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ABSTRACT

This paper focuses on the estimation and application aspects of the Erlang
count logit-weighted reduced mixture of experts model (EC-LRMoE), which
is a fully flexible multivariate insurance claim frequency regression model. We
first prove the identifiability property of the proposed model to ensure that it is
a suitable candidate for statistical inference. An expectation conditional maxi-
mization (ECM) algorithm is developed for efficient model calibrations. Three
simulation studies are performed to examine the effectiveness of the proposed
ECM algorithm and the versatility of the proposed model. The applicability
of the EC-LRMoE is shown through fitting an European automobile insur-
ance data set. Since the data set contains several complex features, we find it
necessary to adopt such a flexible model. Apart from showing excellent fitting
results, we are able to interpret the fitted model in an insurance perspective and
to visualize the relationship between policyholders’ information and their risk
level. Finally, we demonstrate how the fitted model may be useful for insurance
ratemaking.
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Erlang count models, expectation conditional maximization algorithm, logit-
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1. INTRODUCTION

Claim frequency is one of the two major components under the fre-
quency/severity framework used in Property & Casualty (P&C) insurance for
ratemaking purposes. While frequency modeling helps insurers gain insight
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on the claim characteristics, it is also useful for the risk management and
regulatory requirements (Frees et al., 2016). Modeling claim frequencies has its
own challenges that occur due to the fact that one needs to consider not only
the effect of policyholders’ risk profile to the claim frequency distribution, but
also the dependence among various types of claims. In order to capture the
aforementioned features, it is very important to develop a flexible multivariate
frequency regression model that is well justified to be used in practice.

In Fung et al. (2019a), we proposed the logit-weighted reduced mixture of
experts model (LRMoE) for multivariate claim frequency/severity regression.
The model contains two components: a gating function that governs the prob-
ability of each policyholder being classified into different latent homogeneous
subgroups; and an expert function that determines the frequency/severity dis-
tributions given that a policyholder belongs to a particular subgroup. By letting
the gating functions (but not the expert functions) depend on the covariates,
the LRMoE is a reduced version of the generalized mixture of experts model
(GMoE), which is first introduced by Jacobs et al. (1991). The LRMoE enjoys
several desirable properties. It is dense in the space of any frequency/severity
regression distributions under mild restrictions and with suitably chosen expert
functions (called the “denseness condition”), meaning that it can be fully
flexible in capturing the underlying distribution, dependence, and regression
patterns. As a result, the input data and the output model will share simi-
lar characteristics. Also, the LRMoE is closed under response and covariate
marginalization, and has reduced-form expressions for the moments and mea-
sures of associations, making it mathematically tractable in terms of premium
and risk measure calculations.

After identifying a class of multivariate regression models that is theoret-
ically justified, the remaining problem is to choose an appropriate frequency
expert function, which is crucial because it determines the flexibility, inter-
pretability, mathematical tractability, and the computational efficiency of the
LRMoE. In this paper, we propose the use of the Erlang count (EC) distribu-
tion as a suitable expert function that makes the resulting LRMoE (called the
EC-LRMoE) possess all of the above-mentioned desirable properties. Further,
since the distribution function of the EC model exhibits an analytical form, the
computational cost for model calibration is controllable.

In this paper, we first focus on a statistically very important property
of the class of EC-LRMoE: identifiability. We prove that the EC-LRMoE
is identifiable up to translation and permutation. Identifiability ensures that
model fitting is unique and avoids multiple interpretations on a fitted model.
Besides these, unidentifiability will cause problems in statistical inference, such
as to meaningfully determine the standard errors of the fitted parameters.
Identifiability problem for finite mixture models was first formulated in Teicher
(1963). Cappé et al. (2005) and Fung et al. (2019b) extended the identifiability
concept to the hidden Markov model. For example, the phase-type distribu-
tion (Asmussen et al., 1996), which is widely considered as a flexible model,
is unidentifiable. Such a problem becomes more challenging for the LRMoE.
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Jiang and Tanner (1999) demonstrated that the class of mixture of experts
models (MoE) not only inherits the permutational invariance issue from finite
mixture models, but also is subjected to the translational invariance issue, so
that the LRMoE is generally not fully identifiable. Yet, they show that under
certain choices of exponential class expert functions, the MoE is still identi-
fiable up to translation and permutation. While EC distribution is not in the
exponential class, this paper shows that such an identifiability property will
hold for the EC-LRMoE, making the model appealing for the purpose of
statistical inference.

Another very important feature of our proposed EC-LRMoE class is the
computational tractability. To this end, in this paper we develop an effi-
cient and easily implementable algorithm with reasonable computational costs
for the model calibration. For finite mixture models, a popular and effi-
cient approach for parameter estimation is the expectation-maximization (EM)
algorithm (McLachlan and Peel, 2000). In a regression setting, Wedel and
DeSarbo (1995) formulated the EM algorithm for the finite mixture of gen-
eralized linear models (GLMs), and Badescu et al. (2015) integrated the usage
of built-in statistical computing functions (e.g., GLM function in R) to such
an algorithm, making the procedures easy to be implemented. Parameter esti-
mation for the EC-LRMoE through the EM algorithm is much more difficult,
as the standard EM algorithm requires a computationally undesirable high-
dimensional optimization in the M-step. Therefore, in this paper we propose
to use the expectation conditional maximization (ECM) algorithm by Meng
and Rubin (1993). This separates the M-step into several substeps so that the
problem is reduced to several computationally manageable lower-dimensional
convex optimizations. In addition, we need to estimate the integer-valued shape
parameters in the EC distributions. Motivated by Gui et al. (2018), we pro-
pose integrating a similar local search strategy into the M-step to minimize
the computational burden. All the above challenges are solved in this paper,
as all the steps in the proposed ECM algorithm either involve analytical for-
mulas or only require low-dimensional convex/concave optimizations. Hence,
we can easily and efficiently estimate the model parameters under controllable
computational costs.

By being interpretable, by possessing all the desirable properties mentioned
above and by having an efficient and easy-to-implement algorithm for model
calibration, the EC-LRMoE is deemed to be an appropriate multivariate claim
count regression model. In the last part of the paper, we demonstrate the prac-
tical necessity and applicability of using such a complex class of models. The
insurance claim count data set we obtained from an European major automo-
bile insurer exhibits a few unusual features. The mean, dispersion ratio, and tail
behavior of the claim counts differ greatly between the two types of coverage.
Also, there exist some nonlinear relationships between the response variables
and the covariates. We first examine the use of some classic actuarial models,
such as the negative binomial (NB) GLM and its zero-inflated version, to fit
the marginals of the data set. However, the fitting results are relatively poor,
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showcasing the need of adopting a highly flexible model. On the contrary, the
EC-LRMoE captures well a very wide range of complicated structures implied
by the data set.

The rest of the paper is organized as follows. Section 2 reviews the LRMoE
and the EC expert function proposed in Fung et al. (2019a). The identifiabil-
ity problem for the proposed model is discussed in Section 3. In Section 4, we
present the ECM algorithm to estimate the parameters of the proposed model.
Through three simulation studies, in Section 5 we confirm the adequacy of
the proposed ECM algorithm, gain insights on the identifiability problem in
practice, and verify the full versatility of the proposed model. The application
of the proposed model to a real automobile insurance data set is discussed in
Section 6. Not only do we analyze the fitted model with interpretations and
visualizations, but we also demonstrate the predictive ratemaking power of the
fitted model. The paper is concluded in Section 7 with a brief review of our find-
ings, identifying some practical concerns and providing some future research
directions.

2. THE EC-LRMOE REGRESSION MODEL

In this section, we provide a review of the Erlang count logit-weighted reduced
mixture of experts model (EC-LRMoE) proposed in Fung et al. (2019a). The
proofs and derivations related to the model and the motivations of using such
a model are discussed in detail in that paper.

Suppose that the insurer issues n bundled insurance contracts, each of which
consists of K types of coverage (or called “claim types”). For policyholder
i ∈ {1, . . . , n}, denote Y i = (Yi1, . . . ,YiK)T and y= ( yi1, . . . , yiK )T , respectively,
as the number of claims random vector (response count variable) and the corre-
sponding realization. Also, define xi = (xi0, xi1, . . . , xiP)T as the policyholder’s
risk profile (covariates), where xi0 = 1. We assume that the policyholders are
independent of each other.

2.1. Logit-weighted reduced mixture of experts model (LRMoE)

Under the LRMoE, the probability mass function (pmf) of Y i given xi is

h( yi; xi, α,�, g)=
g∑
j=1

πj(xi; α)
K∏
k=1

f ( yik; θ jk), (2.1)

where g is the number of latent classes, πj(xi; α) (the gating function) is the
mixing weight for the jth class, α = (α1, . . . , αg) and αj = (αj0, . . . , αjP)T ∈RP+1
are the parameters for the regressions of the mixing weights, f ( yik; θ jk) (the
expert function) is the pmf of a count distribution with parameters θ jk, and�=
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{θ jk; j= 1, . . . , g, k= 1, . . . ,K}. Moreover, we choose the logit-type gating
function for πj(xi; α):

πj(xi; α)=
exp{αT

j xi}∑g
j′=1 exp{αT

j′ xi}
, j= 1, . . . , g. (2.2)

Several features and interpretations of the LRMoE in an insurance context
are now in place.

• The entire population of policyholders is classified into g unobservable
subgroups.
• Policyholder’s risk level varies among different subgroups, but is homoge-

neous within a subgroup.
• The probability that a policyholder belongs to particular subgroup depends

on the covariates, so that policyholders with more undesirable characteris-
tics are more likely to be classified into a more risky subgroup, that is, a
subgroup that results to more claims on average.
• The regression coefficients α for the gating functions represent how the

covariates impact subgroup assignments. Large positive regression coeffi-
cient αjp represents a higher chance for an individual to be classified as
subgroup j when xip is large.
• Conditioned on the unobservable subgroups, the number of claims for a

given policyholder is independent among the K types of coverages. On the
other hand, the number of claims is unconditionally dependent.

