6.1. In-sample validation tests

This section performs in-sample tests to evaluate the adequacy of the model fitting. Generally, we are
testing the null hypothesis (H0) that the empirical data is generated from the fitted model against the
alternative hypothesis thatH0 is false. The first test is ‘ordinary pseudo-residual’ by Zucchini &Mac-
Donald (2009). The residuals are given by zlp = 
−1(P(Nlp ≤ nlp |N(−l) = n(−l))) for l = 1, . . . , L
and p = 1, . . . , P, where
(·) is the standard normal cdf and N(−l) and n(−l) contain all information
other than that at time l. Under H0, each zlp should be approximately standard normal distributed
and {zlp}l=1,...,L are serially uncorrelated for all p = 1, . . . , P.

Figure 5 compares the residuals to the standard normal distribution and examines the ACFs
of pseudo residuals for each UOM. Apart from a good fit based on Q–Q plot, the residual
autocorrelations are generally small, with only 5 out of 100 points being slightly out of the 5%
significance level. Therefore, there is evidence that model fitting is adequate.

The second test examines how well the fitted model captures the dependence structures among
UOMs. The number of losses across time and UOMs are simulated from the fitted model for 10,000
times. For each simulation, the correlation coefficient matrix across UOMs is computed. Aggregating
the results for all simulations, we obtain a distribution of correlations for each matrix element. The
results are presented through box plots in Figure 6 and compared to the empirical correlationmatrix.
All empirical correlations fall within the 95% confidence intervals generated by simulations from the
fittedmodel, except for that betweenUOM9 andUOM10, where the empirical correlation is relatively
very high (0.682) and the fitted model seems under-capturing the empirical correlation. Note that
such high correlation can also be partially caused by the sampling error of empirical data, so it is
normal that the correlations are under-captured for a few UOMs.

The third test applies the similar methodology as the second test and analyzes the goodness-of-
fit of our proposed model through its ability to capture data’s ACFs. Out of the 100 empirical ACF
values (lags 1-10 with UOM1-10), only 7 of them are slightly off the 95% confidence intervals. For
conciseness, only the result for a UOM is shown in Figure 7 (left panel). It is then concluded that the
fitted model decently caters for serial correlation structures of empirical data.

All the tests above suggest that the proposed multivariate Pascal-HMM fits the data very well, so
the remaining problem is that such flexible model may overfit the data, because the OR frequency
data are scarce. We compare the marginal distributions of the monthly fitted number of losses with
the empirical data. In Figure 7 (right panel), the fitted distributions are smooth instead of matching
tightly the empirical distributions, which are rather peaky due to scarcity of data points. We further
evaluate the existence of overfitting of the proposed model by fitting it with a large number of states
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Figure 6. The simulated (from the fitted model) vs empirical correlation coefficient matrix. Upper triangle shows the box plots of
simulated correlations and the dotted line represents the empirical correlations; Lower triangle shows the 2-sided p-values.

such that the number of parameters is greater than the number of observable features. The result-
ing fitted distributions, are surprisingly smooth. Therefore, overfitting problem does not exist. This
phenomenon can be explained by the over-disperse nature of Pascal-HMM. Equation (6) shows that
the marginal distribution of loss frequency for any month is a Pascal mixture, which guarantees a
greater-than-one dispersion ratio. This makes the fitting smooth regardless of the number of mixture
components and eliminates the overfitting problem.
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Figure 7. Left: Empirical ACF (dots) vs simulated ACF from the fitted model. The 95% CIs are displayed as bars. Right: Empirical vs.
fitted marginal distributions.

6.2. Out-of-samplemodel prediction

This section aims to examine the predictive ability of the fitted model through an OS testing. The
1-month (for January 2012) and 3-month (for January to March 2012) predictive distribution of the
number of losses aggregated in UOM and TOH levels are respectively computed and compared to
observed OS data. Given the fitted model parameters, applying Equation (8) and (9), the l∗-month
(l∗ = 1, 2, . . .) predictive distributions can be simulated by the following steps:

Step 1: Calculate the posterior probabilities for each state at the first month of the OS period (i.e.
January 2012) δ∗.

