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A New Class of Severity Regression Models with an Application to
IBNR Prediction

Tsz Chai Fung, Andrei L. Badescu, and X. Sheldon Lin
Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada

Insurance loss severity data often exhibit heavy-tailed behavior, complex distributional characteristics such as multimodality,
and peculiar links between policyholders’ risk profiles and claim amounts. To capture these features, we propose a transformed
Gamma logit-weighted mixture of experts (TG-LRMoE) model for severity regression. The model possesses several desirable
properties. The TG-LRMoE satisfies the denseness property that warrants its full versatility in capturing any distribution and
regression structures. It may effectively extrapolate a wide range of tail behavior. The model is also identifiable, which further
ensures its suitability for statistical inference. To make the TG-LRMoE computationally tractable, an expectation conditional
maximization (ECM) algorithm with parameter penalization is developed for efficient and robust parameter estimation. The pro-
posed model is applied to fit the severity and reporting delay components of a European automobile insurance dataset. In addition
to obtaining excellent goodness of fit, the proposed model is shown to be useful and crucial for adequate prediction of incurred
but not reported (IBNR) reserves through out-of-sample testing.

1. INTRODUCTION
Loss severity regression modeling is a fundamental yet challenging problem in various actuarial areas, including insurance

ratemaking, reserving, and risk management. Insurance data often exhibit heavy-tailed behavior, where the extreme losses in
the tail are often the most impactful to the insurers. In addition, unobserved heterogeneity among losses because of the impos-
sibility of collecting all loss information may cause complex distributional phenomena such as multimodality. Further, it is
sometimes difficult to determine an appropriate regression form, especially when nonlinear patterns between covariates and
loss severities are implied by some insurance dataset. Building a suitable model that includes all of the above features facili-
tates actuaries’ decision-making processes. On the other hand, despite extensive studies on severity regression modeling in the
actuarial literature, there is still no consensus on the “best” model.

Tail behavior of insurance loss data is commonly modeled by traditional heavy-tailed distributions such as Burr, log-
Gamma, and generalized Pareto distributions (GPD), which are all well aligned with extreme value theory (EVT). In regres-
sion setting, generalized linear models (GLMs) with a generalized beta distribution of the second kind (Frees and Valdez
2008), which contain a broad class of heavy-tailed distributions such as lognormal and Burr, are widely adopted.

To cater to the mismatch between the body behavior and the tail behavior, a relatively more flexible modeling approach is
the use of a composite distribution or more generally a spliced distribution (Klugman, Panjer, and Willmot 2012), which subdi-
vides the losses into two or more intervals and models losses of different intervals with different distributions. Actuarial litera-
ture on various choices of composite models includes, for example, Pigeon and Denuit (2011), Scollnik and Sun (2012), Bakar
et al. (2015), Calder�ın-Ojeda and Kwok (2016), Reynkens et al. (2017), and Gr€un and Miljkovic (2019). The splicing tech-
nique was also extended in regression setting by, for example, Gan and Valdez (2018).

With regards to distributional multimodality, finite mixture models have recently emerged in the actuarial literature. Lee
and Lin (2010) proposed a mixture of Erlang distribution for loss severity modeling that is dense in the space of positive con-
tinuous distributions, meaning that it possesses a full flexibility to fit any complex distributions. Verbelen et al. (2015)
extended the use of Erlang mixture by fitting it to censored and truncated data. However, restricting an Erlang component
function in the mixture may lead to an excessive number of components required to suitably fit the target distribution,
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especially if the target distribution is heavy-tailed and the Erlang distribution is relatively light-tailed. For example, Verbelen
et al. (2015) demonstrated that a prohibitively large number of components is required to fit a GPD using the Erlang mixture,
so the tail heaviness of the GPD cannot be adequately extrapolated. As such, Miljkovic and Gr€un (2016) and Blostein and
Miljkovic (2019) presented finite mixtures with various combinations of distributions, including heavy-tailed distributions
such as lognormal and Burr, to alleviate the above issue. Through Danish fire losses and Secura Re datasets, they found better
fitting performance and detected fewer mixture components when heavy-tailed component functions (instead of Gamma or
Erlang) were used. Alternatively, considering the concept of data transformation, the log phase-type distribution proposed by
Ahn, Kim, and Ramaswami (2012), which also possesses denseness properties, is suitable for modeling heavy-tailed data.

In Fung, Badescu, and Lin (2019b), the logit-weighted reduced mixture of experts model (LRMoE) was proposed as an
alternative statistical tool for frequency or severity regression. The LRMoE can be regarded as a regression version of a finite
mixture model, where the regression links are incorporated only through the component weights (called gating functions) but
not the component distributions (called expert functions). This ensures model parsimony but still preserves model versatility.
The paper also highlights the importance of choosing a suitable expert function to effectively fit both the body and the tail of
data. By choosing an Erlang count expert function, Fung, Badescu, and Lin (2019a) demonstrated the success of the resulting
LRMoE in capturing complex features of a real automobile insurance frequency dataset. As such, the fitted model is poten-
tially useful for insurance ratemaking.

This article contributes to the LRMoE framework in the context of severity regression. We propose a transformed Gamma
LRMoE (TG-LRMoE), where the observed data are first manipulated through a Box-Cox transformation (Box and Cox 1964).
The transformed data are then modeled by the LRMoE with a Gamma expert function. The single parameter introduced by the
Box-Cox transformation controls the tail heaviness of the TG-LRMoE.

The proposed TG-LRMoE possesses several important desirable properties. First, it possesses the denseness property in
regression setting, guaranteeing its full flexibility in catering to any distribution and regression structures. This makes the pro-
posed model fully data driven and ensures that the fitted model will be highly synchronous to the input data. Secondly, involv-
ing only one extra transformation parameter, the TG-LRMoE covers a broad range of tail behavior, including light-tailed
distributions such as Gamma and Weibull distributions, as well as heavy-tailed distributions such as the Burr distribution.
Thirdly, the identifiability property of the proposed model ensures its suitability for statistical inference. Finally, it is possible
to develop a stable, robust, and efficient algorithm for model calibration (i.e., an expectation conditional maximization [ECM]
algorithm similar to that presented by Fung, Badescu, and Lin [2019a]), making the proposed model computationally tractable.

After justifying theoretically the plausibility of the TG-LRMoE, we demonstrate its ability to fit complex heavy-tailed
severity regression distributions and its usefulness in solving reserving problems by analyzing an European automobile insur-
ance dataset. For property and casualty insurance companies, a major reserving problem is to appropriately estimate the
incurred but not reported (IBNR) reserves. Though the traditional triangular approach (e.g., chain ladder method) aggregates
claim data into a run-off triangle and makes inferences based on the summary data (see, e.g., W€uthrich and Merz [2008] for a
comprehensive summary of techniques), the evolution of computational and information technologies allows insurers to evalu-
ate reserves more accurately at an individual claim level, commonly called a microlevel modeling framework. Recent contribu-
tions to microlevel reserving include, for example, Antonio and Plat (2014), Badescu, Lin, and Tang (2016), Verrall and
W€uthrich (2016), W€uthrich (2018) and Badescu et al. (2019), which require modeling three components: frequency, severity,
and reporting delay. The insurance dataset we obtained includes individual claim information as well as detailed policyholder
features for each contract. This extra information (covariates) may enable us to predict IBNR even more accurately under the
microlevel reserving framework. With the use of the proposed TG-LRMoE regression model for the severity and reporting
delay components, not only do we obtain excellent goodness of fit for both components, but we also provide reasonable pre-
dictions of the IBNR.

This article is structured as follows. The next section formulates the proposed TG-LRMoE as a flexible severity regression
model. Section 3 presents three crucial desirable properties of the proposed model: denseness, tail flexibility, and model identi-
fiability. The computational aspect of the proposed model is discussed in Section 4, where the ECM algorithm is proposed to
obtain the maximum a posteriori (MAP) estimates of the parameters. We leverage the proposed model to a real insurance data
in Section 5, demonstrating its usefulness to adequately predict IBNR reserves under a microlevel reserving framework.
Section 6 summarizes our findings and discusses some potential future research directions.

2. THE TG-LRMOE REGRESSION MODEL
In this section, we propose the TG-LRMoE as a flexible severity regression model. Suppose that there are a total of n mutu-

ally independent insurance claims. Denote Y ¼ Y1, :::,Ynð ÞT and y ¼ y1, :::, ynð ÞT respectively as the claim severity column
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vector (response variable) and the corresponding realization. For each claim i 2 f1, :::, ng, we also define xi ¼ xi0, :::, xiPð ÞT
(with xi0 ¼ 1) as the information relating to claim i (covariates). It is assumed that the claim severities Y1, :::,Yn are mutually
independent.

In the insurance context, it insurance claim severity distributions are often very heavy-tailed. Rather than using existing
approaches such as traditional heavy-tailed distributions (such as GPD) and composite models, this article proposes an alterna-

tive approach that transforms the claim severities Y and models the transformed severities ~Y :¼ ~Y 1, :::, ~Yn

� �T
by lighter-tailed

distributions. We first define a Box-Cox transformation on Yi:

~Y i ¼ 1þ Yið Þc � 1
c

, c > 0, (2.1)

where c is a parameter controlling the tail heaviness of the distribution of ~Y i: ~Y i has a lighter tail than Yi when c < 1 and vice
versa. In addition, ~Y i ! log 1þ Yið Þ as c! 0: We will discuss how the above transformation enables flexible tail modeling
in Subsection 3.1.