Remark 2.1. The LRMoE includes covariates only for the mixing weights (gating
functions). Alternatively, one may consider the GMoE, which also allows regres-
sion relationships for the count distributions (gating functions). However, Fung
et al. (2019a) has shown several benefits of using the LRMoE over the GMoE.
Firstly, the model flexibility is not impeded when the GMoE is simplified to the
LRMoE. Secondly, the LRMoE involves less parameters and contains a simpler
mathematical form compared to the GMoE. Thirdly, several desirable mathemat-
ical and statistical properties of the LRMoE cannot be satisfied by the GMoE.
Overall, the LRMoE is deemed to be a more parsimonious model than the GMoE.

Remark 2.2. The LRMoE captures the dependence structure among claim types
through introducing a mixture on the conditionally independent distributions,
which is very different from the classical dependence models (such as copulas)
commonly adopted in actuarial practice.We would regard the LRMoE as a better
alternative to copula modeling in terms of the flexibility of capturing dependence
structures. The denseness property presented in Section 2.3 guarantees that the
proposed model can capture any dependence structures. In contrast, there are
specified functional forms for the parametric copulas, limiting its model flexibil-
ity. Lee and Lin (2012) also discussed the superiority of the multivariate mixture
models over the copula models.
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2.2. Erlang count expert function

Following the discussions on the frequency expert functions in Section 5.1 of
Fung et al. (2019a), we propose an EC distribution as the expert function f . The
frequency distribution is modeled through the waiting times {τs; s ∈N} between
the (s− 1)th and the sth event. Also, let νs =∑s

s′=1 τs′ be the time of occurrence
of the sth event. Then, the number of events occurring up to time T is given by
NT = sups∈N{s; νs ≤T}. EC model assumes τs iid following Erlang distribution
with E[τs]=m/β and Var[τs]=m/β2. Without much loss of generality and for
simplicity, we assume T = 1. Then, the expert function is written as

f ( y; θ) :=P(N1 = y;m, β)= e−β

m−1∑
b=0

βmy+b

(my+ b)! , y= 0, 1, 2, . . . , (2.3)

where θ = (m, β). In general insurance, conditioned on the subgroup of the pol-
icyholder, the inter-arrival time of the claims is independent Erlang distributed.
Also, the cumulative distribution has an analytical formula:

F( y; θ) :=P(N1 ≤ y;m, β)= 1− e−β

my−1∑
b=0

βb

b! , y= 0, 1, 2, . . . (2.4)

Winkelmann (1995) showed that a renewal model can cater for under-dispersed
and equi-dispersed discrete data. From Proposition 4.5 of Fung et al. (2019a),
mixture modeling can increase the dispersion ratio of a distribution. Therefore,
the resulting EC-LRMoE can also capture over-dispersed distributions.

Remark 2.3. If m= 1, the resulting distribution becomes the Poisson distribution,
and the corresponding claim arrival process is a homogeneous Poisson process
with claim rate β. As a result, the proposed EC-LRMoE contains the class of the
Poisson-LRMoE.

Remark 2.4. Under the EC model, m is assumed to be a positive integer. If the
integer assumption is removed, it will result to Gamma Count model. However,
there are no closed-form representations of the probability functions for Gamma
Count model. This will increase the computational burden for model fitting.
Further, since the EC expert function already fulfills the denseness condition,
removing the integer assumption will not improve the flexibility of the corre-
sponding LRMoE. Therefore, it is unnecessary to adopt the Gamma Count expert
function.

Remark 2.5. Since the EC model can be interpreted as a renewal process, we can
view T as the policyholder’s exposure. The assumption of T = 1 implies that every
policyholder has the same exposure period. Unlike the real automobile insurance
data set, we will analyze in Section 6, which consists of 1-year contracts only, it
is possible in practice that the contract periods are different among policyholders.
In this case, our model must be adjusted to cater for the exposure information.
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One method is to treat it as a covariate for the gating function, but the resulting
model will lose some interpretability. Alternatively, one can remove the assump-
tion of T = 1. Then, the density of the EC in Equation (2.3) can be easily modified
as

f ( y; θ ,T) :=P(N1 = y;m, β,T)= e−βT
m−1∑
b=0

(βT)my+b

(my+ b)! , y= 0, 1, 2, . . .

(2.5)
The computational aspect of introducing exposures is discussed in Remark 4.2.
We find that there are no computational implications by removing such an
assumption.

2.3. Desirable properties

In the model fitting perspective, it is crucial that the proposed model has a
full flexibility to capture any distribution, dependence, and regression patterns,
such that the data generated from the fitted model will be highly synchronous
to the input data, even if the characteristics of the data set are highly compli-
cated. In other words, the class of candidate models is “dense” in the space of
all possible distributions. We first provide definitions of some relevant terms.
Note that we have dropped the subscript i for xi (only) in this subsection to
allow for a cleaner presentation and make the notations coherent to that from
Fung et al. (2019a).

Definition 2.1 (Regression distribution). A class of regression distributions C(A)
(whereA is the support of the covariates x) is a set, where each element F(A) :=
{F(·; x); x ∈A} in C(A) is itself a set of probability distributions.

Definition 2.2 (Denseness property in the context of multivariate regression dis-
tributions). Let A be the support of the covariates x. Also, denote C1(A) and
C2(A) as two classes of regression distributions. C1(A) is dense in C2(A) if
and only if for all F(A) ∈ C2(A), there exists a sequence of regression distribu-
tions {Gn(A)}n=1,2,... with Gn(A) ∈ C1(A) for n= 1, 2, . . . such that for all x ∈A,
Gn( y; x)

D−→ F( y; x) as n→∞. If the convergence Gn( y; x)→ F( y; x) is uniform
on x ∈Ay for any y, where Ay is the set of x such that y is a continuity point of
F( y; x), then C1(A) is uniformly dense in C2(A).

The denseness property of the proposed EC-LRMoE below is proved in
Fung et al. (2019a):

Theorem 2.1. Let G1(A) be a class of multivariate frequency regression dis-
tributions. For each element G∗(A) ∈ G1(A) where G∗(A) := {G∗(·; x); x ∈A},
{G∗(·; x)}x∈A is tight and G∗( y; x) is Lipschitz continuous on x ∈A for all y.
Assume that A= {1} × [mmin,mmax]P, where mmin and mmax are finite. Then, the
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class of EC-LRMoE defined in Equations (2.1)–(2.3) with covariates x ∈A is
uniformly dense in G1(A).

Note that any assumptions/restrictions imposed in the theorem are very
mild and are not of any concern in practice. Apart from the denseness prop-
erty, the EC-LRMoE also enjoys several desirable distributional and moment
properties: it is closed under response and covariates marginalization, and var-
ious moments/measures of association corresponding to the proposed model
can be expressed in a simple and easily computable form. For example, the
mean number of claims for the kth type of coverage is given by

E [Yk | x]=
g∑
j=1

πj(x; α)
∞∑
l=0

⎛
⎝1− e−βjk

mjkl−1∑
b=0

βb
jk

b!

⎞
⎠, (2.6)

where θ jk := (mjk, βjk) are the EC parameters for the jth subgroup and the kth
type of coverage. Based on the covariate marginalization property, we also
obtain

E [Yk | xc]=
g∑
j=1

π̃j(xc; α)
∞∑
l=0

⎛
⎝1− e−βjk

mjkl−1∑
b=0

βb
jk

b!

⎞
⎠. (2.7)

Here, xc is a subset of the complete covariates x, π̃j(xc; α) :=
∫
xu∈Du πj(x;

α)dW (xu; xc) is the covariate-marginalized weight, where xu := x\xc represents
the missing covariates,Du is the support of xu, andW (xu; xc) is the distribution
of xu conditioned on xc. These properties are crucial in insurance applications
in terms of premium and risk measure calculations. Detailed descriptions and
the derivations of these properties can be found in Fung et al. (2019a).

3. MODEL IDENTIFIABILITY

In the modeling perspective, it is desirable that the model is identifiable, that
is, there is a one-to-one mapping between regression distributions and model
parameters. Otherwise, there may be issues for statistical inference and there
may exist multiple interpretations for the same model. This section discusses
the identifiability issues of the proposed EC-LRMoE, following the logic of
Jiang and Tanner (1999).

As discussed by Jiang and Tanner (1999), it is impossible for the general
class of the LRMoE to be identifiable because of the following two invariance
properties:

1. Permutational invariance: From Equation (2.1), it is easy to see
that hY ( y; xi, α,�, g)=∑g

j=1 πj(xi; α)
∏K

k=1 f ( yik; θ jk)=
∑g

j=1 πc( j)(xi; α)∏K
k=1 f ( yik; θ c( j)k), where {c(1), . . . , c(g)} is a permutation of {1, . . . , g}.

Therefore, the model is invariant under the transformation αj 	→ αc( j) and
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θ jk 	→ θ c( j)k. Such invariance is also common in many models such as finite
mixture models and hidden Markov models.

2. Translational invariance: From Equation (2.2), we can see that

πj(xi; α)=
exp{αT

j xi}∑g
j′=1 exp{αT

j′ xi}
= exp{(αj + δ)Txi}∑g

j′=1 exp{(αj′ + δ)Txi} ,

where δ is a column vector with length P+ 1. Hence, the model is invariant
under the transformation αj 	→ αj + δ.

The above issues can be addressed by introducing an ordering on �j =
(αj, θ j) with θ j = (θ j1, . . . , θ jK), assigning subgroup indexes based on the order
of �j and fixing αj′ = 0 for one of the j′ ∈ {1, . . . , g}. Without addressing these
issues, however, it is still interesting to see if any model unidentifiability (two
different sets of parameters lead to the same regression distributions) of the
LRMoE can only be resulted from the translational and permutational invari-
ance properties, that is, the LRMoE is identifiable up to translation and
permutation. Such a nontechnical statement is defined rigorously below in
accordance with Jiang and Tanner (1999).