Step 2: For each l = 1, . . . , l∗, simulate hidden states ĈL+l governed by the probabilities
P(CL+l |N(L) = n(L)) = δ∗�l−1.

Step 3: For each l = 1, . . . , l∗, simulate the number of losses N̂L+l,p for eachUOM-p (p = 1, . . . , 10)
governed by the probabilities P(N̂L+l,p = n | ĈL+l = i) = p(n;mip, θip).

Figure 8. Predictions on loss frequencies. Solid curve and dotted curve are respectively the predictive distributions without and
with parameter uncertainties. For vertical lines, thick solid, thin solid and dotted lines are respectively the true observed number,
the prediction mean of the proposed model (without parameter uncertainties) and the LDA prediction.
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Table 3. Prediction mean and variance at TOH level under various approaches.

1 month prediction 3 month prediction

w/o PU with PU LDA w/o PU with PU LDA

mean 1828 1822 1813 5474 5477 5438
variance 55,205 59,520 168,622 278,705 352,435 505,866

Notes: Both ‘w/o PU’ and ‘with PU’ apply our proposed model. PU stands for parameter uncertainties.

Step 4: The l∗-month prediction on the number of losses forUOM-p is given by
∑l∗

l=1 N̂L+l,p, while
in TOH level it can be computed as

∑10
p=1

∑l∗
l=1 N̂L+l,p.

After one million simulations, the predictive distributions are obtained. The above predictions,
however, do not take parameter uncertainties into account. Because of the scarcity of frequency data,
parameter uncertainties may be significant. To estimate its effect, we also apply parametric bootstrap
for predictions. The procedures is as follows, first, simulate B= 100 paths of loss frequencies N̂ l from
the fitted model parameters �̂ . Second, for each path generated, refit the model to obtain parameters
�̃b, b = 1, . . . ,B. Third, for each b, simulate the predictive distribution using empirical frequencies
N̂
(L)

and the refitted model parameters �̃b. Aggregate the results across b.
The prediction results are displayed concisely in Figure 8.Wewill show that our proposed stochas-

tic model provides better predictions than any (unbiased) distributional models under traditional
LDA framework, which ignore serial dependence structures. A decent distributional model should
approximately match the first and second moments of empirical data in both UOM and TOH level.
Under this assumption, the l-month prediction mean and variance of the number of losses (for
both UOM and TOH level) are l times as the mean and variance of the in-sample empirical data,
respectively. Overall, the observed values (thick solid lines in Figure 8) are more likely closer to the
prediction mean under our proposed model (thin solid lines) than the in-sample mean (dotted lines,
also the prediction mean for LDA). This phenomenon can be explained intuitively. The predictions
by our time-series model take account for the fact that recent losses are more relevant to future losses,
while this is ignored using traditional LDA. For example, underUOM3, there is a huge-loss-frequency
cluster at the early stage of in-sample period, which should be less relevant to out-sample predictions.
Such a cluster causes LDA to overpredict the future number of losses. In TOH level, both our pro-
posed model and LDA provides adequate predictions, but in traditional LDA approach, it can also
be caused by cancelation of biases among UOMs. To further compare the predictions performance
between the proposedmodel and the traditional LDA, it is also useful to compare the variances of pre-
diction distributions. Table 3 shows that the prediction variances using our proposedmodel (whether
or not parameter uncertainties are considered) are significantly smaller than that using traditional
LDA. The variance reduction effects are greater for shorter term (1-month) predictions. Moreover,
this table shows that parameter uncertainties plays a significant, but not a dominant role in explaining
overall variances.

To generate the 1-month and 3-month predictive distributions for aggregate loss amounts inUOM
and TOH levels, we may independently simulate the loss severities for each loss based on the UOM
to which the loss belongs, from the fitted left-truncated mixture Erlang distributions. Aggregating
the losses by time intervals and/ or UOMs, we will obtain the desired predictive distributions. The
prediction results are summarized in Table 4, which shows that the realized losses across UOMs are
mostly within the 95% CI of our predictions as shown by p> 0.05 for most UOMs. Our prediction
procedures allow easy computations of the 99.95-percentiles (also called the 99.95% value at risk
(VaR)) of aggregate losses, which may represent the Economic Capital (EC) charged to a financial
institution. The prediction distributions in TOH level (in log scale) are also displayed in Figure 9.
It can be seen that the effect of parameter uncertainties are insignificant when aggregate losses are
considered. Figure 9 (left panel) shows the one month prediction results by using Erlang mixture
distribution to model severities without log-transformation. Some small peaks are observed on the
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Table 4. Summary of the predictions of the aggregate losses.