We then model ~Y i given xi through the LRMoE. Its probability density function (pdf) is given by

h~Y ijxi ~yi; xi, a,W, gð Þ ¼
Xg
j¼1

pj xi; að Þf ~yi;wj
� �

, ~yi > 0, (2.2)

where g is the number of latent classes, W ¼ w1, :::,wg
� �

are the parameters of the expert functions, pj xi; að Þ ¼
exp faTj xig=

Pg
j0¼1 exp faTj0 xig is the mixing weight for the jth class (gating function), and the regression parameters for the

mixing weights are a ¼ a1, :::, agð Þ and aj ¼ aj0, :::, ajPð ÞT 2 R
Pþ1: We choose a Gamma expert function so that W ¼

m, hð Þ,wj ¼ mj, hj
� �

, and

f ~yi;wj
� �

:¼ f ~yi;mj, hj
� � ¼ ~yi

mj�1e�~yi=hj

C mjð Þhmj

j

, ~yi,mj, hj > 0, (2.3)

where m ¼ m1, :::,mgð Þ and h ¼ h1, :::, hg
� �

are, respectively, the shape and scale parameters of gamma distribution. Under
simple probabilistic arguments, the pdf of Yi given xi can also be derived:

hYijxi yi; xi, a,m, h, c, gð Þ ¼
Xg
j¼1

pj xi; að Þf ~yi cð Þ;mj, hj
� �

1þ yið Þc�1, yi,mj, hj, c > 0, (2.4)

where ~yi cð Þ ¼ 1þ yið Þc � 1
� �

=c is a function of c. Note that Yi follows the LRMoE with transformed Gamma distributions
(TGDs) as the expert functions, where the pdf of the TGD is given by

~f y;m, h, cð Þ ¼ f ~y cð Þ;m, h� �
1þ yð Þc�1: (2.5)

A nice property of the proposed model is its interpretability. The model classifies each claim into one of the g unobservable
subgroups. Claim severity distributions vary among subgroups but are homogeneous within a subgroup. Depending on the
characteristics (covariates xi) of the claim, each claim has different probabilities of being classified into different subgroups.
The subgroup assignments are governed by the regression coefficients a of the gating function. A large positive regression
coefficient ajp represents a higher chance for a claim to be classified as subgroup j when xip is large.

3. DESIRABLE PROPERTIES
3.1. Denseness Property

To justify theoretically the full flexibility of the proposed TG-LRMoE to capture any distribution and regression patterns,
we need to show that it satisfies the denseness property proposed by Fung, Badescu, and Lin (2019b). The denseness property
ensures that the data generated from the fitted model will be highly synchronous to the input data regardless of the dataset’s
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characteristics. We first revisit the relevant definitions proposed by Fung, Badescu, and Lin (2019b), dropping the subscript i
for xi (only in this subsection) for a cleaner presentation:

Definition 1. (Regression distribution) A class of regression distributions C Að Þ (where A is the support of the covariates x) is
a set, where each element F Að Þ :¼ fF �; xð Þ; x 2 Ag in C Að Þ is itself a set of probability distributions.

Definition 2. (Denseness property in the context of univariate regression distributions) Let A be the support of the covariates
x. In addition, denote C1 Að Þ and C2 Að Þ as two classes of regression distributions. C1 Að Þ is dense in C2 Að Þ if and only if for
all F Að Þ 2 C2 Að Þ there exists a sequence of regression distributions fGn Að Þgn¼1, 2, ::: with Gn Að Þ 2 C1 Að Þ for n ¼ 1, 2, :::

such that for all x 2 A,Gn y; xð Þ!D F y; xð Þ as n!1. If the convergence Gn y; xð Þ ! F y; xð Þ is uniform on x 2 Ay for any y,

where Ay is the set of x such that y is a continuity point of F y; xð Þ, then C1 Að Þ is uniformly dense in C2 Að Þ:
We now display the denseness properties of the proposed TG-LRMoE under some very mild assumptions suggested by

Fung, Badescu, and Lin (2019b) where the proofs are exhibited in Appendix A.1.

Property 1. Let G1 Að Þ be a class of univariate severity regression distributions. For each element G� Að Þ 2 G1 Að Þ where
G� Að Þ :¼ fG� �; xð Þ; x 2 Ag, fG� �; xð Þgx2A is tight and G� y; xð Þ is Lipschitz continuous on x 2 A for all y. Assume that

A ¼ f1g � ½mmin,mmax�P, where mmin and mmax are finite. Then, the class of TG-LRMoE defined in Equation (2.4) with covari-
ates x 2 A is uniformly dense in G1 Að Þ:

The following property provides a slightly stronger result than Property 1, suggesting that the denseness property still holds
even if we fix the parameter c, which governs the tail of the distribution. In other words, the flexibility of the proposed TG-
LRMoE is not mainly contributed by the parameter c.

Property 2. Under the same settings and assumptions as Property 1, the class of TG-LRMoE with a fixed c > 0 and covari-
ates x 2 A is uniformly dense in G1 Að Þ:

3.2. Tail Heaviness
The denseness properties of the proposed TG-LRMoE ensure its full flexibility to capture any structures, including the tail

behavior of any distributions. However, there is a serious practical concern: there is no control on the number of latent classes
g. From a general insurance perspective, the claim severity distributions usually exhibit heavy-tailed behavior. Fitting such dis-
tributions using the LRMoE with light-tailed expert functions may require a prohibitively large g, causing overfitting prob-
lems. See section 3.4 of Fung, Badescu, and Lin (2019b), which discusses the limitation of denseness theory, for more details.

Therefore, it is essential to theoretically justify the effectiveness of the proposed TG-LRMoE in capturing a wide range of
tail behaviors. Then, a small number of latent classes will be able to effectively fit a heavy-tailed dataset. We will first show
that the parameter c predominantly affects the tail of the TG-LRMoE. Adjusting c, we will show that the proposed model cov-
ers both light-tailed distributions (e.g., Weibull distributions) and very heavy-tailed distributions that can be connected to
extreme value theory (e.g., Burr distributions). A well-known definition to compare the tail heaviness between two distribu-
tions is revisited in Definition A.1 of Appendix A.2.

Denote Y jð Þ
i (j 2 f1, :::, gg) as a random variable with pdf f jð Þ: Assume that Yi follows a g-component LRMoE with pdf in

the form of Equation (2.2) and with expert functions f 1ð Þ, :::, f gð Þ: The tail property for the LRMoE is as follows, with the proof
displayed in Appendix A.2.

Property 3. If Y jð Þ
i (j 2 f1, :::, gg with g <1) has one of the heaviest tails among Y 1ð Þ

i , :::,Y
gð Þ
i (i.e., Y jð Þ

i has a heavier tail or

one similar to Y j0ð Þ
i for every j0 2 f1, :::, gg), then both Yijx and Yijxc have tails similar to Y jð Þ, where the observed covariates

xc are a subset of the complete covariates x.

The property above shows that unless g ¼ 1 (which is impractical), the LRMoE fails to extrapolate any tails heavier or
lighter than that of expert functions. As a result, under finite g, the choice of expert functions completely determines how
effective the corresponding LRMoE can cater to different tail behaviors.

To evaluate the tail of the proposed TG-LRMoE, it suffices to analyze the tail behavior of the TGD with the pdf displayed
in Equation (2.5). We first introduce the following property to gain insights on how the parameters m, h, cð Þ affects the tail of
the TGD.
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Property 4. Let F ¼ f~f �;m, h, cð Þ;m, h, cg be the class of TGD. Then, there exists a total ordering of F such that
~f �;m, h, cð Þ � ~f �;m�, h�, c�ð Þ implies that ~f �;m�, h�, c�ð Þ has a heavier tail than ~f �;m, h, cð Þ:

The proof of the above property is presented in Appendix A.2, which shows that c is the most important parameter affecting the
tail of the TGD, followed by h and finally m. A smaller c means a heavier tail and vice versa. In contrast, recall from Property 2
that c is an unimportant parameter for the denseness property of the TG-LRMoE. As a result, the role of the parameter c, which
mainly governs the tail of the distribution, is very distinctive to that of the parameters m and h, which mainly govern the body.

After understanding the role of the tail parameter c, it is crucial to demonstrate that the TG-LRMoE covers a very broad
range of tail behavior by varying c. Table A.1 in Appendix A.2 compares the tail of the TGD compared to that of various com-
monly used severity distributions. It shows that under the limit c! 0, the TGD can capture very heavy-tailed distributions
such as Burr distributions (including Pareto distributions as a special case) that have a polynomial tail. The TGD can also cater
to lighter tailed severity distributions, such as Weibull distributions (with shape parameters k> 1) when c is greater than one.
Further, we want to show how the TGD can be connected to EVT. When c! 0, the TGD converges to the log-Gamma distri-
bution (LGD) with pdf

~f y;m, h, 0ð Þ :¼ lim
c!0

~f y;m, h, cð Þ ¼ 1
C mð Þhm

log 1þ yð Þ½ �m�1
1þ yð Þ1þ1=h

: (3.1)

Note that the LGD has a finite sth moment (s> 0) only when h < 1=s: To connect the LGD to the EVT, we recall what is
meant by a regularly varying distribution: A distribution with survival function S(y) is regularly varying with index q > 0 if
limy!1 S ykð Þ=S yð Þ ¼ k�q for any k > 0:

Under the EVT, any regularly varying distributions are in the maximum domain of attraction of the Fre�chet distribution,
which belongs to a class of the generalized extreme value distributions. Such a class of distributions has many desirable prop-
erties useful for insurance applications; see, for example, Embrechts, Kl€uppelberg, and Mikosch (1997) and Ahn, Kim, and
Ramaswami (2012) for further discussions. We have the following property for the LGD.

Property 5. The LGD with the pdf defined by Equation (3.1) is a regularly varying distribution with index q ¼ 1=h:

As a result, the proposed TG-LRMoE is also a regularly varying distribution with index q ¼ 1=h as c! 0, implying that it
can effectively capture heavy tails of the distributions that are well aligned with the EVT.

3.3. Model Identifiability
In addition to model flexibility, it is desirable that the proposed model is identifiable to ensure that model fitting is unique

and to prevent different interpretations for a fitted model. However, as pointed out by, for example, Jiang and Tanner (1999)
and Fung, Badescu, and Lin (2019a), identifiability generally fails for the class of LRMoE in the form of Equation (2.2),
because the model is invariant under a permutation (i.e., aj,wj

� � 7! ac jð Þ,wc jð Þ
� �

where fc 1ð Þ, :::, c gð Þg is a permutation of

f1, :::, gg) or a translation (i.e., aj 7! aj þ d where d is a column vector with length Pþ 1). However, we can still show that the
proposed TG-LRMoE is identifiable up to translation and permutation, meaning that any model unidentifiability only the result
of translational and permutational invariance properties. Before that, we recall the definition of identifiability for the general
class of LRMoE from Fung, Badescu, and Lin (2019a).