Definition 3.1. Let G be the class of LRMoEwith the pmf in the form of Equation
(2.1). Each element G�,g ∈ G is a regression distribution with covariates xi ∈�,
parameter setting�= (α,�), and the number of latent classes g, where�⊆R

P+1

is the support of xi. A subclass Ḡ ⊆ G is identifiable up to translation and permu-
tation whenever G�∗,g∗ ,G�,g ∈ Ḡ, (α∗j1 , θ∗j1 ) �= (α∗j2 , θ

∗
j2
) for all j1 �= j2 ∈ {1, . . . , g∗}

and (αj1 , θ j1 ) �= (αj2 , θ j2 ) for all j1 �= j2 ∈ {1, . . . , g} , if
g∗∑
j=1

πj(xi; α∗)
K∏
k=1

f ( yik; θ
∗
jk)=

g∑
j=1

πj(xi; α)
K∏
k=1

f ( yik; θ jk), (3.1)

for all xi ∈� and yi ∈ {0, 1, . . .}K, it implies that g∗ = g and (α∗j , θ
∗
j )= (αc( j) +

δ, θ c( j)) for j= 1, . . . , g, where {c(1), . . . , c(g)} is a permutation of {1, . . . , g} and
δ is a vector that is constant across all j= 1, . . . , g.

Remark 3.1. In Definition 3.1, the condition that (αj1 , θ j1 ) �= (αj2 , θ j2 ) (and similar
for (α∗j , θ

∗
j )) is necessary, or otherwise G�,g can be easily reduced to the same

regression distribution with a smaller number of components. Also, Equation (3.1)
means that the pmf of G�,g matches with that of G�∗,g∗ .

After presenting what is meant by “identifiable” for the general class of
LRMoE, we now demonstrate the identifiability property of the proposed EC-
LRMoE.

Theorem 3.1. The EC-LRMoE is identifiable up to translation and permutation,
subject to the restriction that θ 1, . . . , θ g are distinct and � spans RP.
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Proof. We follow the three-step approach proposed by Fung et al. (2019b)
to prove the identifiability property.

First, it can be proved that the class of finite mixture of univariate EC is
identifiable. Applying Theorem 2 of Teicher (1963), it suffices to show that

1. There exists a transform φξ (t) defined for t ∈ Sφξ
such that the mappingM :

Fξ→ φξ is linear and one-to-one:
In this case, ξ = (m, β) and the probability generating function is taken as
the transform, so that we have

φξ (t)=
∞∑
y=0

e−t
1/mβ

m−1∑
i=0

(t1/mβ)my+i

(my+ i)! t
−i/me(t

1/m−1)β .

The support of t is Sφξ
= (0,∞). Note that when t> 1, we have the following

inequalities:

e(t
1/m−1)βt−1 ≤ φξ (t)≤ e(t1/m−1)β .

2. There exists a total ordering of F such that Fξ1 ≺ Fξ2 implies: (i) Sφξ1
⊆

Sφξ2
; (ii) There exists t∗ ∈ S̄φξ1

(t∗ being independent of φξ2 ) such that
limt→t∗ φξ2 (t)/φξ1 (t)= 0:
To demonstrate this, we order the EC distribution by f ( y;m1, β1)≺
f ( y;m2, β2) when (m1 <m2) or (m1 =m2 and β1 > β2). Choosing t∗ =+∞∈
S̄φξ1

, we have

lim
t→t∗

log
[
φξ2 (t)
φξ1 (t)

]
≤ lim

t→t∗
(β2t1/m2 − β1t1/m1 + log t)+ const.=−∞.

Second, from the identifiability result of the univariate EC finite mixture
and Theorem 2 of Teicher (1967), the class of finite mixtures of multivariate
EC is identifiable.

Finally, we will prove the identifiability for the EC-LRMoE. The sec-
ond step implies that if Equation (3.1) holds, then θ∗j = θ c( j) and πj(xi; α∗)=
πc( j)(xi; α) for j= 1, . . . , g, since πj(xi; α∗)> 0. We have

exp{α∗Tj xi}∑g
j′=1 exp{α∗Tj′ xi}

= exp{αT
c( j)xi}∑g

j′=1 exp{αT
c( j′)xi}

, for j= 1, . . . , g. (3.2)

Choosing j1, j2 ∈ {1, . . . , g}, plugging them into Equation (3.2) and taking
division across the two equations obtained and taking logarithm, we have

(α∗j1 − α∗j2 )
Txi = (αc( j1) − αc( j2))

Txi,

for all j1, j2 = 1, . . . , g and x ∈�. Since � spans R
P+1, we have α∗j1 − αc( j1) =

α∗j2 − αc( j2) for all j1, j2 = 1, . . . , g. Therefore, α∗j − αc( j) := δ = const. for all j=
1, . . . , g. �
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4. PARAMETER ESTIMATION: AN ECM ALGORITHM

In finite mixture-related models, a common approach for parameter estima-
tion is to apply an EM algorithm (see e.g., Dempster et al., 1977; McLachlan
and Peel, 2000). In MoE, however, the M-step requires optimization of a non-
concave function over all regression coefficients α, which is computationally
undesirable. A possible solution is to divide the M-step into several substeps
and optimize a more mathematically tractable function over a lower dimen-
sional space in each substep, which is possible using the ECM algorithm
proposed in Meng and Rubin (1993).

We now present an ECM algorithm to fit the proposed model
(Equation 2.1) to data. Assume that there are n independent observations
{(Y i, xi); i= 1, . . . , n}. Hereafter, denote y := {y1, . . . , yn} as all the response
variables and x := {x1, . . . , xn} as all the covariates. g is fixed at each ECM
run. Its adjustments will be addressed later in this section. The parameters to
be estimated are �= (α,�). Because of the concern of translational invariance
for regression coefficients α, we fix αg = 0. The log-likelihood of observed data
is given by

l(�; y, x)=
n∑
i=1

log

⎡
⎣ g∑

j=1
πj(xi; α)

K∏
k=1

f ( yik; θ jk)

⎤
⎦. (4.1)

To formulate the ECM algorithm, as usual we introduce a latent ran-
dom vector Zi = (Zi1, . . . ,Zig)T such that Zij = 1 if the observation yi
comes from the jth component and Zij = 0 otherwise for i= 1, . . . , n. As
a result, Z1, . . . ,Zn are independently following a multinomial distribu-
tion Multig(1, {π1(xi; α), . . . , πg(xi; α)}). The complete data log-likelihood is
given by

l(�; y, x,Z)=
n∑
i=1

g∑
j=1

Zij

(
log πj(xi; α)+

K∑
k=1

log f ( yik; θ jk)

)
. (4.2)

4.1. E-step

At the tth iteration, the expectation of the complete data log-likelihood given
the observed data is

Q(�; y, x,�(t−1))=E[l(�; y, x,Z)|y, x,�(t−1)]

=
n∑
i=1

g∑
j=1

z(l)ij

(
log πj(xi; α)+

K∑
k=1

log f ( yik; θ jk)

)
, (4.3)

where, for i= 1, . . . , n and j= 1, . . . , g, z(t)ij =E[Zij|y, x,�(t−1)] under the EC-
LRMoE is expressed as
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z(t)ij =
πj(xi; α(t−1))

∏K
k=1 f ( yik; θ

(t−1)
jk )∑g

j′=1 πj′(xi; α(t−1))
∏K

k=1 f ( yik; θ
(t−1)
j′k )

. (4.4)

4.2. CM-step

The goal of the CM-step is to maximize Q(�; y, x,�(t−1)) with respect to
�. However, it is too computational costly to directly find the global max-
imum. Instead, we aim to use a computational effective algorithm to find a
near-maximum to update the parameters �(t) such that Q(�(t); y, x,�(t−1))≥
Q(�(t−1); y, x,�(t−1)). It follows from Equation (4.3) that Q(�; y, x,�(t−1)) can
be decomposed into two parts, Q(t)

α and Q(t)
� , such that

Q(�; y, x,�(t−1))=Q(t)
α +Q(t)

� , (4.5)

where

Q(t)
α =

n∑
i=1

g∑
j=1

z(t)ij log πj(xi; α)=
n∑
i=1

g∑
j=1

z(t)ij

⎡
⎣αT

j xi − log (
g∑

j′=1
exp{αT

j′ xi})
⎤
⎦,
(4.6)

and

Q(t)
� =

g∑
j=1

K∑
k=1

n∑
i=1

z(t)ij log f ( yik; θ jk)=
g∑
j=1

K∑
k=1

Q(t)
θ jk

(4.7)

with

Q(t)
θ jk
=

n∑
i=1

z(t)ij

⎡
⎣−βjk + log

⎛
⎝mjk−1∑

b=0

β
mjkyik+b
jk

(mjkyik + b)!

⎞
⎠
⎤
⎦. (4.8)

Clearly, Q(t)
α depends only on α, Q(t)

� depends only on �, and Q(t)
θ jk

depends only
on θ jk. As a result, the problem is reduced to separately maximize the objective
functions Q(t)

α (with respect to α) and Q(t)
θ jk

(with respect to θ jk).
We first attempt to maximize Q(t)

α with respect to α. However, direct maxi-
mization is difficult because the dimension of α is large. On the other hand,Q(t)

α

is a concave function of αj if other parameters {αj′ ; j′ �= j} are fixed. Therefore,
it is computationally simpler to implement the CM-steps that optimize the
parameters sequentially for j= 1, . . . , g− 1. The CM-steps are as follows:

• Step 1: Obtain α
(t)
1 through maximizing Q(t)

α with {αj; j= 2, . . . , g− 1} fixed
at α

(t−1)
j .

• Step 2: Obtain α
(t)
2 through maximizing Q(t)

α with α1 fixed at α
(t)
1 and {αj; j=

3, . . . , g− 1} fixed at α
(t−1)
j .
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• · · ·
• Step g− 1: Obtain α

(t)
g−1 through maximizing Q(t)

α with {αj; j= 1, . . . , g− 2}
fixed at α

(t)
j .

For each CM-step, α
(t)
j can be obtained through the iteratively reweighted

least squares (IRLS) approach (Jordan and Jacobs, 1994), that is, perform the
following iterations until convergence, using α

(t−1)
j as the initialization:

αj← αj −
(

∂2Qα

∂αj∂αT
j

)−1
∂Qα

∂αj
, j= 1, . . . , g− 1, (4.9)

where the derivatives are given by

∂Qα

∂αj
=

n∑
i=1

[
z(t)ij −

exp{αT
j xi}∑g

j′=1 exp{αT
j′ xi}

]
xi, (4.10)

∂2Qα

∂αj∂αT
j

=
n∑
i=1

( exp{αT
j xi} −

∑g
j′=1 exp{αT

j′ xi}) exp{αT
j xi}

(
∑g

j′=1 exp{αT
j′ xi})2

xixTi . (4.11)

Note that in the CM-steps above, Q(t)
α is not maximized globally. Instead, we

have Q(t)
α(t) ≥Q(t)

α(t−1) , meaning that Q(t)
α is increased.