1 month prediction 3 month prediction

Fitted Fitted
Empirical
realized 5% 50% 95% 99.95% p-value

Empirical
realized 5% 50% 95% 99.95% p-value

UOM1 0.22 0.08 0.16 0.49 2.25 0.58 0.47 0.32 0.56 1.19 3.70 0.64
UOM2 0.12 0.09 0.20 0.60 2.58 0.33 0.41 0.37 0.64 1.39 3.93 0.17
UOM3 0.07 0.04 0.09 0.28 0.80 0.53 0.24 0.17 0.29 0.84 1.62 0.60
UOM4 0.11 0.02 0.10 0.61 14.33 0.91 0.27 0.15 0.38 1.62 28.95 0.58
UOM5 0.00 0.00 0.01 0.04 0.83 0.52 0.01 0.01 0.03 0.09 1.63 0.23
UOM6 0.07 0.02 0.06 0.16 2.81 0.58 0.10 0.10 0.18 0.42 6.21 0.16
UOM7 0.01 0.00 0.01 0.10 18.95 0.64 0.02 0.01 0.04 0.35 61.33 0.48
UOM8 0.01 0.03 0.08 0.25 1.38 0.01 0.09 0.13 0.26 0.59 2.17 0.01
UOM9 1.16 0.65 0.92 1.42 3.52 0.34 2.91 2.27 2.83 3.75 6.68 0.83
UOM10 1.90 0.59 1.36 11.10 87.69 0.60 11.00 2.65 4.90 26.51 125.17 0.41
TOH 3.68 2.24 3.34 13.40 100.81 0.77 15.55 7.91 10.97 33.09 160.21 0.49
TOH* 2.22 3.31 13.31 99.63 0.75 7.83 10.94 32.99 163.79 0.49

Notes: All the amounts are in 100 million. The percentages are the percentiles. ‘TOH*’ considers parameter uncertainties.

Figure 9. 1-month (left) and 3-month (right) predictive distributions on the aggregate loss amount (in log scale) in TOH level. Thick
vertical line: the observed log aggregate loss; thin dotted grey curve in the left panel: the result using Erlangmixture to fit severities
without log-transformation.

tail, indicating that the severities model overfits the tail. Based on the results, we conclude that our
proposed model is adequate to predict short term future losses.

7. Concluding remarks

In this paper, we propose a multivariate Cox model with the underlying intensity vector following
multivariate Erlang-HMM, which serves as a dynamical model for multivariate count processes. This
work is motivated by the complexities and heterogeneities of our OR data. We first provide a natural
interpretation of the proposed model via latent global environmental states. Various important prop-
erties, such as thinning, distributional and identifiability are investigated in the paper. The proposed
frequency model is fitted to the OR dataset though the proposed EM algorithm. We have evaluated
various goodness-of-fit tests, which unanimously suggest that the proposed model can cater for sev-
eral heterogeneities implied by the dataset. Also, the aggregate loss can also bemodeled throughfitting
loss severities by truncated log Erlangmixture distributions. Performing out-of-sample tests, we con-
clude that the proposed model can adequately predict short-term future losses, which is crucial for a
financial institution to set up adequate reserve capitals.