Definition 3. Let G be the class of LRMoE with the pdf in the form of Equation (2.2). Each element GU, g 2 G is a regression
distribution with covariates xi 2 X, parameter setting U ¼ a,Wð Þ, and the number of latent classes g, where X � R

Pþ1 is the
support of xi. A subclass �G � G is identifiable up to translation and permutation whenever GU�, g� ,GU, g 2 �G, a�j1 ,w

�
j1

� � 6¼
a�j2 ,w

�
j2

� �
for all j1 6¼ j2 2 f1, :::, g�g and aj1 ,wj1

� � 6¼ aj2 ,wj2

� �
for all j1 6¼ j2 2 f1, :::, gg, if

Xg�
j¼1

pj xi; a�ð Þf yi;w
�
j

� � ¼Xg
j¼1

pj xi; að Þf yi;wj
� �

(3.2)

for all xi 2 X and yi > 0 (in other words, the pdf of GU, g matches with that of GU�, g� ), it implies that g� ¼ g and a�j ,w
�
j

� � ¼
ac jð Þ þ d,wc jð Þ
� �

for j ¼ 1, :::, g, where fc 1ð Þ, :::, c gð Þg is a permutation of f1, :::, gg and d is a vector that is constant across

all j ¼ 1, :::, g:
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The identifiability property with TGD as a special choice of expert funcction is as follows, with the proof shown in
Appendix A.3:

Property 6. The TG-LRMoE (with pdf in the form of Eq. [2.4]) is identifiable up to translation and permutation, subject to
the restriction that m1, h1ð Þ, :::, mg, hg

� �
are distinct and X spans RPþ1:

4. PARAMETER ESTIMATION
This section presents an ECM algorithm to efficiently calibrate the model parameters. Estimating parameters of the LRMoE

severity distributions imposes an extra challenge that the likelihood function may be unbounded (e.g., for the TG-LRMoE, the
likelihood may diverge to infinity when mj !1 and hj ! 0 for some j). As a result, maximum likelihood estimations may
lead to a spurious model mentioned by McLachlan and Peel (2000), where some of the fitted components (expert functions)
have very small variances. To this end, the ECM algorithm presented below for the proposed TG-LRMoE (Eq. [2.4]) is differ-
ent from the algorithm proposed by Fung, Badescu, and Lin (2019a), in the sense that it further penalizes parameters taking
extreme values through finding the AP estimates of the parameters.

Suppose that there are n independent observations f Yi, xið Þ; i ¼ 1, :::, ng: Hereafter, denote y ¼ y1, :::, ynð Þ and x ¼
x1, :::, xnð Þ as all observed response variables and covariates respectively. We are to estimate the parameters U ¼ a,m, h, cð Þ,
while g is fixed at each ECM run. We also restrict ag ¼ 0 for translational invariance concern. Then, the observed data log-
likelihood is given by

l U; y, xð Þ ¼
Xn
i¼1

log
Xg
j¼1

pj xi; að Þf ~yi cð Þ;mj, hj
� �

1þ yið Þc�1
" #

: (4.1)

To penalize parameters taking extreme values, we adopt a Bayesian approach to set up a prior distribution for each parameter.
Note that under the Bayesian approach, it makes little sense to be concerned about choosing “accurate” prior distributions.
Instead, they should be kept simple to minimize their impacts on the computational burden of the ECM algorithm. To this end,
we have chosen the following prior distributions for the parameters.

1. For the regression coefficients a, we set ajp 	 N 0, r2jp
� �

for j ¼ 1, :::, g� 1 and p ¼ 0, :::,P: This avoids the possibility

for the fitted model that certain claim features have a probability of (almost) 1 or 0 being classified to a particular sub-
class, which is indeed an over-fitting. Also, choosing a Normal prior, the concavity of Equation (4.8) (an important part
of the CM step that will be discussed in Subsection 4.2) is conserved, so its optimization still always converges to a glo-
bal maximum.

2. For the shape and size parameters, we set mj 	 Gamma � 1ð Þ
j , k 1ð Þ

j

� �
and hj 	 Gamma � 2ð Þ

j , k 2ð Þ
j

� �
for j ¼ 1, :::, g to prevent

spurious fitted models. We will show in Subsection 4.2 that the optimal scale parameter hj can be expressed as an analyt-
ical form (Eq. [4.13]) if a Gamma prior is chosen.

3. We choose not to penalize c because this parameter does not result in spurious model or overfitting issue.

It is assumed that the prior distributions of all parameters are mutually independent. In addition, we note that rjp, �
1ð Þ
j , k 1ð Þ

j , � 2ð Þ
j , k 2ð Þ

j

are all fixed numbers chosen prior to each ECM run. The observed data posterior log-likelihood is then given by

lpos U; y, xð Þ ¼ log

Qn
i¼1 hYijxi yi; xi, a,m, h, c, gð Þ� �

p a,m, hð Þ
p y; xð Þ

" #
,

¼ l U; y, xð Þ þ log p a,m, hð Þ þ const:,

(4.2)

where

p a,m, hð Þ ¼
Xg�1
j¼1

XP
p¼0

log p1 ajpð Þ þ
Xg
j¼1

log p2 mjð Þ þ
Xg
j¼1

log p3 hj
� �

, (4.3)
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p �ð Þ represents the joint prior distribution of the parameters and p1 �ð Þ, p2 �ð Þ, and p3 �ð Þ are the marginal priors. Now, we intro-

duce a latent random vector Zi ¼ Zi1, :::,Zigð ÞT 	 Multig 1, fp1 xi; að Þ, :::, pg xi; að Þg
� �

such that Zij ¼ 1 if the observation yi
comes from the jth component and Zij ¼ 0 otherwise for i ¼ 1, :::, n: The complete data posterior log-likelihood is given by

lpos U; y, x,Zð Þ ¼
Xn
i¼1

Xg
j¼1

Zij log pj xi; að Þ þ log f ~yi cð Þ;mj, hj
� �� �

þ c� 1ð Þ
Xn
i¼1

log 1þ yið Þ þ log p a,m, hð Þ þ const:,

(4.4)

4.1. E Step
In the lth iteration of the E step, we take an expectation of the complete data posterior log-likelihood given the observed data

Q U; y, x,U l�1ð Þ
� �

¼ E lpos U; y, x,Zð Þjy, x,U l�1ð Þ
h i

¼
Xn
i¼1

Xg
j¼1

z lð Þ
ij log pj xi; að Þ þ mj � 1ð Þ log~yi cð Þ �

~yi cð Þ
hj
� mj log hj � log mj � 1ð Þ!

 !

þ c� 1ð Þ
Xn
i¼1

log 1þ yið Þ �
Xg�1
j¼1

XP
p¼0

a2jp
2r2jp

þ
Xg
j¼1

� 1ð Þ
j � 1

� �
logmj � mj

k 1ð Þ
j

 !
þ
Xg
j¼1

� 2ð Þ
j � 1

� �
log hj � hj

k 2ð Þ
j

 !
þ const:,

(4.5)

where z lð Þ
ij is given by the following for i ¼ 1, :::, n and j ¼ 1, :::, g:

z lð Þ
ij ¼ E Zijjy, x,U l�1ð Þ

h i
¼

pj xi; a l�1ð Þ� �
f yi; h

l�1ð Þ
jk

� �
Pg

j0¼1pj0 xi; a l�1ð Þ� �
f yi; h

l�1ð Þ
j0k

� � : (4.6)

4.2. CM Step

In the CM step, we update the parameters U l�1ð Þ such that Q U lð Þ; y, x,U l�1ð Þ
� �


 Q U l�1ð Þ; y, x,U l�1ð Þ
� �

: Note that

Q U; y, x,U l�1ð Þ
� �

can be decomposed as the following:

Q U; y, x,U l�1ð Þ
� �

¼ Q lð Þ að Þ þ
Xg
j¼1

S lð Þ
j mj, hj, c
� �þ T lð Þ cð Þ, (4.7)

where

Q lð Þ að Þ ¼
Xn
i¼1

Xg
j¼1

z lð Þ
ij log pj xi; að Þ �

Xg�1
j¼1

XP
p¼0

a2jp
2r2jp

, (4.8)

S lð Þ
j mj, hj, c
� � ¼Xn

i¼1
z lð Þ
ij mj � 1ð Þ log~yi cð Þ �

~yi cð Þ
hj
� mj log hj � log mj � 1ð Þ!

 !

þ � 1ð Þ
j � 1

� �
logmj � mj

k 1ð Þ
j

þ � 2ð Þ
j � 1

� �
log hj � hj

k 2ð Þ
j

,

(4.9)
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and

T lð Þ cð Þ ¼ c� 1ð Þ
Xn
i¼1

log 1þ yið Þ þ const:, (4.10)

We first update the parameters a l�1ð Þ such that Q lð Þ a lð Þð Þ 
 Q lð Þ a l�1ð Þð Þ: To do so, we sequentially (for j ¼ 1, :::, g� 1) maxi-

mize Q lð Þ a lð Þ
1 , :::, a lð Þ

j�1, aj, a
l�1ð Þ
jþ1 , :::, a l�1ð Þ

g

� �
(note: a lð Þ

g ¼ 0) with respective to aj to obtain a lð Þ
j , which can be achieved through

the iteratively reweighted least squares (IRLS) approach (Jordan and Jacobs 1994). The IRLS requires performing the follow-
ing iterations until convergence; see section 4.2 of Fung, Badescu, and Lin (2019a) for details:

aj  aj � @2Q lð Þ að Þ
@aj@a

T
j

 !�1
@Q lð Þ að Þ

@aj
: (4.11)

Note that Q lð Þ að Þ is a concave function, so the above IRLS algorithm always converges to a global maximum. Then, we update

the parameters m l�1ð Þ, h l�1ð Þ� �
through maximizing S lð Þ

j mj, hj, c l�1ð Þ
� �

with respect to mj, hj
� �

for each j ¼ 1, :::, g: We have

m lð Þ
j ¼ argmax

mj>0
S lð Þ
j mj, ~h

lð Þ
j mjð Þ, c l�1ð Þ

� �
; h lð Þ

j ¼ ~h
lð Þ
j m lð Þ

j

� �
, (4.12)

where

~h
lð Þ
j mjð Þ ¼

k 2ð Þ
j

2
� 2ð Þ
j � 1

� �
� mj

Xn
i¼1

z lð Þ
ij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj

Xn
i¼1

z lð Þ
ij � � 2ð Þ

j � 1
� � !2

þ 4

k 2ð Þ
j

Xn
i¼1

z lð Þ
ij ~yi c

lð Þ
� �vuut

0
B@

1
CA (4.13)

is obtained by taking a derivative of S lð Þ
j mj, hj, c l�1ð Þ
� �

with respect to hj and setting it as zero. Note that univariate numerical

optimization is required to compute m lð Þ
j in Equation (4.12). Finally, we obtain c lð Þ through maximizingPg

j¼1 S
lð Þ
j m lð Þ

j , h lð Þ
j , c

� �
þ T lð Þ cð Þ numerically with respect to c.