The remaining task is to maximize Q(t)
θ jk

with respect to θ jk. The first step
is to fix the shape parameter mjk and globally maximize the objective function
with respect to the rate parameter βjk. We introduce the following Proposition
to show that such maximization is easy to implement.

Proposition 4.1. For a fixed mjk > 0, Q(t)
θ jk
is a concave function on βjk ∈ (0,∞).

Proof. By Equation (4.8), it suffices to show that f (x) := log (g(x)) is con-
cave on x ∈ (0,∞), where g(x)=∑M

b=m x
b/b! and M, m are positive integers

with m≤M. Note that f ′′(x)≤ 0 if and only if h(x) := g(x)g′′(x)− [g′(x)]2 ≤ 0.
By some algebraic manipulations, we have

h(x)=
M∑
b=m

1
b!x

b
M∑
b=m

1
(b− 2)!x

b−2 −
(

M∑
b=m

1
(b− 1)!x

b−1
)2

=
M=m−2∑

b=M+m−1

(
1

M!(b−M)!
)(

1− M
b−M + 1

)
xb

+
M+m−2∑
b=2m−3

(
1

(m− 2)!(b−m+ 2)!
)(

1− b−m+ 2
m− 1

)
xb ≤ 0.

�
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Since limβjk→0 Q
(t)
θ jk
= limβjk→∞ Q

(t)
θ jk
=−∞, it follows from Proposition 4.1

that Q(t)
θ jk

only has one (global) maximum point on x ∈ (0,∞) given that
mjk is fixed. Therefore, βjk in Equation (4.8) can be optimized numerically
with little computational cost. The second step is to find m(t)

jk that maximizes

Q(t)
mjk

:= supβjk>0 Q
(t)
θ jk
. This is not a trivial task since mjk is discrete. One possible

approach is to fix mjk in each complete ECM run and adopt the element-
wise +1/−1 variation strategy for each mjk proposed in Lee and Lin (2010).
However, this method requires a large number of ECM runs and prohibits
parallel computing, so it is not computationally desirable. Motivated by the
approach of the generalized EM (GEM), we do not aim to globally maximize
Q(t)
mjk

. Instead, we find m(t)
jk that can potentially increase Q(t)

m(t−1)
jk

. Motivated also

by Gui et al. (2018) and the +1/−1 strategy, we propose a local search strat-
egy on mjk within the CM-step. Denote D := {m(t−1)

jk − 1,m(t−1)
jk ,m(t−1)

jk + 1}. The
updates of the shape and the scale parameters are then given by

m(t)
jk = argmax

mjk∈D
Q(t)
mjk

; β
(t)
jk = argmax

βjk>0
Q(t)

(m(t)
jk ,βjk)

. (4.12)

It is obvious that Q(t)

θ
(t)
jk

≥Q(t)

θ
(t−1)
jk

, so Q(t)
θ jk

is also increased.

To sum up, the full procedures described in this subsection guarantee
that Q(�(t); y, x,�(t−1))≥Q(�(t−1); y, x,�(t−1)). Therefore, the observed log-
likelihood is non-decreasing for each iteration. The E-step and CM-step are
iterated until the observed data log-likelihood is smaller than a tolerance
threshold of 10−2.

Remark 4.1. The costs of computing the E-step and updating the regression
parameters α in the CM-step are much lower than that of maximizing Q(t)

θ jk
. It

is because the maximization of Q(t)
α involves only the IRLS algorithm similar

to Newton’s method, which is a fast convergence algorithm, while we have used
numerical optimization functions in R to maximize Q(t)

θ jk
. To reduce the run time,

one may extend the ECM algorithm above to a multicycle version, which repeats
computing the E-step and increasing Qα(t) several times before increasing Q

θ
(t)
jk

once.

Remark 4.2. Considering policyholders’ exposures as discussed in Remark 2.5,
a similar ECM algorithm can be developed accordingly with Equation (4.8)
modified to

Q(t)
θ jk
=

n∑
i=1

z(t)ij

⎡
⎣−βjkTi + log

⎛
⎝mjk−1∑

b=0

(βjkTi)mjkyik+b

(mjkyik + b)!

⎞
⎠
⎤
⎦, (4.13)
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where Ti is the contract period of the ith policyholder. Since the mathematical
form of Equation (4.13) is very similar to that of Equation (4.8), one should not
expect that the introduction of exposure will introduce any extra computational
burden.

4.3. Initialization and parameter adjustments

The performance of the proposed ECM algorithm depends on the initializa-
tion. Therefore, it is suggested to try multiple initializations and choose the
one that yields the best fitting performance. Here, we propose a simple random
initialization method that is already robust based on our experiments.

• For j= 1, . . . , g and k= 1, . . . ,K, sample m(0)
jk uniformly on {1, . . . ,C},

whereC is a constant. Based on our experiments, the fitting results are stable
unless C is too small (C = 1) or too large C > 10.
• For j= 1, . . . , g and k= 1, . . . ,K, set β

(0)
jk =Ujk × {β :E[Wjk]=∑n

i=1 yik/n},
whereWjk is a EC random variable (Equation 2.3) with shape parameterm(0)

jk
and rate parameter β and Ujk is a positive random variable with mean 1 and
a small standard deviation to perturb the initialization. Note that E[Wjk]=∑∞

q=1 (1− e−β
∑m(0)

jk q−1
b=0 βb/b!).

• Set α(0) = 0.

Remark 4.3. Alternatively, one may apply the K-means clustering method for
initializations (see e.g., Gui et al., 2018). First, perform K-means clustering on
y with g clusters, which yields the clustering mean {μcluster

jk }j=1,...,g; k=1,...,K and the
clustering weights {π cluster

j }j=1,...,g (the proportion of observations classified in clus-
ter j). Second, set m(0)

jk at the same way as simple random initialization method

and set β
(0)
jk =Ujk × {β :E[Wjk]=μcluster

jk }. Third, set α
(0)
j1 = log (π cluster

j /π cluster
g )

and α
(0)
jp = 0 for p> 1.

Finally, we are to find g that optimizes the fitting result. We determine the
optimal g based on the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC). With the possibility of parallel computing, it is
computationally feasible to try different g and find the one that optimizes the
criterion.

Remark 4.4. One major concern of the proposed algorithm is the overall run
time, because for each of the simulation studies (Section 5) and for the real data
analysis (Section 6), we need to try multiple (≥ 10) initializations, try a wide
range of g, perform local search strategies on mjk, and (for real data analysis)
conduct bootstrapping for parameter uncertainties. For each data set, the whole
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fitting process involves no more than 50 CPUs (∼2GHz) running for less than
a day. We realize that the computational burden is intensive, but is still feasible
in practice because we only need to calibrate the parameters once for each data
set. We will discuss some possible methods to significantly reduce the run time in
Section 7.

5. SIMULATION STUDIES

This section illustrates the flexibility of the proposed model and the effective-
ness of the proposed algorithm via three simulation studies. The first study
is a simple example involving fitting of simulated data from an EC-LRMoE
model. Understanding the similarities and differences between the fitted model
and the target model, we can examine the adequacy of the proposed ECM
algorithm and also gain insight in the relationships between the identifiability
in theory and in practice. The second and third study are based on highly dif-
ferent classes of models. The models are intentionally chosen to be complex
and highly heterogeneous, involving various rather extreme correlation struc-
tures among response marginals, under/over-dispersed marginal distributions,
linear/nonlinear regression patterns, and interactions among covariates. The
main purposes of these studies are to demonstrate the versatility of the pro-
posed model and verify that the denseness theory is applicable to empirical
model fitting.

5.1. Two-components bivariate MoE with two covariates

This study examines the ability of the proposed algorithm to recover an EC-
LRMoE model. In each simulation, we generate 20,000 sets of observations
{( yi1, yi2), i= 1, . . . , 20, 000} from the proposed multivariate EC MoE model
with g= 2, K = 2, P= 3 and the following parameters:

α =
(−2.5 1 1

0 0 0

)
; m=

(
4 1
3 5

)
; β =

(
4 1.5
1.5 1

)
.

The covariates xi2 and xi3 are simulated from U [0, 1] and Bernoulli (p=
0.5), respectively. Table 1 shows the summary statistics, where the subgroup
conditional mean and variance are, respectively, computed as

E[Yik|Zij = 1]=
∞∑
y=0

yf ( y; θ jk);

Var[Yik|Zij = 1]=
∞∑
y=0

y2f ( y; θ jk)−
(
E[Yik|Zij = 1]

)2
, (5.1)

https://doi.org/10.1017/asb.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.25


MIXTURE OF EXPERTS MODELS FOR GENERAL INSURANCE 663

TABLE 1

SUMMARY STATISTICS OF THE TARGET MODEL.

E[Yik |Zij = 1] k= 1 k= 2 Var[Yik |Zij = 1] k= 1 k= 2 P(Zij = 1)

j= 1 0.619 1.500 j= 1 0.342 1.500 0.198
j= 2 0.196 0.004 j= 2 0.166 0.004 0.802

E[Yik] 0.279 0.299 Var[Yik] 0.229 0.654

TABLE 2

SUMMARY FOR FITTED PARAMETERS: MEDIAN AND 95% CONFIDENCE INTERVAL.