Since the proposed model is flexible to capture a broad range of behavior of multivariate count
data, it can be further applied to various actuarial areas other than OR. For example, it can potentially
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be used to solve a multidimensional stochastic claim reserving problem with dependent business
lines. In the insurance context, however, the claim frequencies and severities may become correlated.
Therefore, in our future work, we plan to extend the current model to cater for such dependence
structure, for example by introducing a state-dependent severity distribution in our HMM.
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Appendices

Appendix 1. The derivations for Remark 2.1
This appendix section shows that under the conditions described by Remark 2.1, the resulting model can still be con-
verted to our original proposed model. For demonstrative purpose, we only prove the result for the discretized event
arrival process described in Section 3.2. The likelihood function (defined in Section 3.3) under this model can be
written as the following, see Chapter 2.3.2 of Zucchini & MacDonald (2009) for more details:

LL(�; n1, . . . , nL) =
g∑

c1,...,cL=1
(δc1γc1,c2γc2,c3 · · · γcL−1,cL )

×
K∑

k1,...,kL=1

⎛
⎝πk1c1

P∏
p=1

p(np1;mk1c1p, θkc1p)

⎞
⎠ · · · (πkLcL

P∏
p=1

p(npL;mkLcLp, θkcLp))

=
∑

(k1,c1),...,(kL ,cL)∈B
(πk1c1δc1 )

P∏
p=1

p(np1;mk1c1p, θkc1p)

× (πk2c2γc1c2 )

P∏
p=1

p(np2;mk2c2p, θkc2p) · · · (πkLcLγcL−1cL )

P∏
p=1

p(npL;mkLcLp, θkcLp),

where B = {1, . . .K} × {1, . . . g} and � contains all parameters in the model. Note that the above likelihood is equiva-
lent to that of a g × K-state PascalHMMwith δ∗

(k,i) = πkiδi, γ ∗
(k,i),(k′ ,i′) = πk′i′γii′ and p∗

N1l ,...,NPl|(Kl ,Cl)=(k,i)(n1, . . . , nP) =∏P
p=1 p(np;mkip, θkip), so the result for the discretized event arrival process follows. Note that the result can be eas-

ily generalized to the whole (not necessarily discretized) process because a point process can be characterized by
finite-dimensional distributions (Theorem 1.12(b) of Karr 1991).

Appendix 2. The proof of Proposition 2.1
Before proving the desired result, we introduce Laplace functional transform (LFT), which is a function LN(f ) defined
on a point process N = {Xi, i = 1, 2, . . .}, given by

LN(f ) = E(e−
∑

i f (Xi)),
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where f is a non-negative function of the point process. One nice property of LFT is that it uniquely define point
processes. The proof of Proposition 2.1 is based on the computation of the LFT of the point process N:

LN(f ) = E[e−
∑

i f (Ti ,Zi)] = E

⎡
⎣ P∏
p=1

e−
∑

i f (T
p
i ,Z

p
i )

⎤
⎦ = E

⎡
⎣ P∏
p=1

E
[
e−

∑
i f (T

p
i ,Z

p
i ) | M̃1, . . . M̃P

]⎤⎦

= E

⎡
⎣ P∏
p=1

e−
∫
(1−e−f (t,p)) dM̃p

⎤
⎦ = E[e−

∫
(1−e−f (t,p)) dM],

where the third equality is resulted from the conditional independence among Ñp, p = 1, . . . ,P and the forth equality
follows by Example 1.15 and 1.16 in Karr (1991). Since LN(f ) has the same LFT as that generated by a Cox Process
driven by the random measureM, the result follows.

Appendix 3. The proofs for thinning properties
This appendix section proposes a more general result on the thinning properties of the proposed model, and use the
result obtained to prove Theorem 3.1.

Theorem A.1: Define N̄ a marked Cox process on R
+ × {1, . . . ,P} with a marking space of R

+ with intensity mea-
sures {�1(t), . . . ,�P(t)} and marks Xi, i = 1, 2, . . . , i.e. N̄ = ∑

i ε(Ti ,Zi ,Xi). The marks are independent but position-
dependent with density function pX | t,p(x). Consider the thinning probabilities φ̄(t, p, x) = 1{(t, p, x) ∈ D}, where D ⊆
R

+ × {1, . . . ,P} × R
+. Then, the resulting thinned point process N̄ ′ = ∑

i Uiε(Ti ,Zi ,Xi), where Ui ∈ {0, 1} is a ran-
dom variable conditionally independent given N̄ with P(Ui = 1 | N̄) = φ̄(Ti,Zi,Xi), is still a marked Cox process
with multivariate intensity vector �′(t) = {�1(t)P(X ∈ Dt,1 | t, 1)1{t ∈ TD,1}, . . . ,�P(t)P(X ∈ Dt,P | t,P)1{t ∈ TD,P}}
and independent yet position-dependent marks having density function (pX | t,p(x)/P(X ∈ Dt,p | t, p))1{x ∈ Dt,p}, where
Dt,p = {x ∈ R

∗ : (t, p, x) ∈ D} and TD,p = {t ∈ R
+ : ∃x s.t. (t, p, x) ∈ D}.