The full CM step described above ensures that Q U lð Þ; y, x,U l�1ð Þ
� �


 Q U l�1ð Þ; y, x,U l�1ð Þ
� �

: Further, Dempster, Laird,

and Rubin (1977) and Meng and Rubin (1993) suggested that the ECM algorithm for the MAP estimation preserves all of the
desirable convergence properties as the standard EM algorithm for the maximum likelihood estimation. For example, the
observed data posterior log-likelihood is monotone nondecreasing for each iteration and finally converges to a local maximum.
The E step and CM step are iterated until the change in the observed data posterior log-likelihood is smaller than a tolerance
threshold of 10�3 or the maximum number of iterations of 200 is reached.

4.3. Initialization and Parameter Adjustments
Good initialization is essential for fast convergence of the proposed ECM algorithm. We first initialize c using a simple ad

hoc method. Note that if Yi follows the TG-LRMoE, then log S ~yi cð Þ;m, h
� � ¼ o ~yi cð Þ

� �� c�~yi cð Þ, where limy!1 o yð Þ=y ¼
0, c� is a constant, and the log-survival function of ~Y i ¼ 1þ Yið Þc � 1

� �
=c is given by log S: Trying a wide range of c, we plot

(for each c) log Ŝ ~yi cð Þ
� �

(empirical survival function) against ~yi cð Þ: We choose the initial tail parameter c 0ð Þ such that the plot

looks asymptotically linear.
Then, a, m, and h are initialized using a method similar to the clusterized method of moments proposed by Gui, Huang,

and Lin (2018). First, perform K-means clustering on ~yi cð Þ with g clusters, which yields the clustering mean flclusterj gj¼1, :::, g,

variance rclusterj

� �2� �
j¼1, :::, g

and weights fpclusterj gj¼1, :::, g (the proportion of observations classified in cluster j). Second, set
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m 0ð Þ
j ¼ lclusterj =rclusterj

� �2
and h 0ð Þ

j ¼ rclusterj

� �2
=lclusterj to match the first two moments for each cluster. Third, set a 0ð Þ

j0 ¼
log pclusterj =pclusterg

� �
and a 0ð Þ

jp ¼ 0 for p> 0.

Finally, to determine the optimal g, we try a wide range of g and find one that optimizes the Akaike information criterion
(AIC) or the Bayesian information criterion (BIC).

Remark 1. During the model selection procedure, it is important to understand the strengths and weaknesses of AIC and BIC.
With a heavier penalty on model complexity, BIC usually yields a model with fewer components that is more interpretable.
Kuha (2004) also showed that BIC is consistent in selecting the true model, but this is of serious practical concern because it is
impossible to identify the true model in any real datasets. Instead, BIC often over-penalizes the model complexity, which may
lead to inferior predictive power. On the other hand, AIC is designed to select models that optimize the predictive power.
These properties will be empirically demonstrated in the real data analysis (Section 5).

5. APPLICATION TO IBNR PREDICTION
We demonstrate the usefulness of the proposed TG-LRMoE regression model for IBNR prediction by analyzing a real

insurance dataset. Subsection 5.1 outlines the main features of the real insurance dataset we have collected. Because it contains
very detailed policyholder information for each contract and claim, we are able to incorporate covariates under the individual
reserving approach, which may enable us to understand how the claims are influenced by the individual information and to
evaluate the IBNR reserves more accurately. Subsection 5.2 identifies three components to be modeled for IBNR prediction,
namely, severity, reporting delay, and frequency. The model fitting aspects are discussed in Subsection 5.3. Though the TG-
LRMoE was chosen for severity regression modeling, we have applied a standard Poisson process GLM framework for fre-
quency modeling because severity modeling is the main focus of this article. Some possible extensions on the Poisson process
for frequency modeling, such as time series models, are discussed briefly in Section 6 as one of our potential research direc-
tions. In addition, we will show how the reporting delay can be modeled through a slightly modified version of the TG-
LRMoE. Finally, we present the out-of-sample IBNR prediction in Subsection 5.4, which also analyzes the importance of
including covariates in determining accurately the IBNR predictive distributions and understanding policyholders’ characteris-
tics for unreported claims.

5.1. Data Overview
The dataset was supplied by a European major automobile insurer. It contains 594,908 third-party liability insurance con-

tracts during the observation period from January 1, 2007 to December 31, 2017, where the number of in-force contracts (total
exposure) over time is displayed in the left panel of Figure 1. For each contract, the contract number, starting date, ending date
and various policyholder features (see Table 1 for detailed descriptions of the covariates) are recorded. Among all contracts,
28,256 claims are incurred and reported on or before December 31, 2017, where the exposure-adjusted weekly number of
claims is plotted in the right panel of Figure 1. The claim frequencies slightly decline over time. In addition, because the
exposure is increasing over time, the exposure-adjusted frequencies gradually become less fluctuating. For each claim, the con-
tract number, loss date, reporting date (if available), settlement date, and total amount paid are recorded. For unsettled claims,
the insurer also provides the case reserve estimates (the expected future payments) based on detailed claim-specific informa-
tion. The total incurred loss of a claim is then the sum of the amount paid and the case reserve estimate.

To evaluate the predictive power through the out-of-sample test (Subsection 5.4), we set a validation date s of December
31, 2012 and divide the dataset into two parts: an in-sample training set containing all 199,730 contracts in-force and 9,608
claims reported between January 1, 2007, and December 31, 2012 and an out-of-sample (OS) test set containing claims
reported between January 1, 2013, and December 31, 2017.

5.2. Modeling Framework
This subsection discusses the modeling framework for the aforementioned insurance dataset. Suppose that the development

of the lth claim of the kth contract is described as a triplet T kð Þ
l ,U kð Þ

l , Z kð Þ
l

� �
, where T kð Þ

l is the accident time, U kð Þ
l is the report-

ing delay (in days), and Z kð Þ
l is the development process after the claim is reported. We also define Na

k tð Þ ¼P1l¼1 1fT kð Þ
l �

tg,Nr
k tð Þ ¼P1l¼1 1fT kð Þ

l � t,T kð Þ
l þ U kð Þ

l � sg, and Nu
k tð Þ ¼P1l¼1 1fT kð Þ

l � t,T kð Þ
l þ U kð Þ

l > sg as the total claim, reported
claim, and IBNR claim count processes for the kth contract, where 1f�g is an indicator function and Na

k tð Þ ¼ Nr
k tð Þ þ Nu

k tð Þ:
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We follow the framework of Norberg (1993) and Antonio and Plat (2014), which models the claim process through a pos-
ition dependent marked Poisson process. For demonstrative purposes, the following assumptions are proposed for the dataset:

1. The developments of each contract fT kð Þ
l ,U kð Þ

l ,Z kð Þ
l gl¼1, 2, ::: are independent of each other for k ¼ 1, 2, :::,m, where m is

the total number of contracts.
2. Conditioned on the covariates of the kth contract xk, the claim arrival of contract k follows a Poisson process with inten-

sity measure k tjxkð Þ ¼ xk exp fxTk bg and the associated mark distribution PU,Zjxk :¼ PUjxkPZjU, xk , where xk is the expos-
ure of contract k and b corresponds to regression coefficients.

Remark 2. Although the claim frequencies shown in the right panel of Figure 1 slightly decline over time, we will show in
Subsection 5.3.3 and Appendix C.2 that such a time trend can be adequately explained by the change in insurance portfolio
over time (e.g., lower proportion of young drivers). In other words, the impact of time on the claim frequencies is insignificant
after controlling for the policyholder covariates, so it is reasonable to exclude the time effect in the Poisson process.

Using the results of Norberg (1993) and Antonio and Plat (2014), the reported claim process and the IBNR claim process
for contract i are independent Poisson processes with measures

k dtjxkð ÞPUjxk s� tð Þ1ft 2 0, s½ �g � PUjxk duð Þ1fu � s� tg
PUjxk s� tð Þ � PZju, xk dzð Þ (5.1)
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FIGURE 1. Number of In-Force Contracts and Weekly Number of Claims Reported (Exposure Adjusted) versus Time.