α p= 1 p= 2 p= 3

j= 1 −2.497 (−2.617, −2.384) 0.989 (0.862, 1.135) 1.002 (0.913, 1.085)

β k= 1 k= 2 m k= 1 k= 2

j= 1 4.004 (3.921, 4.083) 1.502 (1.446, 1.558) j= 1 4 (4, 4) 1 (1, 1)
j= 2 1.500 (1.474, 1.549) 0.004 (0.000, 0.148) j= 2 3 (3, 3.025) 1 (1, 2)

where θ jk = (mjk, βjk) and the function f comes from Equation (2.3). We also
estimate

P(Zij = 1)� 1
nsim

nsim∑
i=1

πj(xi; α) (5.2)

as the average probability of an individual being classified in the jth sub-
group over the whole population of policyholders, and we choose nsim =
5, 000, 000 for accurate estimations. Further, the unconditional mean and vari-
ance are calculated by E[Yik]=∑g

j=1 E[Yik|Zij = 1]P(Zij = 1) and Var[Yik]=∑g
j=1 E[Y

2
ik|Zij = 1]P(Zij = 1)− (E[Yik])

2.
It can be seen that Yik tends to be smaller when sample i belongs to the sec-

ond component. Especially, E[Yi2|Zi2 = 1] is very close to zero, so the marginal
distribution of Yi2 is almost zero-inflated, which is a common characteristic of
insurance claims data. Also, marginal 1 is under-dispersed while marginal 2 is
over-dispersed.

We use the proposed ECM algorithm to fit the simulated data. The whole
process is replicated by 200 times to ensure a complete examination of the
proposed algorithm. Using both AIC and BIC, the algorithm correctly iden-
tifies that there are two components in 187 and 200 out of 200 replications,
respectively. This aligns to the result by Kuha (2004) that BIC is superior in
identifying the true model if the sample size is sufficiently large. The sum-
mary of parameter estimates is listed in Table 2. Most parameters can be
almost recovered with high precision, except for (m22, β22) and in very rare cases
(m21, β21). The differences can be explained by the empirical unidentifiability
of the true model when the marginal component mean is too small. Denote

https://doi.org/10.1017/asb.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.25


664 T. CHAI FUNG, A. L. BADESCU AND X. SHELDON LIN

W an EC random variable with shape parameter m, shape parameter β, and
mean μ :=E[W ]. μ≈ 0 implies thatW follows approximately a degenerate(0)
distribution regardless of the choice of m. Also, consider a limiting property
of the dispersion ratio of the EC model limμ→0 Var[W ]/μ= 1 with m fixed.
It shows that if μ≈ 0, W is still Poisson-like (m= 1) even if the true model
has m> 1. Theoretically, EC models are identifiable as shown in Section 3.
Nonetheless, EC distributions under different parameter settings can still be
arbitrarily close to each other as long as μ→ 0. Together with the sampling
error of data generation, it is impossible to recover m22 and β22.

To further verify the proposed initialization strategy and evaluate the
impact of incorrectly identifying (m22, β22), we also initialize using the true
model parameters in each simulation replication and see the difference of the
fitting performance. Although this can yield correct (m22, β22), the resulting
observed log-likelihood is negligibly different from that obtained by our pro-
posed initialization strategy. Therefore, the impact of misspecifying (m22, β22)
is minimal and the proposed fitting algorithm is overall deemed to be appro-
priate. Yet, this simulation study shows that one should not overinterpret the
shape parametermjk and the shape parameter βjk of the proposed model in real
data analysis if the corresponding marginal component mean is close to zero.

5.2. Trivariate nonlinear regression model with one covariate

This study aims to evaluate the flexibility of the proposed model to simul-
taneously cater for various marginal distributional properties, dependence
structures, and regression patterns. We use the proposed model to fit 10,000
observations {( yi1, yi2, yi3), i= 1, . . . , 10, 000} generated from a complex hypo-
thetical model. Marginally, yik has the following pmf fk( y) for k= 1, 2, 3

f1( y)= λy

( y!)ν
1

Z(λ, ν)
, Z(λ, ν)=

∞∑
b=0

λb

(b!)ν ; (5.3)

f2( y)=
(
y+m− 1

y

)(
m

μ+m
)m (

μ

μ+m
)y

; f3( y)= λ∗ye−λ∗

y! . (5.4)

One covariate xi2, which is simulated from U [0, 1], is introduced. Equation
(5.3) is the pmf of Conway–Maxwell–Poisson (CMP) distribution introduced
by Conway and Maxwell (1962), which allows for both over-dispersion (ν <

1) and under-dispersion (ν > 1). We choose the parameters λ= 15 and ν =
exp{0.5+ 0.25xi2} so that the resulting distribution is under-dispersed. CMP
distribution has already been applied to motor vehicle crashes data (Lord
et al., 2008), which can be under-dispersed and can directly relate to insurance
claims. The second marginal follows an NB distribution, which only caters
for over-dispersion. We choose m= 2 and μ= exp{0.5+ 0.25xi2} such that it
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FIGURE 1: Regression patterns – Response mean versus the covariate.

is a standard NB regression. The third marginal follows the Poisson distri-
bution that is undispersed. To induce challenges for model fitting, we choose
λ∗ = exp{2+ 0.5|xi2 − 0.5|} so that the regression pattern is nonlinear.

Overall, there is a large heterogeneity among response marginals. In terms
of the marginal distributions, we need to model under-dispersed, undispersed,
and over-dispersed distributions at the same time. In terms of regression pat-
terns, Figure 1 shows the existence of decreasing, increasing, and “V-shaped”
patterns as a function of the covariate. Also, marginal 1 has a stronger regres-
sion pattern than marginal 2. The solid rough patterns in Figure 1 show the
empirical marginal response mean under various covariate values, based on a
uniform kernel with covariate bandwidth 0.01. Higher pattern fluctuations rel-
ative to the regression trend for marginal 2 reveal that its regression pattern is
weaker.

The dependence among marginals is modeled by a Gaussian copula.
Because of its mathematical tractability, it is commonly used in modeling
dependence structure of insurance claim frequencies among business lines (see
e.g., Shi and Valdez, 2014). The copula function is

C(u1, u2, u3)=��

(
�−1(u1),�−1(u2),�−1(u3)

)
, (5.5)

where � is a standard normal cdf, � is the joint cdf of multivariate normal
distribution with mean 0, covariance matrix �, and diag(�)= 1. We choose
(�)12 = 0.4, (�)13 = 0, and (�)23 =−0.6 to allow for both positive and negative
correlations.

Based on the proposed algorithm, 15 and 36 components are detected in the
fitted model using BIC and AIC, respectively. We first compare the marginal
distributions of the fitted model and the simulated observations through his-
tograms. Figure 2 shows that our proposed model is versatile to capture
different marginal distributional properties. Then, the dependence structures
of fitted models and target model are compared through Kendall’s tau. We
apply the method proposed by Badescu et al. (2015) that considers two cases
for the computations of Kendall’s tau: with and without covariates’ influence.
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TABLE 3

KENDALL’S τ FOR THE FITTED MODEL VERSUS THE TARGET MODEL.

with covariates (BIC) without covariates (BIC)

y1 y2 y3 y1 y2 y3

y1 0.233 −0.008 y1 0.203 −0.005
y2 0.255 −0.416 y2 0.218 −0.365
y3 0.011 −0.426 y3 0.014 −0.382

with covariates (AIC) without covariates (AIC)

y1 y2 y3 y1 y2 y3

y1 0.248 0.006 y1 0.218 0.010
y2 0.255 −0.422 y2 0.218 −0.375
y3 0.011 −0.426 y3 0.014 −0.382

Upper and lower triangles represent fitted and target models, respectively.
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FIGURE 2: Barplots for the fitted model versus the target model.

From Table 3, it is concluded that the fitted models reflect well the depen-
dence structure of the target model. Finally, regression patterns between fitted
and target models are displayed in Figure 1. Solid and dotted thick curves are
the fitted regression patterns using BIC and AIC models, respectively, while
the thin dotted curve is calculated analytically from the target model. The
fitted curves can generally capture various regression trends of the empirical
data simulated from the target model. AIC fitted model, which contains more
components, better fits the regression patterns, especially when the patterns
obtained by empirical data are rather weak (e.g., xi2 > 0.6 for marginal 2) or
rather abnormal (e.g., the V-shaped pattern for 0.4< xi2 < 0.6 in marginal 3).
Under the model selection through AIC, which penalizes extra parameters less
heavily, there can be a concern of over-fitting because the number of compo-
nents obtained is rather large. However, the regression curves obtained are still
smooth under AIC, addressing the over-fitting concern. With a good fitting
performance to such a complicated model, this study confirms the denseness
property of our proposed model.
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FIGURE 3: Regression patterns – Response mean versus the two covariates.

5.3. Bivariate regression model with covariates interactions

To better understand the flexibility of the proposed model, it is desirable to
perform multiple simulation studies that are based on different classes of mod-
els. In this study, we simulate 10,000 observations {( yi1, yi2), i= 1, . . . , 10, 000}
from the Poisson common shock model with two covariates xi2 and xi3 gener-
ated independently fromU [0, 1]. The common shock model is a popular model
for multivariate insurance claim counts since it has a simple mathematical rep-
resentation and has a physical interpretation that some incidents can lead to
multiple types of claims simultaneously. See Bermúdez and Karlis (2011) for a
relevant application. This model is given by Yi1 =Y ∗i1 +Zi and Yi2 =Y ∗i2 +Zi.
We choose Y ∗i1 ∼ Poi(− 1+ xi2xi3), Y ∗i2 ∼ Poi(− 1+ (xi2 − xi3)2), and the com-
mon shock Zi ∼ Poi(0.3). We aim to investigate how well the proposed model
can capture such dependence structure and covariates interactions behavior.
The covariates interactions behavior can be visualized in the left panels of
Figure 3.

Based on BIC and AIC, the resulting fitted model contains 6 and 12 compo-
nents, respectively. The fitting performances for both criteria are evaluated as
follows. Firstly, Table 4 shows that the first four moments of the fitted models
match well to that of the target model. Secondly, Kendall’s τ with or without
covariates’ influence is also displayed in Table 5. It shows that our proposed
model can capture well the dependence structure of the target model. Thirdly,
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TABLE 4

THE FIRST FOUR MOMENTS FOR THE FITTED MODEL VERSUS THE TARGET MODEL.

Empirical BIC fitted % error (BIC) AIC fitted % error (AIC)

Marginal 1

Mean 0.772 0.772 0.037 0.771 −0.002
Variance 0.795 0.790 −0.697 0.798 0.382
Skewness 1.183 1.158 −2.123 1.199 1.399
Kurtosis 4.466 4.326 −3.144 4.601 3.016

Marginal 2

Mean 0.739 0.739 0.019 0.739 0.004
Variance 0.741 0.740 −0.154 0.740 −0.049
Skewness 1.178 1.139 −3.313 1.173 −0.422
Kurtosis 4.447 4.171 −6.213 4.452 0.104

TABLE 5

KENDALL’S τ FOR THE FITTED MODEL VERSUS THE TARGET MODEL.