Proof: Adopting similar techniques as Theorem 3.1 of Badescu et al. (2016), which derives the thinning property under
univariate setting through analyzing the LFT of the thinned point process, we compute the LFT of N̄ ′ as

LN̄′ (f ) = LN̄ [− log(1 − φ̄(t, p, x)+ φ̄(t, p, x)e−f (t,p,x))]

= E[e
−∑P

p=1
∫
TD,p

(1−∫
R+ (1−φ̄(t,p,x)+φ̄(t,p,x)e−f (t,p,x))pX | t,p(x) dx)�p(t) dt]

= E[e
−∑P

p=1
∫
TD,p

(
∫
Dt,p

pX | t,p(x) dx−
∫
Dt,p

e−f (t,p,x)pX | t,p(x) dx)�p(t) dt]

= E[e−
∑P

p=1
∫
R+ (1−

∫
R+ e−f (t,p,x)(pX | t,p(x)/P(X∈Dt,p | t,p))1{x∈Dt,p} dx)�p(t)P(X∈Dt,p | t,p)1{t∈TD,p} dt].

From the above derivation, it can be seen fromExamples 1.16 and 1.28 in Karr (1991) that LN̄′ (f ) is the LFT of amarked
Cox process with intensity vector �′(t) = {�1(t)P(X ∈ Dt,1 | t, 1)1{t ∈ TD,1}, . . . ,�P(t)P(X ∈ Dt,P | t,P)1{t ∈ TD,P}}
and independent yet position-dependent marks having density function (pX | t,p(x)/P(X ∈ Dt,p | t, p))1{x ∈ Dt,p}, so
the result follows. �

For the proof of Theorem 3.1, choosing Dt,p = {x : x > ψ(p)} and 1{t ∈ TD,p} = 1 (since ψ(p) < ∞), we have
P(X ∈ Dt,p | t, p) = F̄X | p(ψ(p)) and 1{x ∈ Dt,p} = 1{x > ψ(p)}. Applying Theorem A.1, N̄′ is a marked Cox process
with piecewise constant intensities �′

lp = F̄X | p(ψ(p))�lp for p = 1, . . . ,P and the density of observed loss amounts
p′
X | p(x) = (pX | p(x)/F̄X | p(ψ(p)))1{x > ψ(p)}. Using the scaling properties of Erlang distributed random variables,
the desired state-dependent intensity density function can be obtained.

Appendix 4. Aggregated event process across all loss types
This appendix section investigates the properties of the aggregated event arrival process {Na(t), t ≥ 0} and proves
Equation (7) in Section 3.2.

Proposition A.1: Let Na = N(·, {1, . . . ,P}) be a point process on R
+, representing the number of events aggregated

across all loss types. Then, Na is a Cox process on R
+ driven by the random measure Ma(Aa) = ∫

Aa
∑P

p=1 �p(t) dt,
whereAa ⊆ R

+.
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Proof: The LFT of Na is given by

LNa (f ) = E[e−
∑

i f (Ti)] = E[e−
∑

i g(Ti ,Zi)] = LN(g)

= E[e−
∫
(1−e−g(t,p)) dM] = E[e−

∫
(1−e−f (t))

∑P
p=1 �p(t) dt] = E[e−

∫
(1−e−f (t)) dMa

]

where g(t, p) = f (t). The result follows since LNa (f ) is the LFT of a Cox process driven by the randommeasureMa. �

From Proposition A.1, it is concluded that the aggregated event arrival process {Na(t), t ≥ 0} is a univariate Cox
process governed by the intensity �a(t) = ∑P

p=1 �p(t), which is still a piecewise stochastic process with the random
intensity�a

l = ∑P
p=1�lp generated by Erlang-HMMdescribed by the previous subsection. If θip ≡ θ does not depend

on the loss type p for any i = 1, . . . , g and p = 1, . . . ,P, it is obvious that�a
l |Cl = i still follows Erlang distributionwith

shape parameter
∑P

p=1 mip and scale parameter θ . Therefore, the intensity �a(t) is still generated by Erlang-HMM. In
this case, we can say that the proposed multivariate Cox processes are ‘closed under aggregation’. However, if θip is not
a constant across loss types, the following proposition will be needed to determine the state conditional distribution of
the intensity�a

l . It is shown that the intensity is instead generated by Erlang Mixture-HMM.

Proposition A.2: The distribution of�a
l |Cl = i is given by

K�a
l |Cl=i(λ) =

∞∑
k1=mi1

· · ·
∞∑

kP=miP

ψkh(λ;
P∑

p=1
kp, θi)

=
∞∑
k=1

ψ̃kh(λ; k, θi)

where θi = min{θi1, θi2, . . . , θiP}, k = (k1, k2, . . . , kP), ψ̃k = ∑
k1+···+kP=k ψk

∏P
p=1 1{kp ≥ mip} and

ψk =
P∏

p=1

(
kp − 1
mip − 1

) (
θi

θip

)mip (
1 − θi

θip

)kp−mip

.

Proof: Applying Proposition 1 of Willmot &Woo (2015), we have

K�l1,...,�lP |Cl=i =
∞∑

k1=1

· · ·
∞∑

kP=1

pk
P∏

p=1
h(λp; kp, θi)

where

pk =
k1∑

b1=1

· · ·
kP∑

bP=1

P∏
p=1

1{bp = mip}
P∏

p=1

(
kp − 1
bp − 1

) (
θi

θip

)bp (
1 − θi

θip

)kp−bp

=
⎛
⎝ P∏

p=1
1{kp ≥ mip}

⎞
⎠ψk.

Therefore, the joint density of�l1, . . . ,�lP conditional on Cl = i can be also expressed by

K�l1,...,�lP |Cl=i =
∞∑

k1=mi1

· · ·
∞∑

kP=miP

ψk

P∏
p=1

h(λp; kp, θi).

Since the scale parameter θi in the expression above does not depend on the loss type p, the result follows by the addition
property of Erlang distributed random variables. �

Then, Equation (7) is just a direct consequence from Proposition A.2 and the law of total probability.

Appendix 5. The proof of model identifiability
Theorem 3.2 can be proved in the following 3 steps, under the condition that ξ1, . . . , ξg are distinct:

First, it can be proved that the class of finite mixture of univariate Pascal is identifiable. We follow Teicher (1963)
as the definition of identifiability for finite mixtures. Applying Theorem 2 of Teicher (1963) and similar procedures as
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Badescu et al. (2015) (but not exactly the same since it is assumed that the scale parameter θip depends on state and loss
type, instead of being a universal one), it suffices to show that:

• There exists a transform φξ (t) defined for t ∈ Sφξ such that the mapping M : Fξ → φξ is linear and one-to-
one. In this case, ξ = (m, θ) and the PGF is taken as the transform, so that φξ (t) = (1 + θ − θ t)−m and Sφξ =
(0, (1 + θ)/θ).

• There exists a total ordering of F such that Fξ1 ≺ Fξ2 implies: (i) Sφξ1 ⊆ Sφξ2 ; (ii) There exists t∗ ∈ S̄φξ1 (t∗
being independent of φξ2 ) such that limt→t∗ φξ2 (t)/φξ1 (t) = 0. To demonstrate this, we order the Pascal distri-
bution by p(n;m1, θ1) ≺ p(n;m2, θ2) when (θ1 < θ2) or (θ1 = θ2 andm1 > m2). If θ1 = θ2 = θ andm1 > m2,
choose t∗ = (1 + θ)/θ ∈ S̄φξ1 and hence

lim
t→t∗

φξ2

φξ1
= lim

t→t∗
(1 + θ − θ t)m1−m2 = 0.