TABLE 1
Summary of the Covariates for the kth Contract

Variable Description Type Levels

xk1 Policyholder age Discrete
xk2 Car age Discrete
xk3 Car fuel Categorical Diesel: xk3 ¼ 1

Gasoline: xk3 ¼ 0
xk4–xk7 Geographical location Categorical Region I: xk4 ¼ 1

Region II: xk5 ¼ 1
Region III: xk6 ¼ 1
Region IV: xk7 ¼ 1

Capital: xk4 ¼ xk5 ¼ xk6 ¼ xk7 ¼ 0
xk8–xk9 Car brand class Categorical Class A: xk8 ¼ 1

Class B: xk9 ¼ 1
Class C: xk8 ¼ xk9 ¼ 0

xk10 Contract type Categorical Renewal contract: xk10 ¼ 1
New contract: xk10 ¼ 0
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on Cr :¼ f t, u, zð Þ : t � s, t þ u � sg and

k dtjxkð Þ 1� PUjxk s� tð Þ� �
1ft 2 0, s½ �g � PUjxk duð Þ1fu > s� tg

1� PUjxk s� tð Þ � PZju, xk dzð Þ (5.2)

on Cu :¼ f t, u, zð Þ : t � s, t þ u > sg:
Denote ft kð Þr

l , u kð Þr
l , z kð Þr

l gl¼1, :::, nrk sð Þ;k¼1, :::,m as the observed (reported) claims, where nrk sð Þ is a realization of Nr
k sð Þ: Upon a

trivial extension to Antonio and Plat (2014), the likelihood of the observed claims can be expressed as

L / g1 Zð Þ � g2 Uð Þ � g3 Nrð Þ, (5.3)

where the component g1 Zð Þ corresponding to the development process is given by

g1 Zð Þ ¼
Ym
k¼1

Ynrk sð Þ

l¼1
P
Zju kð Þr

l , xk
dz kð Þr

l

� �
, (5.4)

the component g2 Uð Þ corresponding to the reporting delay is given by

g2 Uð Þ ¼
Ym
k¼1

Ynrk sð Þ

l¼1

PUjxk du kð Þr
l

� �
PUjxk s� t kð Þr

l

� � , (5.5)

and the component g3 Nrð Þ corresponding to the claim frequency is given by

g3 Nrð Þ ¼
Ym
k¼1

Ynrk sð Þ

l¼1
k t kð Þr

l jxk
� �

PUjxk s� t kð Þr
l

� �2
4

3
5 exp �

ðs
0
k tjxkð ÞPUjxk s� tð Þdt

	 

: (5.6)

5.3. Model Fitting
This subsection proposes the specific models for the development process Z and the reporting delay U and also estimates

all of the parameters such that L in Equation (5.3) is near to its maximum. However, direct maximization of L is difficult
because of its complicated form; that is, g3 Nrð Þ is affected by U. Instead, we adopt a two-step approach similar to Badescu
et al. (2019): The development process loglikelihood function g1 Zð Þ and the reporting delay likelihood g2 Uð Þ are first (sub-
)optimized separately. Then, given that the parameters involved in g2 Uð Þ are obtained and fixed, we maximize the frequency
likelihood g3 Nrð Þ: The two-step approach allows us to calibrate the three components separately.

5.3.1. Severity
For the sake of predicting IBNR, we need to model three components: frequency, reporting delay, and severity. To model

the severity component, we treat the total amount of payments of each claim fYigi¼1, :::, n as the development processes (origin-

ally denoted as fZ kð Þ
l gl¼1, :::, nrk sð Þ;k¼1, :::,m), where n ¼Pm

k¼1 n
r
k sð Þ is the total number of claims observed during the in-sample

period. Combining with the distributions of the remaining two components, the IBNR predictive distribution will be obtained.
Note that because of the settlement delay, not all claims reported have been fully paid and settled, so some of the claim severi-
ties Yi are not fully certain or observed until the valuation date s. However, after a claim is reported, the insurer usually has
very detailed case-by-case information about the accident, providing a case reserve estimate for each reported but not settled
claim. For simplicity, we assume that the case reserve estimates are accurate, so we do not differentiate between the actual
total payments and the incurred losses (i.e., amounts paid before the valuation date plus the case reserve estimates).

Remark 3. We admit that the above assumption may be quite strong in practice, so one may be concerned about the impact if
the assumption is not satisfied. Because only about 5% of the 9,608 reported claims in our training set are not fully settled until
the valuation date s, we do not expect that inaccurate case reserve estimations would bring significant distortion to the severity
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loss distribution. Alternatively, one may discard the unsettled claims for severity modeling, but preliminary analysis shows
that settlement delay is correlated to claim severity. Doing so introduces slight bias and leads to underestimations of
loss severities.

We first perform a preliminary analysis by fitting Gamma (light-tailed), lognormal (heavy-tailed), and Pareto (extreme-
tailed). GLMs, which are widely adopted severity regression models in practice, to the severity dataset. We select all of the
variables (xi1–xi10) in Table 1 and the transformed reporting delay xi11 :¼ log 1þ uið Þ as the covariates. With slight abuse of
notations, we here denote xi as the covariates of the contract that arise at the ith claim. The model density functions are
as follows:

� Gamma GLM: hG yi; xi,b,mð Þ ¼ ym�1i e�yi=h

C mð Þhm , where log h ¼ xTi b;

� Lognormal GLM: hLN yi; xi,b,rð Þ ¼ 1
yir
ffiffiffiffi
2p
p e�

log yi�lð Þ2
2r2 , where l ¼ xTi b;

� Pareto GLM: hP yi; xi, b, að Þ ¼ aka

yiþkð Þaþ1 , where log k ¼ xTi b:

To access the goodness of fit, we do the residual analysis and perform three different goodness of fit tests. The goal is to test
the null hypothesis (H0) that the severity data are generated from the fitted model against the alternative hypothesis (H1) that

H0 is false. The fitted cumulative distribution functions (residuals) Ĥ i :¼ Hq Yi; xi, Û
� �

are computed for i ¼ 1, :::, n, where
q 2 fG,LN,Pg, and Û are the corresponding fitted model parameters. If H0 is true, then Ĥ i 	 U½0, 1�: As a result,
fĤ igi¼1, :::, n is compared to U½0, 1� through Q-Q normal plots and several goodness-of-fit statistics (Kolmogorov-Smirnov test,
chi-square test [using 200 equiprobable intervals], and Anderson-Darling test). The results are displayed in Figure 2 and
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FIGURE 2. Q-Q Normal Plots for the Normalized Residuals under (a) Gamma, (b) Log-normal, and (c) Pareto GLMs.

TABLE 2
Model Selection Statistics and p Values of Goodness-of-Fit Statistics under

Various GLM Models and the Proposed LRMoE

Model selection
statistics

p Values of goodness-of-fit
statistics

Log-likelihood AIC BIC
Kolmogorov-Smirnov

test v2 test
Anderson-Darling

test

Gamma GLM –90,974.7 181,975.3 182,068.5 <10�7 <10�7 <10�7

Log-normal GLM –89,303.9 178,633.8 178,727.1 <10�7 <10�7 <10�7

Pareto GLM –89,936.3 179,898.5 179,991.7 <10�7 <10�7 <10�7

TG-LRMoE (nine components) –88,766.4 177,762.8 178,587.4 .9809 .7110 1.0000
TG-LRMoE (four components) –88,927.1 177,944.1 178,266.8 .6943 .2183 .7116

Note: The bold numbers represent the largest value of the Log-likelihood and the smallest AIC and BIC values.
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Table 2, where the p values can be directly obtained using the functions ks.test, chisq.test (under stats package),
and ad.test (under ADGofTest package) in R. Among the three distributions, the lognormal GLM provides a relatively
better fitting, but all three goodness-of-fit statistics still report extremely small p values (10�7), so there is substantial room for
improvement of the fitting performance.

Yi is now modeled through the proposed TG-LRMoE, using the same set of variables (xi1–xi11) as the covariates xi:
Maximizing g1 Zð Þ in Equation (5.4) is equivalent to maximizing the observed log-likelihood in Equation (4.1), but this may
lead to a spurious model as discussed in Section 4. We therefore optimize the penalized log-likelihood in Equation (4.2) using
the proposed ECM algorithm. We select and justify the penalization hyper-parameters as follows:

� We choose rj0 ¼ 3 and rjp ¼ 2= maxi¼1, :::, nfxipg �mini¼1, :::, nfxipg
� �

for j ¼ 1, :::, g� 1 and p ¼ 1, :::,P: Under such a
choice, each covariate may influence the relative probability of a claim being classified to a subgroup up to approxi-
mately a factor of e2, which is quite large. The weights among different subgroups may span roughly a factor of e3,
which is also large.

� We choose � 1ð Þ
j ¼ � 2ð Þ

j ¼ 1 and k 1ð Þ
j ¼ k 2ð Þ

j ¼ 500 for j ¼ 1, :::, g: Therefore, the prior is an exponential distribution with
the pdf decaying very slowly.

The prior distributions chosen above can be regarded as weak priors, which allow for minimal distortions to the fitted model.
Therefore, the fitted model remains predominantly driven by the data instead of the prior distributions.

To apply the proposed ECM algorithm, we first initialize the parameters in accordance with Subsection 4.3. Figure 3(a)
implements the simple ad hoc method to initialize c. We find that the TG-LRMoE can adequately capture the tail of the sever-
ity data when c � 0:2 (the plots look asymptotically linear), reflecting a very heavy tail. Because we cannot see much differ-
ence between c ¼ 0:01 and c ¼ 0:2, we perform multiple initializations (c 2 f0:01, 0:05, 0:1, 0:2g) and choose one that finally
yields the highest posterior observed log-likelihood. The remaining parameters are then initialized using the clusterized method
of moments.

According to the AIC and BIC, the optimal fitted model contains nine and four components, respectively. The fitted param-
eters and the related quantities are displayed in Table C.1 in Appendix C.1. For the AIC model, components 1 and 4 have rela-
tively large subgroup (transformed) means, possibly representing types of serious accidents generally resulting to large claims.

The right tail of the severity distribution is mostly governed by components 4 and 5, as reflected by relatively large ĥj (recall
Properties 3 and 4). These two components may correspond to two types of accidents that sometimes bring unexpected huge
claims. Further, the regression coefficients in Table C.1 provide some insights on the influence of covariates. For example,
positive âj3 for j¼ 1 and j¼ 4 means that claims involving diesel vehicles (xi3 ¼ 1) are more likely assigned to subgroups 1
and 4, which generally involve greater claim amounts. Similarly, positive large âj11 for j¼ 4 and j¼ 5 means that the tail
heaviness of the severity distribution is positively related to the reporting delay. More details on the covariate influence will be
discussed later in this subsection. For the BIC model, similar model interpretations can be attained.
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To evaluate the fitting performance, the log-likelihood, AIC, and BIC of the proposed fitted models are compared to the fit-
ted GLM models. The results displayed in Table 2 support the use of the TG-LRMoE over the GLM. Residual analysis and
goodness-of-fit tests are also performed on the fitted TG-LRMoE and the p values are presented in the same table. Because all
of the p values obtained are greater than the threshold .05, all three goodness-of-fit tests do not reject our fitted models. We
further compare the empirical density function to the fitted density function and present the Q-Q plots in Figure 4 (note: only
the BIC model is demonstrated for conciseness, because very similar plots are obtained for the AIC model). Overall, the pro-
posed TG-LRMoE well captures the distributional structure of the data. One concern is the ability of the proposed mixture-
type model to extrapolate the tail heaviness implied by the data. In some cases, even if the fitted model closely follows the
observed data points, the tail may be overfitted by a large amount of mixture components, where each of those is specially fit-
ting one (or at most a few) data point on the right tail. Such a problem does not exist in our fitted model. The number of com-
ponents is reasonably controllable, and even for the more complex AIC model the smallest subgroup weight is 0.019, which is
equivalent to about 0:019� 9608 ¼ 180 data points, meaning that none of the components are specifically fitting very few
data points.