BIC AIC

Target model Fitted model Target model Fitted model

With covariates 0.322 0.316 0.322 0.320
Without covariates 0.212 0.214 0.212 0.200

we examine the performance of the fitted models in capturing the influence of
covariates through three-dimensional plots displayed in Figure 3. The target
model (left panels) is compared to the fitted models (middle and right panels).
The z-axis corresponds to the mean of the response yik (e.g., For marginal 1, the
mean is exp{−1+ xi2xi3} + 0.3). For each marginal, the shapes of the resulting
surfaces are similar to each other, confirming the ability of the proposed model
in capturing various covariates interactions behavior. The smoothness of the
surfaces produced by the fitted models also addresses the potential concerns of
over-fitting. Overall, the performances of the fitted models are good regardless
of the criterion used.

6. APPLICATION TO INSURANCE COUNT DATA REGRESSION

6.1. Data overview

The insurance claim counts data set comes from an European major automo-
bile insurer. It contains the information of 18,019 policyholders who started
or renewed their insurance contracts during the year of 2015. Any contracts
involved are of 1-year term. When contracts are expired, policyholders may
renew the contract so they can keep insured for another year.

The structure of this European insurance data set is similar to that of
Bermúdez (2009) and Shi and Valdez (2014). The data set records the number
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TABLE 6

SUMMARY OF THE COVARIATES.

Discrete valued covariates

Variable Description Mean SD Minimum Maximum

xi1 Age of policyholder 51.000 11.702 20 88
xi2 Car age 6.248 3.335 0 26

Categorical covariates

Variable Description Levels Proportions

xi3 Car fuel Diesel: xi3 = 1 0.383
Gasoline: xi3 = 0 0.617

xi4–xi5 Policyholder’s history Renewal with claims last year: xi4 = 1 0.148
New contract: xi5 = 1 0.235
Renewal, no claims last year: xi4, xi5 = 0 0.618

xi6–xi9 Geographical location Region I: xi6 = 1 0.187
Region II: xi7 = 1 0.146
Region III: xi8 = 1 0.111
Capital: xi9 = 1 0.420
Region IV: xi6, xi7, xi8, xi9 = 0 0.136

xi10–xi11 Car brand class Class A: xi10 = 1 0.193
Class B: xi11 = 1 0.513
Class C: xi10, xi11 = 0 0.284

of claims of both third-party liabilities (Yi1) and car damages (Yi2), which are
the two types of coverage for each policyholder. Apart from the claim counts,
we have access to various policyholder’s characteristics (age, claim history, and
location) and vehicle’s characteristics (age, fuel type, and brand) that are useful
for us to understand the risk profiles of each policyholder.

The summary statistics of the response variables Y i and the covariates xi
are displayed in Tables 6 and 7. Since the covariates lead to heterogeneities
among policyholders, we compute the fitted counts displayed in Table 7 as the
total of all individual policyholders’ marginal probabilities. For the response
variables, there exist several heterogeneities between the two claim types. The
average number of claims associated with car damages is much higher than
that associated with third-party liabilities. Although both claim types exhibit
over-dispersions, the dispersion ratio of Yi2 (1.907) is much higher than that
of Yi1 (1.111). On the other hand, Yi1 has much higher skewness and kurtosis
than Yi2, indicating that Yi1 potentially has a heavier tail. For the covariates,
the integer ages (in years) of the policyholder and the vehicle are captured by
discrete variables xi1 and xi2, respectively. xi3 is a binary variable indicating
the energy source of the vehicle (diesel or gasoline). The power and size of a
diesel vehicle is usually larger than that of a gasoline vehicle. The three possible
contract statuses (new contract and renewal contract with or without claim
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records last year) are captured in variates xi4 and xi5. xi6 to xi9 classify which
major geographical region (Regions I to IV and the capital) each policyholder
belongs to. Based on the insurer’s historical pricing information, the car brands
are classified into Classes A, B, and C. Class A corresponds to “good” brands
that are expected to have less claims, and vice versa for Class C.

Remark 6.1. In practice, it is crucial to consider covariate selections for regres-
sions because we may collect a large amount of policyholders’ information where
not all is useful. In this real data analysis, we have included all of the above-
mentioned variables for regressions, and we will show in Section 6.2 that all
variables are significantly impactful to the risk levels of policyholders. Also, since
the main focus of this paper is to showcase a novel EC-LRMoE as a fully flexible
regression model useful in general insurance, we do not investigate on covariate
selection issues. Instead, we put it as an important future research direction, see
Section 7 for more discussions.

The challenges of modeling this insurance data set cannot be undermined.
We try to fit the marginal of the data using the NB GLM model proposed by
Shi and Valdez (2014), which provides a good fit to their insurance count data
set. Such model is in the NB-II form with density

f NB( y; xi, β,m)=
(
y+m− 1

y

)(
m

exTi β +m
)m

(
ex

T
i β

exTi β +m

)y

, y= 0, 1, 2, . . .

(6.1)
The goodness-of-fit results exhibited in Table 7 show that the NB GLM

model provides poor fittings to both marginals. The tail heaviness is signif-
icantly underestimated for Yi1 and overestimated for Yi2, leading to severe
mismatches of the higher moments between the fitted models and the empir-
ical distributions. The χ 2 statistics are also very high for both marginals. For
the main reason of poor fits, one may suggest that NB distributions may not
be sufficiently flexible to capture the excessive zeros appearing in our data set.
Thus, we further fit a zero-inflated NB (ZINB) GLM with density

f ZINB( y; xi, α, β,m)= (1− p(xi; α)) 1{y= 0} + p(xi; α)f NB( y; xi, β,m),
y= 0, 1, 2, . . . , (6.2)

where p(xi; α)= 1/(1+ exp{xTi α}) represents a logistic regression on the prob-
ability of extra zeros. ZINB GLM better captures the tail of Yi2, having
improvements in matching the moments. However, the overall fitting is still
unsatisfactory because of the high χ 2 statistics and little improvements in fitting
the distribution of Yi1. Therefore, the problems are much more complicated
thanmodeling excessive zeros, providing motivations to adopt a highly flexible,
data-driven model such as ours for data fitting.

https://doi.org/10.1017/asb.2019.25 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.25


672 T. CHAI FUNG, A. L. BADESCU AND X. SHELDON LIN

TABLE 8

MODEL SELECTION TABLE.

Number of components 2 3 4 5 6

Log-likelihood −17,123.55 −17,007.63 −16,966.05 −16,939.34 −16,925.21
AIC 34,287.10 34,087.26 34,036.10 34,014.68 34,018.42
BIC 34,443.08 34,368.03 34,441.66 34,545.02 34,673.55

6.2. Estimation results

We fit the bivariate EC-LRMoE to the insurance claim count data set described
in the previous subsection. Using the proposed ECM algorithm, three and five
components are detected in the fitted model using the BIC and the AIC cri-
teria, respectively (Table 8). BIC is better in identifying the true model (Kuha,
2004), but this is not the aim in practice since the true model is never known for
any real data sets. However, AIC models better predict future data. Hence, we
choose only to present the fitting results of the AIC model for conciseness pur-
pose. The fitted model parameters are displayed in Table 9 and the left panel
of Table 10. Because of the response marginalization property for the class of
LRMoE (Proposition 4.1 of Fung et al. (2019a)), we are able to display the
marginal goodness-of-fit of the proposed model in Table 7. With much lower
χ 2 statistics and tighter matches of the higher moments to the empirical data,
the proposed model adequately caters for the complicated distributional char-
acteristics of the data set. Also, the Kendall’s tau for the fitted model is very
close to that of the empirical data (Table 11), showing that the dependence
structure of the data is well captured by the proposed model.

Remark 6.2. One may be concerned about the number of parameters for the fitted
EC-LRMoE, because it has a much more complicated structural form compared
to the ZINB GLM. Based on the AIC, the EC-LRMoE involves 68 parameters in
total, capturing not only both marginal distributions, but also for the dependence
structure between two business lines. The ZINBGLM, on the other hand, involves
25 parameters per marginal without capturing the dependence. Hence, the number
of parameters involved in the EC-LRMoE is not that large and one should not
expect there is an over-fitting problem.

The fitted model may be interpreted as follows. Each policyholder is clas-
sified in one of the five possible homogeneous subgroups. From the subgroup
conditional mean E[Yik|Zij = 1] displayed in Table 9, we can see that subgroups
(components) 1 and 3 represent the safest and the most dangerous driver group,
respectively. Some subgroups (e.g., subgroup 5) are relatively more prone to
third-party liabilities while some (e.g., subgroup 2) are relatively more prone
to car damages. The last column of Table 9 suggests that most policyhold-
ers are safe drivers. The regression coefficients in the left panel of Table 10
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TABLE 11

KENDALL’S τ FOR THE FITTED MODEL VERSUS THE EMPIRICAL DATA.

τ empirical data fitted model

with covariates influence 0.241 0.240
without covariates influence 0.315 0.315

determine how the covariates affect policyholder’s subgroup assignment. For
example, for each 1-year increase in car age (xi2), the probability ratio for a
policyholder to be classified into subgroup 1 relative to subgroup 5 (we call it
the “baseline subgroup”) will be decreased by 1− e−0.134 = 12.5%. Also, new
contracts (xi5 = 1) or past claim records (xi4 = 1) result to a lower chance for
being classified into subgroup 1 relative to subgroup 5.

To understand how precise the estimated model parameters are, we take
parameter uncertainties into account and construct a confidence interval (CI)
on each of the estimated parameters �̂ := (α̂, β̂, m̂). This can be done through
bootstrapping. For each run b, we resample n= 18, 019 independent observa-
tions from the original data set {(Y i, xi); i= 1, . . . , n} with replacement. Then,
we refit the proposed model to the resampled data using the �̂ as the ini-
tialization to obtain the refitted model parameters �̃

b
. Perform and repeat

the whole procedures described above for b= 1, 2, . . . ,B, where we choose
B= 400. Using the refitted parameters {�̃b

; b= 1, . . . ,B}, not only we can con-
struct the CIs of the estimated parameters (Table 9 and 10), but also we can
calculate the CIs of any other quantities that can be derived from the fitted
model, such as the subgroup conditional mean and the component weights.