If θ1 < θ2, choose t∗ = (1 + θ1)/θ1 ∈ S̄φξ1 and hence

lim
t→t∗

φξ2

φξ1
= lim

t→t∗
(1 + θ1 − θ1t)m1

(1 + θ2 − θ2t)m2
= 0.

Second, it can be proved that the class of finite mixture of P-fold-product of Pascal distribution (i.e.: independent mul-
tivariate Pascal) is identifiable. It is a direct consequence using the identifiability result of univariate case, and applying
Theorem 2 of Teicher (1967).

Third, it can be proved that the class ofmultivariate Pascal HMM is identifiable. Some related arguments forNormal
HMM are discussed in Section 12.4.4 of Cappé et al. (2005). From Equation (6), we have

P(N l = nl; δ,�, ξ , g) =
g∑

i=1
πli

P∏
p=1

p(np;mip, θip),

which is still a multivariate Pascal mixture. Because of its identifiability, P(N l = nl; δ∗,�∗, ξ∗, g∗) = P(N l =
nl; δ,�, ξ , g) implies ξ∗

i = ξc(i) for all i = 1, . . . , g if π∗
li > 0, where c : {1, . . . , g∗} �→ {1, . . . , g} and c(1), . . . , c(g∗) are

distinct. Denote B∗
l = {i : π∗

li > 0}. Since the above result holds for any l = 1, 2, . . . and
⋃∞

l=1 B
∗
l = {1, . . . , g∗} (irre-

ducibility condition), we have g∗ ≤ g and ξ∗
i = ξc(i) for i = 1, . . . , g∗. Same arguments also yield g ≤ g∗ and ξi = ξ∗

c∗(i)
for i = 1, . . . , g. Therefore, we have g∗ = g and ξ∗

i = ξc(i) for i = 1, . . . , g, where c(·) is a permutation of {1, . . . , g}.
Consider L= 1, Equation (6) shows that

P(N1 = n1; δ,�, ξ , g) =
g∑

i=1
δ(i)

P∏
p=1

p(n1p;mip, θip),

which is a finite mixture of P-variate Pascal distribution. Using the identifiability result of finite mixture and knowing
that ξ∗

i = ξc(i) for i = 1, . . . , g, we have P(N1 = n1; δ∗,�∗, ξ∗, g∗) = P(N1 = n1; δ,�, ξ , g) implies δ∗(i) = δ(c(i)) for
i = 1, . . . , g.

Consider a general L ≥ 2, we have the equation similar to Equations (5) and (6)

P(N(L) = n(L); δ,�, ξ , g) =
∑

i∈{1,...,g}L
δ(i1)

L∏
l=2

γil−1il

L∏
l=1

P∏
p=1

p(nlp;milp, θilp),

where i = {i1, . . . , iL}. It is a finite mixture of LP-variate Pascal distribution and is still identifiable. Consider L= 2, we
haveP(N(2) = n(2); δ∗,�∗, ξ∗, g∗) = P(N(2) = n(2); δ,�, ξ , g) implies δ∗(i1)γ ∗

i1i2 = δ(c(i1))γc(i1)c(i2). Therefore γ ∗
i1i2 =

γc(i1)c(i2) for all i2 = 1, . . . , g if δ∗(i1) �= 0, i.e. for i1 ∈ B∗
1 . Consider L= 3, P(N(3) = n(3); δ∗,�∗, ξ∗, g∗) = P(N(3) =

n(3); δ,�, ξ , g) implies δ∗(i1)γ ∗
i1i2γ

∗
i2i3 = δ(c(i1))γc(i1)c(i2)γc(i2)c(i3). Therefore, γ ∗

i2i3 = γc(i2)c(i3) for all i2 = 1, . . . , g if
there exists i1 such that δ∗(i1)γ ∗

i1i2 �= 0, i.e. for i2 ∈ B∗
2 . Similar arguments hold for L> 3 by induction. Therefore,

γ ∗
ij = γc(i)c(j) for all i ∈ ⋃∞

l=1 B
∗
l = {1, . . . , g} and j = 1, . . . , g.