Remark 4. From Table 2, a p value of 1 is obtained by the Anderson-Darling test under the nine-component TG-LRMoE,
which would happen when the fitted model very closely approximates the distribution of the empirical severity data.
Therefore, it is important to check the nine-component model and ensure that it does not suffer from overfitting. Figure 4(a)
shows that the density of the fitted nine-component model is very smooth compared to the empirical density, addressing the
concern of overfitting.

We also study the influence of covariates to the claim severities using the visualization tools (under the non-parametric
approach) similar to Fung, Badescu, and Lin (2019a).

The left panel of Figure 5 displays how the reporting delay impacts the 50%, 75%, and 95% quantiles of claim severities.
The 95% confidence intervals, which consider parameter uncertainties, are obtained by parametric bootstrap: For b ¼ 1, :::,B

(we choose B¼ 500), we simulate the responses y bð Þ :¼ y bð Þ
1 , :::, y bð Þ

n

� �
and refit y bð Þ, x

� �
using the proposed TG-LRMoE using

the fitted model parameters â, m̂, ĥ, ĉ
� �

as the initialized values. From the plots, both AIC and BIC fitted models identify a
positive relationship between claim size and reporting delay. The 95% quantile fitted curves grow faster than the 50% quantile
curve when reporting delay increases, meaning that reporting delay affects the tail more than the body of the distribution. The
AIC model captures a sharp spike in the average claim severities when the reporting delay is very long (i.e., xi11 > 5 or report-
ing delay > 150 days), but this complex feature is missed by the BIC model, which involves fewer model parameters.

The violin plot in the right panel of Figure 5 shows how geographical location affects the claim severities. It is revealed
that policyholders in region III or the capital region file larger claims on average than those in other regions.

The visualization of the impacts of other covariates are not presented for conciseness, we find that “young driver,” “car age
of about 5 years,” “diesel car,” “car classified in class C,” and “new insurance contract” significantly contribute to larger
claim sizes.

The importance of penalizing the parameters (maximizing the MAP instead of the likelihood in the ECM algorithm) are fur-
ther investigated. We briefly summarize the findings as follows:
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1. Without penalizing the regression parameters a, some fitted regression coefficients become extremely large in magnitude
(jâjpj > 20). The numerically unstable results imply that the fitted model overfits one or a few policyholder features.

2. Without penalizing the scale parameters m and scale parameters h, the fitted model shows very little difference when we
fix g¼ 9. In contrast, when we choose a larger number of components (let’s say g¼ 16), the fitted model with penaliza-
tion still behaves properly, but fitting without penalization generates a spurious model (i.e., we find a component with
m̂j > 10, 000 and ĥj < 0:001).

5.3.2. Reporting Delay
To appropriately model the reporting delay distribution, we need to consider g2 Uð Þ in Equation (5.5), a likelihood function
involving the right-truncated reporting delays of all n¼ 9, 608 observed claims. However, direct maximization of g2 Uð Þ is dif-
ficult because the denominator PUjxi s� trið Þ (tri is the loss date of the ith claim), which is the probability of truncation, varies
among the observed claims. To alleviate such a computational issue, we discard some data points where the losses occur after
a specified date s0. Choosing December 31, 2011, as s0, the truncation probabilities PUjxi s� trið Þ are very close to one for the
remaining nr ¼ 7, 524 data points because we observe that more than 99% of the claims are reported within a year. Therefore,
it suffices to consider the ordinary (untruncated) likelihood function for the 7,524 reporting delay observations.

In addition to the data truncation issue, the observed reporting delays are interval censored (i.e., the number of days [inte-
gers] instead of continuous values are observed). It is inappropriate to model the reporting delay directly through a continuous
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distribution. We therefore assume that the observed reporting delay Ui (given the covariates xi1–xi10 in Table 1) follows an
interval-censored version of TG-LRMoE (i.e., the uncensored delay ~Ui follows the TG-LRMoE and Ui ¼ b~Uic where b�c is a
floor function) for i ¼ 1, :::, nr: For technical ease we also fix c¼ 1, which is an appropriate assumption as demonstrated by an
asymptotically linear plot in Figure 3(a). The parameter calibration procedures, which are derived in Appendix B, are very
similar to those presented in Section 4.

The AIC and BIC fitted models contain eight and four components, respectively, where the fitted parameters are displayed
in Table C.3 in Appendix C.1. Under the AIC fitted model as an example, a large proportion (around 70%) of claims belong to
components 2 to 6, representing several types of accidents or claims that are usually quickly reported. In contrast, components
1 and 7 correspond to claims with substantial reporting delays. For the evaluations of the goodness of fit, both fitted models
produce similar P-P and Q-Q plots. The plots under the BIC model are displayed in Figure 6. Both plots reveal that the cen-
sored version of TG-LRMoE provides excellent fit to both the body and the tail of the reporting delay data.

5.3.3. Frequency
After fitting the severity and reporting delay distributions, the remaining piece is to calibrate the frequency model; that is,

to maximize g3 Nrð Þ in Equation (5.6). This is equivalent to performing a Poisson GLM with response variables being the num-
ber of claims reported up to the valuation date s, covariates being all of the variables displayed in Table 1, and offsets being
log xk

Ð s
0 PUjxk s� tð Þdt� �

for each contract k. Note that
Ð s
0 PUjxk s� tð Þdt can be numerically computed based on the fitted

model of the previous subsection. The fitting procedure can be easily implemented by standard statistical software, such as the
glm function in R. Because severity modeling is our main focus, the frequency fitted parameters are displayed in Table C.5
(left panel) in Appendix C.2. In addition observing in the right panel of Figure 1 that the exposure-adjusted claim frequencies
slightly decline over time, we examine the time effect by including policyholder contract date as a covariate and refit the
Poisson GLM. Table C.5 (right panel) reveals that the impact of such a time covariate is statistically insignificant after control-
ling for other covariates, so the use of homogeneous Poisson GLM is reasonable.

5.4. Model Prediction and Out-of-Sample Test
After obtaining the fitted models, it is important to predict the aggregate IBNR at the valuation date of December 31, 2012

and examine the predictive power through OS testing. The predictive distribution of the aggregate IBNR is obtained by simula-
tions, requiring the following steps for each contract k ¼ 1, :::,m:

1. Generate the number of claims for the contract nak sð Þ from the fitted frequency GLM described in Subsection 5.3.3.
2. For l ¼ 1, :::, nak sð Þ, simulate the accident date of the lth claim tacckl 	 Uniform½tstartk , minftendk , sg�, where tstartk is the con-

tract start date (start of the exposure period) and tendk is the contract end date.
3. For l ¼ 1, :::, nak sð Þ, simulate the reporting dalay trdelaykl from the fitted interval-censored version of TG-LRMoE shown in

Subsection 5.3.2.
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4. For l ¼ 1, :::, nak sð Þ, simulate the unreported amount for each claim yIBNRkl , which is generated from the fitted TG-
LRMoE in Subsection 5.3.1 if tacckl þ trdelaykl > s and is equal to zero if tacckl þ trdelaykl � s:

The aggregate predicted amount of IBNR claims is given by yIBNRagg ¼Pm
k¼1
Pnak sð Þ

l¼1 yIBNRkl : Repeating the above procedure
50,000 times, we display the predictive distribution of the aggregate IBNR in Figure 7(a). The vertical line is the total IBNR
claims from the test set. Note that only information up to 2017 is available, so the true IBNR may be larger than the value dis-
played. Yet, a reporting delay of 5þ years is extremely rare, so the impact of missing information is minimal. From the figure,
though our proposed modeling framework (under both AIC and BIC fitted models) provides realistic predictions on the IBNR,
the BIC model produces a significantly smaller IBNR estimate than the AIC model. As discussed in Subsection 5.3.1 and dis-
played in the left panel of Figure 5, a sharp spike in the average claim severities for very long reporting delay is captured by
the AIC model but not by the BIC model. Because the reporting delay of a simulated IBNR claim is usually long (this will be
explained later in this subsection; see also Table 3), the claim severity for a simulated IBNR claim may be underestimated
using the BIC. The IBNR prediction result is consistent with Remark 1, which suggests that that AIC model may result in bet-
ter forecasts to the future.

Because a full predictive distribution can be obtained by simulation, we can also present the summary statistics in Table 4,
where several risk quantities (e.g., conditional tail expectation [CTE] and Value at Risk [VaR]) may represent the regulatory/
solvency capital requirement for an insurance company. The two-sided p values are computed as

2minfP YIBNR
agg > yrealizedagg

� �
,P Y IBNR

agg < yrealizedagg

� �
g, where Y IBNR

agg is the simulated IBNR (random variable) and yrealizedagg ¼ 1:112

millions is the realized IBNR. The probabilities can be easily estimated as we have simulated Y IBNR
agg 50,000 times.
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TABLE 3
Summary Statistics of the IBNR Predictions

Mean

CTE VaR

Realized p Value70% 95% 95% 99.5%

With covariates (AIC) 1.250 1.718 2.418 1.966 3.023 
1.112 .836
With covariates (BIC) 1.026 1.406 2.011 1.609 2.485 
1.112 .597
Without covariates (AIC) 0.676 0.899 1.412 0.992 1.903 
1.112 .063
Without covariates (BIC) 0.687 0.927 1.568 1.000 2.224 
1.112 .066

Note: The mean, CTE, VaR, and realized value are expressed in millions.
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By evaluating the IBNR predictive distribution without covariates, we also highlight the importance of including covariates
and using regression models for adequate IBNR predictions. We use the same models described in Subsections 5.3.1 to 5.3.3
and the same afore-mentioned simulation procedures, yet excluding any covariates for model fittings and simulations. The
resulting IBNR predictive distribution is exhibited in Figure 7(b). The realized IBNR is on the right tail of the predictive distri-
bution, providing evidence that the IBNR may be underestimated if covariates are excluded.