In Table 9, it is observed that the CIs for β̂ are very wide and unstable for
some subgroups andmarginals (e.g., j= 3, k= 2), because βjk is greatly affected
by the changes of mjk for a given subgroup conditional mean. On the other
hand, the CIs for the subgroup conditional mean and the component weights
are much more stable. The instabilities of the CIs are also found for α̂. The left
panel of Table 10 shows that several very positive and negative values appear in
the CIs for subgroup 3, because only very few (around 0.003× 18, 019= 52.3)
policyholders are classified into subgroup 3. This makes us unconfident on
some of the estimated regression coefficients. Another issue we observed is that
the regression coefficients for some covariates (e.g., xi1 and xi3) are not signif-
icantly different from zero for any subgroups (j= 1, 2, 3, 4). This may lead to
a misconception that these covariates would not have significant impacts on
the risk level of the policyholders. We should note that these regression coeffi-
cients govern the probability of subgroup assignments relative to the baseline
subgroup. The subgroup assignments relative to other subgroups, however, can
still be strongly influenced by these covariates.

To gain a better understanding of the above issues, we perform some trans-
formations on the covariates and the regression coefficients to see how they will
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affect the CIs and the significance of the estimated regression coefficients. The
transformations are as follows:

• Redefining some categorical covariates: We set high/above-average risk cat-
egories (diesel for car fuel, new contract for policyholder’s history, Region
III for geographical location, and Class C for car brand class) as refer-
ence/control categories. Let x∗i be the transformed covariates. Changing the
reference categories, we can define: x∗ip = xip for p= 1, 2, 10, 11; x∗i3 = 1− xi3
represents diesel vehicles; x∗i4 = 1 and x∗i5 = 1 correspond to renewal without
and with claims last year, respectively; x∗i6 = 1, x∗i7 = 1, x∗i8 = 1; and x∗i9 = 1
are Regions I, II, IV, and capital, respectively.
• Changing the baseline subgroup as subgroup 1: Subgroup 1 is the lowest

risk group that contains a majority of policyholders. Making it as a base-
line subgroup can enhance the model interpretability, because the regression
coefficients show directional relationships between the covariates and the
expected claim counts. A positive regression coefficient means a higher
chance for a policyholder to be classified into a non-baseline higher risk
subgroup if the value of the corresponding covariate is large, and vice versa.

To find the estimated regression coefficients after both transformations
α̂
∗, model refitting is not needed. Instead, only linear transformations of α̂

are required. Denote α̂
(t) as the regression coefficients just after categorical

covariates transformations. Since x∗i can be easily expressed in terms of lin-
ear combinations of xi, the coefficients of x∗i (i.e., α̂

(t)) can also be written as
linear transformations of the coefficients of x (i.e., α̂). For baseline subgroup
transformation, the resulting regression coefficients can be easily obtained
as α̂

∗ = α̂
(t) − 1α̂(t)T

5 because of the translational invariance property of the
LRMoE, where 1 is a five-element column vector.

The estimated regression parameters after the transformations are dis-
played in the right panel of Table 10. The instability of the CIs for subgroup 3
is reduced as no more very positive values appear. It indicates that no policy-
holders are classified into such a highest risk subgroup with (almost) certainty.
However, several very negative values still exist, so we still should not rule
out a chance that policyholders with certain risk characteristics (almost) never
belong to subgroup 3. Contrary to the original regression coefficients, the
transformed regression coefficients for covariates x∗i1 and x∗i3 are significantly
different from zero in some subgroups. Such negative coefficients suggest that
older drivers and gasoline vehicle drivers are more likely to be safer drivers who
file less claims on average.

6.3. Model visualization

6.3.1. Influences of the covariates
Interpreting the regression coefficients α̂ directly may help understand how
the covariates affect the probabilities of classifying a policyholder into various
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subgroups. However, to gain more insights on how the policyholder’s charac-
teristics affect their risk level, it is desirable to visualize the impacts of each
individual covariate on the expected claim counts for each claim type.

To do so, we first plot the mean number of claims against the values of
a particular covariate (e.g., policyholder’s age). Note that multiple covari-
ates are involved in the fitted model so this task is not trivial and we need
to aggregate the effects of the other covariates. We make use of Equation
(2.7) for the calculation of the mean and the remaining problem is to estimate
the covariate-marginalized weights π̃j(xc; α). Two simple methods are intro-
duced to approximate π̃j(xc; α) and hence to estimate the mean number of
claims conditioned only on covariate p. The first one is a pure nonparametric
approach:

Ȳnpar
k; p (s)=

g∑
j=1

1
Nnpar
p (s)

∑
i≤n: xip=s

π(xi; α̂)μ
( j)
k , (6.3)

where Nnpar
p (s) is the number of i≤ n such that xip = s and μ

( j)
k =E[Yik|Zij = 1]

is independent of i. This method yields an unbiased estimate of the mean claim
count. However, Nnpar

p (s) can be small for certain p and s (e.g., since only nine
policyholders are 85 years old, we have Nnpar

1 (85)= 9), causing the estimate
sometimes rather unstable. Alternatively, we demonstrate the partial depen-
dence plot that is commonly used in machine learning (Friedman, 2001). It
assumes independence between covariate p and the other covariates:

Ȳ indep
k; p (s)=

g∑
j=1

1
n

∑
i≤n

π(x̃i; α̂)μ
( j)
k , (6.4)

where x̃ip′ = xip′ for p′ �= p and x̃ip = s. This method uses all policyholders’
features, making the estimation smooth and stable. If the independence
assumption does not hold, then this approach will introduce some biases to
the estimates.

The impacts of policyholder’s age on the expected claim counts using the
pure nonparametric plots and the partial dependence plots are displayed in
Figures 4 and 5, respectively. The gray regions are the 95% CIs considering
parameter uncertainties. Both kinds of plots suggest that older drivers are
expected to have less claims for both claim types, while the effects of policy-
holder’s age to car damages are more significant than to third-party liabilities.
As expected, the fitted curves from the partial dependence plots are smoother
than that from the nonparametric plots. Empirical studies show that the corre-
lations between policyholder’s age and the other covariates are (very) weak, so
the trends obtained by the two methods are similar and the biases of the partial
dependence plots are minimal.

Next, we analyze the interactive effects between car age and past claim
record. Similar to Equations (6.3) and (6.4), we compute the mean number
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FIGURE 4: Expected number of claims versus policyholder’s age (x1) evaluated using the nonparametric
approach. Dotted curve: Empirical mean pattern; Solid curve: Fitted/estimated pattern using the proposed

model; Colored region: 95% confidence intervals of the estimations.
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FIGURE 5: Expected number of claims versus policyholder’s age assuming the independence between x1 and
other covariates.

of claims conditioned on covariates p1 and p2 for the nonparametric plots and
the partial dependence plots:

Ȳnpar
k; p1,p2

(s1, s2)=
g∑
j=1

1
Nnpar
p1,p2 (s1, s2)

∑
i≤n:

xip1=s1,xip2=s2

π(xi; α̂)μ
( j)
k (6.5)

Ȳ indep
k; p1,p2

(s1, s2)=
g∑
j=1

1

N indep
p2 (s2)

∑
i≤n: xip2=s2

π(xi; α̂)μ
( j)
k (6.6)

where Nnpar
p1,p2 (s1, s2) is the number of i≤ n such that xip1 = s1 and xip2 = s2, while

N indep
p2

(s2) is the number of i≤ n satisfying xip2 = s2. Note that under the partial
dependence plots, we assume that covariate p1 is independent of other covari-
ates except covariate p2. In this analysis, we have p1 = 2 (car age) and p2 = 4
(past claim record). Empirical analysis shows that the correlations between car
age and the other covariates (except past claim record) are (very) weak.

The visualizations are displayed in Figures 6 and 7. For third-party liabili-
ties, whether or not the policyholder has past claim records, the expected claim
counts versus the car age exhibit “U”-shapes. It means that medium-aged (4–7
years) vehicles are less involved in claims associated with third-party liabilities.
For car damages, the expected claim counts decrease significantly when the car
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FIGURE 6: Expected number of claims versus car age (x2) and past claim (x4) using the nonparametric
approach. Red and black dotted curves are, respectively, the empirical mean patterns with and without claim
records last year (i.e., x4 = 1 or x4 = 0). Red and black solid curves are the corresponding fitted patterns.
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FIGURE 7: Expected number of claims versus car age and past claim assuming that x2 is independent of all
other covariates except x4.
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FIGURE 8: Interactions between car age and past claim. The effect of past claim (difference between the two
curves in Figures 6 or 7) is plotted against the car age. The rough and smooth curves are from the

nonparametric plots and the partial dependence plots, respectively.

age increases from 0 to 10, and then become flat after 10 years. Figure 8 shows
the effect of past claim record to the number of claims, which is plotted against
the car age. We can see that for newer cars, past claim record will lead to at
least 0.1 more claims associated with car damages on average per policyholder.
Such an effect, however, is small and insignificant for older cars (>12 years).
Hence, interactions exist between these two covariates.

Using the nonparametric approach in Equation (6.3), we may also evaluate
the effects of the categorical covariates on the claim counts. Note that some
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FIGURE 9: Violin plot with 95% confidence interval bands: Expected number of claims under various
geographical locations.

categorical variables (e.g., xi6 to xi9 for geographical locations) are obviously
(negatively) related to each other, so the use of partial dependence plots is inap-
propriate. Figure 9 contains the violin plots that show the expected number of
claims under various geographical locations. We find that policyholders in the
capital region are more risky and policyholders in Region IV are less risky for
both claim types. Also, Table 12 confirms the statistical significance that geo-
graphical locations affect the risk level of the policyholders. Similar analyses
can be performed for other categorical variables but these are not fully pre-
sented in this paper for preciseness purpose. Instead, the main results that are
highly statistically significant are summarized as follows:

• Compared to gasoline vehicles, diesel vehicles result to 0.014 more third-
party liabilities claims and 0.063 more car damages claims per policyholder.
• Renewal contracts with past claim records are expected to file the largest

number of claims per policyholder for both claim types, followed by new
contracts, and then renewal contracts without any claims last year.
• Compared to Class C for car brands, policyholders driving with cars classi-

fied as Class A or B are expected to file less claims for both claim types. The
difference between Class A and Class B is significant only for the number of
claims associated with car damages.