Appendix 6. A simulation study
While the operational risk data we studied contains 10 UOMs, it is not unusual that a financial institution consists of
more than 10 UOMs (see e.g. Peters et al. 2011 mentions that an OR model should be checked with 8 business lines by
7 event types). To this end, we perform a simulation study to access the performance of the proposed frequency model
in fitting high-dimensional dataset. Note that the simulation study below is performed several times. Obtaining similar
results, we only present one of the replications for conciseness purpose.
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Figure A1. Left: The ACF of number of losses by UOM for the simulated data. Right: The inter-UOM correlation histogram of
frequencies. For each p �= p′ , the correlation coefficient between the loss frequencies of UOM p and p′ is computed.

Figure A2. Ordinary pseudo residuals for the fitted model from the simulated data.

In this study, we generate the marginal frequenciesNp := (N1p, . . . ,NLp)with p ∈ {1, . . . ,P} from a negative bino-
mial integer-valued first order autoregressivemodel (NB-INAR(1)) (Al-Osh&Aly 1992).We first define the probability
function of a random variable N ∼ NB(r,β):

P(N = n) =
(
n + r + 1

n

) (
1

1 + β

)r (
β

1 + β

)n
, n = 0, 1, . . . .

Under the NB-INAR(1), N1p ∼ NB(νp, 1/α(1 − γp)) and for l = 2, 3, . . . , L,

Nlp = α ◦ N(l−1)p + εlp, (A1)

where α ◦ N(l−1)p |B(N(l−1)p) ∼ NB(B(N(l−1)p), 1/α) and B(N(l−1)p) |N(l−1)p independently follows binomial distri-
bution with size N(l−1)p and probability αγp. Under this setting, Nlp ∼ NB(νp, 1/α(1 − γp)) for all l = 1, . . . , L and
p = 1, . . . ,P. Also, Np has a geometrically decaying ACF ρ(k) = γ k

p .
The simulation model is well motivated, not only because NB distribution is a widely adopted OR frequency model

under the LDA framework, but also because it caters for serial correlations of loss frequencies that are implied by the real
OR dataset (see the middle panel of Figure 1). For the parameters, we choose a fixed α = 0.5 but different (random)
γp and νp across UOMs to allow for a variety of serial correlation structures and expected number of losses among
different UOMs.

The dependence of loss frequencies among UOMs is modeled by a Gaussian copula, which is a widely used
dependence model for OR (Frachot et al. 2001). The copula function is

C(u1, . . . , uP) = 
�(

−1(u1), . . . ,
−1(uP)) (A2)
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where 
 is a standard normal cdf, 
� is a joint multivariate normal cdf with mean 0, covariance matrix � with
diag(�) = 1. For p �= p′, we choose different (random) �pp′ > 0 when UOM p and p′ belong to the same business
line or event type, and�pp′ = 0 otherwise.

Overall, the dataset is simulated as follows. Firstly, simulate L independent P-variate normal vectors from the
multivariate normal distribution and apply the normal cdf to transform them into Uniform[0, 1] random variables
{(ûl1, . . . , ûlP); l = 1, . . . , L}. Secondly, for l = 1, . . . , L and p = 1, . . . ,P, simulate n̂lp by inverting the cdf n̂lp =
F−1(ûlp |N(l−1)p = n̂(l−1)p), where F is the cdf of Nlp |N(l−1)p that can be computed analytically or by simulation.

Choosing L= 60 and P= 56, the simulated loss frequencies are both serially and inter-UOMcorrelated (Figure A1).
Also, the average number of losses spanswidely from3.25 to 236.98 acrossUOMs. These alignwith the overall structure
of the real OR dataset.

The fitted model contains nine states. To analyze the overall fitting quality, we again perform the ordinary pseudo-
residual test similar to that performed to the real OR dataset. From Figure A2, the residuals are normal-like distributed
with autocorrelations mostly within the 95% confidence interval. Hence, the fitted model is adequate in capturing the
distribution and serial-correlation structures of the simulated dataset. Further, we perform an inter-unit correlation
test similar to that in Figure 6. Under the 56 × 55/2 = 1, 540 UOM combinations, only 118 (7.66%) and 68 (4.42%)
of the empirical correlations fall beyond the 90% and 95% confidence intervals respectively generated by simulations
from the fitted model. As a result, the model also well fits the inter-UOM correlation structures.
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