To investigate the above issue, we trace the covariate distributions of the simulated IBNR claims and compare them to the
empirical covariates distributions of all claims from the training set. To do so, in the aforementioned simulation steps, we also
record the covariates corresponding to each simulated IBNR claim. The comparison of covariates between the simulated IBNR
claims and the empirical claims is summarized in Table 3. It is observed that the average reporting delay of IBNR claims (309
days) is much longer than that of empirical observed claims (18 days). This is because claims with longer reporting delays are
less likely reported before the valuation date and hence are more likely to become IBNR claims. Further, the left panel of
Figure 5 shows that claims with longer reporting delays are expected to result in larger claim amounts. Apart from the report-
ing delay issue, the geographical distribution of the IBNR claims differs a lot from that of the empirical claims. Though less
than one-third of the observed claims come from the capital region, more than half of the simulated unreported claims occur in
such a region. The right panel of Figure 5 also reveals that claims from the capital region are on average more severe than
those from other regions. Overall, because the unreported claims are more likely to consist of undesirable features that lead to
more severe claims, exclusion of the covariates in model fitting causes negative bias to the IBNR predictions.

6. CONCLUDING REMARKS
In this article, we introduce the TG-LRMoE as a flexible severity regression model. The denseness property warrants its

full flexibility to capture complex distribution and regression structures, and the transformation parameter allows the model to
effectively extrapolate a broad range of tail behaviors. The identifiability property also makes the proposed model suitable for
statistical inference. We then present an ECM algorithm for efficient model calibration. Such an algorithm also imposes penal-
ization on the parameters to prevent spurious fitted models. The proposed model is then adopted to model the severity and

TABLE 4
Mean Value of Each Covariate for All Simulated IBNR Claims (Simulated from the AIC Fitted Model)

and for All Claims (Based on the Empirical Training Set)

Mean value/proportion

IBNR claims All claims Difference (%)

Policyholder age 46.113 45.994 0.3
Car age 4.429 3.726 18.9
Car fuel
>Diesel 0.471 0.410 14.8
>Gasoline 0.529 0.590 –10.3
Geographical location
>Region I 0.131 0.221 –40.6
>Region II 0.160 0.227 –29.8
>Region III 0.112 0.107 4.7
>Region IV 0.089 0.138 –35.6
>Capital 0.508 0.307 65.7
Car brand class
>Class A 0.247 0.268 –7.7
>Class B 0.394 0.387 1.8
>Class C 0.359 0.345 3.9
Contract type
>Renewal 0.644 0.572 12.7
>New 0.356 0.428 –17.0
Reporting delay (days) 308.583 17.839 1629.8
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reporting delay components of a European automobile insurance dataset, and both AIC and BIC fitted models are carefully
analyzed. Several goodness-of-fit tests suggest that the proposed model (regardless of using AIC or BIC) provides a much bet-
ter fit compared to various GLM models. On the other hand, the AIC model better captures the underlying complex relation-
ships between reporting delay and claim severity than the BIC model. We also demonstrate the usefulness and the importance
of the proposed model to appropriately predict the IBNR by conducting OS testing.

Though severity regression modeling is the main focus of this article, we admit that there are several ways to improve the
microlevel reserving modeling framework presented in this article. Some of the potential research directions are discussed
as follows:

Firstly, to avoid distortions to the emphasis of this article, we follow the framework of Antonio and Plat (2014) and use a
simple Poisson GLM for frequency modeling. Obviously there are many possible enhancements to such a simple frequency
model. For example, Badescu et al. (2019) considered a Cox hidden Markov model to capture the serial dependence of the
claim counts. Extending the Cox hidden Markov model to incorporate covariates may result in a frequency model highly flex-
ible in capturing complex distribution, regression, and serial dependence structures.

Secondly, for the model fitting in Subsection 5.3, the two-step approach adopted in this article requires discarding some
reporting delay data points and hence it suffers from a bias–variance trade-off. Therefore, it is worthwhile to consider a one-
step EM approach proposed by Verbelen et al. (2018): modeling frequency and reporting delay simultaneously. Though such a
study works on frequency modeling including only time-related covariates, we plan to extend it to incorporate policyholder
information as well as the loss severities.

Thirdly, for a particular policyholder, a claim severity record in the past may provide some predictive power to the severity
of next claim. This feature can be captured through a random effects model introduced by Laird and Ware (1982). We plan to
extend the proposed class of LRMoE to incorporate the random effects among policyholders.

The R code that specifically implements the results of the TG-LRMoE is available upon request. Understanding the import-
ance of allowing practitioners to easily implement the proposed LRMoE, we are currently building a comprehensive and user-
friendly R package with detailed documentation on software implementation (Tseung et al. 2020). This will allow researchers
and actuaries to choose and test a wide variety of frequency and severity distribution functions. In addition to catering to other
characteristics such as multivariate distributions, zero-inflated models, and incomplete data, the R package will potentially
extend the actuarial application of LRMoE.
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APPENDIX A. SUPPLEMENTARY INFORMATION FOR SECTION 3
This appendix section provides some definitions and proofs for Section 3.

A.1. Denseness Property
This subsection provides the proofs of Properties 1 and 2.

Proof of Property 1. The Gamma-LRMoE is the TG-LRMoE when c¼ 1, so the class of TG-LRMoE contains the class of
Gamma-LRMoE. Section 5.2.1 of Fung, Badescu, and Lin (2019b) shows that the class of Gamma-LRMoE is uniformly
dense in a class of severity regression distributions. Therefore, the same denseness property applies to the class of TG-
LRMoE. w
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Proof of Property 2. Define a function rc uð Þ ¼ 1þ uð Þc � 1
� �

=c: Note that it is a monotone increasing function that continu-
ously maps 0,1ð Þ into 0,1ð Þ: From theorem 3.3 of Fung, Badescu, and Lin (2019b), the necessary and sufficient denseness

condition for a class of LRMoE is that for all q> 0, there exists a sequence of parameters fm lð Þ
q gl¼1, 2, ::: such that F �; m lð Þ

q

� �
!D q

as l!1, where F is the distribution function of the corresponding expert function. Note that Gamma-LRMoE is dense, so for

any q> 0, there exists a sequence of Gamma random variables fY lð Þ
q g such that Y lð Þ

q !
D
rc qð Þ > 0: The continuous mapping the-

orem suggests that r�1c Y lð Þ
q

� �
!D r�1c rc qð Þð Þ ¼ q: Note that r�1c Y lð Þ

q

� �
follows a TGD, so the result follows. w

A.2. Tail Heaviness
In this subsection, the formal definition to compare the tail heaviness of two severity random variables is first recalled in

Definition A.1. The proofs of Properties 3 to 5 are then presented. Finally, a table that compares the tail of TGD (or TG-
LRMoE) to various severity distributions is exhibited.

Definition A.1. Consider two severity random variables Y1 and Y2, and the ratio limit R Y1,Y2ð Þ ¼ limy!1 fY1 yð Þ=fY2 yð Þ,
where f is the pdf. We say that Y1 (or fY1 ) has a heavier, similar, or lighter tail than Y2 (or fY2) if
R Y1, Y2ð Þ ¼ 1, 0 < R Y1, Y2ð Þ <1, or R Y1, Y2ð Þ ¼ 0, respectively.

Proof of Property 3. It is obvious that R Yijxð Þ, Y jð Þ� �
¼ pj x; að Þ and R Yijxcð Þ,Y jð Þ� �

¼ ~pj xc; að Þ, where ~pj xc; að Þ is defined
under the proof of proposition 4.3 of Fung, Badescu, and Lin (2019b). are both positive and finite. w

Proof of Property 4. We order the TGD by ~f �;m, h, cð Þ � ~f �;m�, h�, c�ð Þ when: (i) (c > c�), (ii) (c ¼ c� and h < h�), or (iii)
(c ¼ c� and h ¼ h� and m < m�). Under each case, simple algebraic manipulations yield limy!1ð~f y;m�, h�, c�ð Þ=~f y;m,ð
h, cÞÞ¼ 1: w

Proof of Property 5. It is obvious from Equation (3.1) that

lim
y!1

S ykð Þ
S yð Þ ¼ lim

y!1
k~f yk;m, h, 0ð Þ
~f y;m, h, 0ð Þ ¼ k�1=h:

w

A.3. Model Identifiability

Proof of Property 6. Firstly, from proposition 2 of Teicher (1963) and from the three-step approach adopted by the proof
of theorem 3.1 of Fung, Badescu, and Lin (2019a), it immediately follows that the class of Gamma-LRMoE is identifiable
up to translation and permutation.

Secondly, we aim to show that the class of TG-LRMoE with a fixed c > 0 is identifiable up to translation and permuta-
tion. Note from Equation (2.4) that if two pdfs of the TG-LRMoE (with a fixed c > 0) are equal; that is,

Xg�
j¼1

pj xi; a�ð Þf ~yi cð Þ;m�j , h�j
� �

1þ yið Þc�1 ¼
Xg
j¼1

pj xi; að Þf ~yi cð Þ;mj, hj
� �

1þ yið Þc�1, yi > 0,

then we have

Xg�
j¼1

pj xi; a�ð Þf ~yi cð Þ;m�j , h�j
� � ¼Xg

j¼1
pj xi; að Þf ~yi cð Þ;mj, hj

� �
, yi > 0,

which is the pdf form of a Gamma-LRMoE. Because yi > 0() ~yi cð Þ > 0 and the Gamma-LRMoE is identifiable up to trans-
lation and permutation, we have g� ¼ g and a�j ,m

�
j , h
�
j

� � ¼ ac jð Þ þ d,mc jð Þ, hc jð Þ
� �

for j ¼ 1, :::, g, and hence the result follows.
Finally, it suffices to show that if two pdfs of the TG-LRMoE are equal, they must have the same c. This is trivial, or

otherwise the two TG-LRMoE will have different tail behaviors (see Property 4). w
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APPENDIX B. ECM ALGORITHM FOR CENSORED OBSERVATIONS
This appendix section derives the ECM algorithm for the censored version of TG-LRMoE with the restriction c¼ 1 for com-

putational ease, which is useful to fit the reporting delay data in Subsection 5.3.2. Notations are defined in the same way as in
Section 4, except that we denote yu ¼ yu1, :::, y

u
nð Þ and yl ¼ yl1, :::, y

l
n

� �
respectively, as the upper and lower censored values. In

other words, we know that the ith observation is between yli and yui : Using the reporting delay (Subsection 5.3.2) as an example,
an observed three-day delay means that yli ¼ 3 and yui ¼ 4: The observed data posterior log-likelihood is given by

lpos U; yl, yu, x
� �

¼
Xn
i¼1

log
Xg
j¼1

pj xi; að Þ F yui ;mj, hj
� �� F yli;mj, hj

� �� �" #
þ log p a,m, hð Þ þ const:, (B.1)

where the prior distribution p �ð Þ of the parameters is given by Equation (4.3). The complete data posterior log-likelihood is
given by

lpos U; y, x,Zð Þ ¼
Xn

i¼1
Xg

j¼1 Zij log pj xi; að Þ þ log f yi;mj, hj
� �� �þ log p a,m, hð Þ þ const:, (B.2)

where y ¼ y1, :::, ynð Þ represents the uncensored observations.
In the lth iteration of the E step, the expectation of the complete data posterior log-likelihood given the observed data is

Q U; yl, yu, x,U l�1ð Þ
� �
¼ E lpos U; yl, yu, x,Z

� �
jy, x,U l�1ð Þ

h i

¼
Xn
i¼1

Xg
j¼1

z lð Þ
ij log pj xi; að Þ þ mj � 1ð Þ log ŷ 1, lð Þ

ij � ŷ 2, lð Þ
ij

hj
� mj log hj � log mj � 1ð Þ!