6.3.2. Subgroup probabilities for individual policyholders
One interesting insight of the proposed model is that it can generate the
prior and posterior probabilities that a policyholder belongs to a certain
latent subgroup. Similar to Section 4, we denote Zij = 1 if the ith policyholder
belongs to the jth subgroup and Zij = 0 otherwise. Then, the prior and pos-
terior probabilities are, respectively, given by P(Zij = 1; xi, �̂)= πj(xi; α̂) and
P(Zij = 1; yi, xi, �̂)= πj(xi; α̂)

∏K
k=1 f ( yik; θ̂ jk)/

∑g
j′=1 πj′(xi; α̂)

∏K
k=1 f ( yik; θ̂ j′k).

We select three representative policyholders (exhibited in Table 13)
from the real data set and compare the prior and posterior probabilities.
Policyholder A has a lot of undesirable risk characteristics (e.g., young driver,
new diesel vehicle under a poor car class, claim record last year) but no claims
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TABLE 13

THREE SELECTED POLICYHOLDERS TO BE CONSIDERED FOR THE CALCULATIONS OF SUBGROUP
PROBABILITIES.

Policyholder y1 y2 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

A 0 0 36 1 1 1 0 0 0 1 0 0 0
B 0 1 59 7 1 0 1 0 0 1 0 0 1
C 1 2 72 7 0 0 0 1 0 0 0 1 0
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FIGURE 10: The prior and posterior subgroup probabilities for the three selected policyholders.

are observed during the contract period. Policyholder B has an average risk
profile. The risk characteristics of Policyholder C is relatively desirable but
eventually three claims occurred during the contract period.

The subgroup probabilities are visualized in Figure 10. As expected, the
prior probability that Policyholder A (C) belongs to subgroup 1, a very low
risk subgroup, is relatively low (high). Given that no claims are observed for
Policyholder A, the posterior probability that the policyholder belongs to sub-
group 1 is much higher than the prior probability. On the other hand, since a
large number of claims are observed for policyholder C, the posterior subgroup
1 probability reduces to almost zero, and there is now a substantial probability
that policyholder C belongs to the most dangerous driver group (subgroup 3).

6.4. Predictive applications

Insurance ratemaking for bundled contracts is one of the important applica-
tions of multivariate regression models, where the insurer provides multiple
types of coverage in a single contract. In this subsection, we aim to study the
total claim count variable Li =Yi1 +Yi2, which is the basis for premium cal-
culations, for hypothetical risk profile i. Similar studies have been performed
in Bermúdez (2009), Bermúdez and Karlis (2011), and Shi and Valdez (2014)
using the multivariate regression models they proposed.
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TABLE 14

SIX DIFFERENT HYPOTHETICAL RISK PROFILES TO BE CONSIDERED.

Profile x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Best 60 8 0 0 0 0 0 0 0 1 0
Good 40 5 0 0 0 1 0 0 0 1 0
Average 1 40 6 0 0 0 0 0 0 1 0 1
Average 2 80 10 1 0 0 0 0 1 0 0 0
Bad 30 0 1 0 1 0 1 0 0 0 1
Worst 30 1 1 1 0 0 0 0 1 0 0

TABLE 15

MEAN AND VARIANCE OF THE NUMBER OF CLAIMS BY RISK PROFILE.

Mean and variance of claims

Profile E[Yi1] Var[Yi1] E[Yi2] Var[Yi2] E[Li] Var[Li]

Best 0.033 0.035 0.179 0.316 0.212 0.396
Good 0.040 0.048 0.246 0.440 0.286 0.565
Average 1 0.050 0.051 0.347 0.710 0.397 0.847
Average 2 0.053 0.054 0.331 0.710 0.383 0.850
Bad 0.098 0.147 0.482 0.873 0.580 1.237
Worst 0.121 0.152 0.677 0.909 0.798 1.227

For demonstration purposes, we construct six hypothetical risk profiles
exhibited in Table 14. Depending on the risk levels, they are named as Best,
Good, Average 1, Average 2, Bad, and Worst. For example, a policyholder
with the “Best” profile is 60 years old, drives a 8-year-old gasoline vehicle that is
classified as Class A, signs a renewal contract without claims last year and lives
in Region IV. These are all favorable characteristics that lead to a lower risk
level. Also, we have constructed two average profiles, each of them consist of a
mixture of desirable and undesirable risk characteristics. The main difference
between the two types of profiles is that the features of an Average 1 profile are
more common than that of an Average 2 profile. In other words, very few poli-
cyholders share similar characteristics as an Average 2 profile (e.g., 80-year-old
policyholders are very rare; relatively few policyholders live in Region III). We
will show that the fair premium charged to policyholders can be affected by
such a difference.

The summary statistics for Li, Yi1, and Yi2 are displayed in Table 15. As
expected, lower risk profiles make less claims on average, and vice versa. The
expected claim counts for the worst risk profile is almost four times as that for
the best risk profile. Also, we observe that the variance of the number of claims
generally increases with the mean. However, the proposed model shows that
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TABLE 16

QUANTILE PREMIUM, STANDARD DEVIATION PREMIUM, AND SD PREMIUM (ASSUMING
INDEPENDENCE BETWEEN TWO TYPES OF COVERAGE) BY RISK PROFILE.

Quantile Premium SD Premium SD Prem (Indep)

Profile 75% 95% γ = 0.1 γ = 0.5 γ = 0.1 γ = 0.5

Best 0.219 0.232 0.275 0.526 0.271 0.508
Good 0.302 0.321 0.361 0.662 0.356 0.635
Average 1 0.411 0.427 0.489 0.857 0.484 0.833
Average 2 0.407 0.452 0.476 0.844 0.471 0.820
Bad 0.595 0.680 0.691 1.136 0.681 1.085
Worst 0.835 0.921 0.908 1.352 0.901 1.313

such a relationship is nonlinear. The dispersion ratio of the number of third-
party liabilities claims is the greatest for profile [“Bad,”], while the dispersion
ratio of the claim counts on car damages is the largest for profile [“Average 2.”].
This phenomenon is in contrast to the assumption of the NB GLM framework
that the variance of marginal claim counts is linear to the mean.

The expected total number of claims E[Li] is the basis for premium calcula-
tions. However, under parameter uncertainties, E[Li] can still be random. The
quantiles of the distribution of E[Li] may be viewed as the percentile premiums.
The distribution of E[Li] can be easily and directly computed from the B= 400
sets of refitted parameters {�̃b

; b= 1, . . . ,B}, which have already been obtained
by bootstrapping. The 75th and the 95th percentile premiums for each of the
six risk profiles are exhibited in Table 16. One interesting observation is that
although the risk levels of the two average profiles are similar (the expected
total claim counts of profile “Average 2” is slightly lower than that of profile
“Average 1”), the 95th percentile premium for profile “Average 2” is about 6%
higher than that for profile “Average 1”. As mentioned before, very few pol-
icyholders share similar risk characteristics as an Average 2 profile. Since the
insurer has less relevant claim information, the proposed model tells us that
the effects of parameter uncertainties are greater for such a profile, leading to
greater-than-usual percentile premiums.

Table 16 also displays the premiums based on the standard deviation pre-
mium principle, which is E[Li]+ γ

√
Var[Li]. We further compare them to the

SD premiums assuming independence between two types of coverage, which
are calculated as E[Li]+ γ

√
Var[Yi1]+Var[Yi2]. It is obvious that the SD

premiums will be underestimated assuming independence between two claim
types, especially if we choose a larger γ , because our fitted model identifies
a positive correlation between Yi1 and Yi2. Note that the calculations of the
quantile premium and the SD premiums are based on completely different rules
and concepts, so the premiums calculated by the two approaches can be quite
different.
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7. CONCLUDING REMARKS

In this paper, we consider the estimation and application aspects of the
EC-LRMoE model, which is regarded as a fully flexible multivariate count
regression model. We first proved the identifiability property that makes the
proposed model an excellent candidate for statistical inference. Then, an ECM
algorithm is presented to estimate the model parameters. The steps involve
either analytical formulas or low-dimensional convex/concave optimizations,
so they are easily computable. The effectiveness of the proposed ECM algo-
rithm and the flexibility of the EC-LRMoE model are verified through three
simulation studies. In applications, we fit the EC-LRMoEmodel to a real auto-
mobile insurance data set, which possesses complicated characteristics. The
EC-LRMoE model captures well the distribution, dependence, and regression
structures implied by the data set. Also, the effect of the policyholder’s char-
acteristics to his/her risk level, as well as the prior and posterior probabilities
that a specific policyholder belongs to a certain subgroup, can be visualized.
Finally, we demonstrate the use of the model to insurance ratemaking.

The current work opens up some possible future research directions.
Firstly, while this paper considers frequency expert functions for the LRMoE,
it is also worthwhile to study the applications of the severity LRMoE in general
insurance context, especially when the insurance claim size distributions are
very heavy tailed. Secondly, as discussed in Remark 4.1, the proposed algo-
rithm is practically feasible but is still computationally intensive. One may
easily apply many existing tools, such as the stochastic EM algorithm, mini-
batch computing, more advanced local searching strategies (for mij and g), and
more efficient built-in functions from various statistical software, to reduce
the run time significantly. Thirdly, one could perform variable selection of the
proposed model, which shrinks some regression parameters in the gating func-
tions. This could be an important issue, especially when we have a large amount
of policyholders’ information where not all is useful. While Fan and Li (2001)
proposed the SCAD penalty function for variable selections under the linear
regression model and Yin and Lin (2016) proposed the iSCAD penalty func-
tion to effectively choose the number of components in finite mixture models,
it is worthwhile to extend their results in order to apply them to our LRMoE
model.
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