 !

�
Xg�1
j¼1

XP
p¼0

a2jp
2r2jp
þ
Xg
j¼1

� 1ð Þ
j � 1

� �
logmj � mj

k 1ð Þ
j

 !
þ
Xg
j¼1

� 2ð Þ
j � 1

� �
log hj � hj

k 2ð Þ
j

 !
þ const:,

(B.3)

TABLE A.1
Comparing the Tail of Various Severity Distributions to the TGD

Distribution Parameters pdf f Tail comparison

Gamma (m, h) ym�1e�y=h

CðmÞhm
TGD 	 f () c ¼ 1

Weibull (k, k)
k
k

y
k

	 
k�1
e�ð

y
kÞk

k � 1 : TGD 	 f () ðm, h, cÞ ¼ 1,
kk

k
, k

 !

k > 1 : TGD � ð
Þf () c > ð<Þ k

or ðc ¼ k and h � ð>Þ k
k

k
Þ

Inverse Gaussian (l, k)
ffiffiffiffiffiffiffiffiffiffi
k

2py3

s
e
� kðy�lÞ2

2l2y
TGD � ð
Þf () c > ð<Þ 1
or c ¼ 1 and h < ð
Þ 2l

k

 !

Lognormal (l, r2) 1

yr
ffiffiffiffiffiffi
2p
p e�

ð log ðyÞ�lÞ2
2r2

TGD � ð
Þf () c 
 ð!Þ 0

Burr (a, c, k) kc
a ðyaÞc�1

1þ ðyaÞc
� �kþ1 TGD 	 f () c! 0 and ðm, hÞ ¼ 1, 1

ck

� �

Note: Here, the symbols “�”, “	”, and “
” respectively refer to a distribution having a lighter, similar, or heavier tail than the other
distribution.

A NEW CLASS OF SEVERITY REGRESSION MODELS 227



where z lð Þ
ij is given by

z lð Þ
ij ¼ E Zijjyl, yu, x,U l�1ð Þ

h i
¼

pj xi; a l�1ð Þ� �
F yi; h

l�1ð Þ
jk

� �
Pg

j0¼1pj0 xi; a l�1ð Þ� �
F yi; h

l�1ð Þ
j0k

� � , (B.4)

log ŷ 1, lð Þ
ij is computed by numerical integration as

log ŷ 1, lð Þ
ij ¼ E log Yijyl, yu, x,U l�1ð Þ, Zij ¼ 1

h i

¼
ðyui
yli

log y
f y;m l�1ð Þ

j , h l�1ð Þ
j

� �
F yui ;m

l�1ð Þ
j , h l�1ð Þ

j

� �
� F yli;m

l�1ð Þ
j , h l�1ð Þ

j

� � dy, (B.5)

and ŷ 2, lð Þ
ij is given by

ŷ 2, lð Þ
ij ¼ E Yijyl, yu, x,U l�1ð Þ,Zij ¼ 1

h i

¼
ðyui
yli

y
f y;m l�1ð Þ

j , h l�1ð Þ
j

� �
F yui ;m

l�1ð Þ
j , h l�1ð Þ

j

� �
� F yli;m

l�1ð Þ
j , h l�1ð Þ

j

� � dy

¼
F yui ;m

l�1ð Þ
j þ 1, h l�1ð Þ

j

� �
� F yli;m

l�1ð Þ
j þ 1, h l�1ð Þ

j

� �
F yui ;m

l�1ð Þ
j , h l�1ð Þ

j

� �
� F yli;m

l�1ð Þ
j , h l�1ð Þ

j

� � :

(B.6)

In the CM step, we update the parameters U to increase Q U; yl, yu, x,U l�1ð Þ
� �

: We adopt a similar decomposition strategy as
Equations (4.7) to (4.9):

Q U; yl, yu, x,U l�1ð Þ
� �

¼ Q lð Þ að Þ þ
Xg
j¼1

S lð Þ
j mj, hj
� �

, (B.7)

where Q lð Þ að Þ is the same as Equation (4.8) and

S lð Þ
j mj, hj
� � ¼Xn

i¼1
z lð Þ
ij mj � 1ð Þ log ŷ 1, lð Þ

ij � ŷ 2, lð Þ
ij

hj
� mj log hj � log mj � 1ð Þ!

 !

þ � 1ð Þ
j � 1

� �
logmj � mj

k 1ð Þ
j

þ � 2ð Þ
j � 1

� �
log hj � hj

k 2ð Þ
j

:

(B.8)

Now, a lð Þ is obtained by maximizing Q lð Þ að Þ through the IRLS procedure in Equation (4.11). Then, the parameters m lð Þ, h lð Þ� �
are obtained through maximizing S lð Þ

j mj, hj
� �

with respect to mj, hj
� �

:

m lð Þ
j ¼ argmax

mj>0
S lð Þ
j mj, ~h

lð Þ
j mjð Þ

� �
; h lð Þ

j ¼ ~h
lð Þ
j m lð Þ

j

� �
, (B.9)

where

~h
lð Þ
j mjð Þ ¼

k 2ð Þ
j

2
� 2ð Þ
j � 1

� �
� mj

Xn
i¼1

z lð Þ
ij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mj

Xn
i¼1

z lð Þ
ij � � 2ð Þ

j � 1
� � !2

þ 4

k 2ð Þ
j

Xn
i¼1

z lð Þ
ij ŷ

2, lð Þ
ij

vuut
0
B@

1
CA: (B.10)
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Finally, the initialization of parameters and the adjustment of hyper-parameter g are no different from those described in
Subsection 4.3.

APPENDIX C. FITTED PARAMETERS
C.1. Severity and Reporting Delay

In Subsections 5.3.1 and 5.3.2, we fitted the TG-LRMoE into the severity and reporting delay data. The fitted parameters
and the related quantities are displayed in Tables C.1 to C.4. In the tables, the subgroup conditional (transformed) mean is
given by E½~Y ijZij ¼ 1� ¼ m̂jĥj, and the subgroup probability is estimated as P Zij ¼ 1ð Þ ¼Pn

i¼1 pj xi; âð Þ=n:

C.2. Frequency
In Subsection 5.3.3, we fitted a Poisson GLM to the claim frequency data. The regression parameters and test statistics

are displayed in the left panel of Table C.5, showing that all pieces of policyholder information (covariates) have a signifi-
cant influence on claim frequency.

To examine the time trend of claim frequencies, we fit a Poisson GLM that further includes the contract date of each
policyholder as a covariate. For each policyholder, we calculate the contract date as the mid-point of the exposure period
(i.e., average of contract start date and end date). The unit of contract date is year. The right panel of Table C.5 presents a
summary of the fitted model. Despite the negative regression coefficient of contract date, its impact is too small to be statis-
tically significant. In other words, the time effect on the exposure-adjusted claim frequencies is already sufficiently
explained by the effects of other covariates.

TABLE C.1
Fitted Severity Model Parameters and the Related Quantities (AIC)

Component j

j¼ 1 j¼ 2 j¼ 3 j¼ 4 j¼ 5 j¼ 6 j¼ 7 j¼ 8 j¼ 9

âj0 3.614 0.795 –1.631 –3.069 –3.030 3.209 –0.186 1.355 0.000
âj1 –0.100 0.002 –0.001 –0.028 –0.018 –0.035 0.011 0.001 0.000
âj2 0.179 0.137 0.124 –0.029 0.175 –0.503 –0.072 –0.045 0.000
âj3 0.030 –0.401 –0.334 0.735 –0.711 –0.050 –0.172 –0.095 0.000
âj4 –1.279 –1.624 1.559 1.814 –2.203 –0.332 –0.114 –1.640 0.000
âj5 –2.032 –0.963 1.180 1.688 –2.389 0.454 –2.111 –0.962 0.000
âj6 0.678 –0.566 1.163 1.325 –1.203 0.691 0.036 –0.599 0.000
âj7 –1.339 –1.156 2.245 2.555 –0.733 1.587 –1.066 –1.235 0.000
âj8 –0.524 0.448 0.663 –0.970 –0.505 –1.750 –0.755 –0.182 0.000
âj9 –1.021 0.248 0.456 0.241 0.034 0.251 0.010 –0.001 0.000
âj10 –2.355 0.791 –0.267 –1.050 –0.012 –1.061 –0.869 0.302 0.000
âj11 –0.211 –0.797 –0.032 1.058 0.984 0.135 0.424 –0.372 0.000
m̂j 114.253 77.849 21.701 17.304 8.074 34.003 109.477 66.706 214.113
ĥj 0.140 0.148 0.515 0.837 1.282 0.324 0.110 0.211 0.047
ĉ 0.098
E½~Y ijZj ¼ 1� 16.015 11.497 11.181 14.485 10.347 11.026 12.068 14.095 10.010
PðZj ¼ 1Þ 0.024 0.214 0.161 0.059 0.019 0.152 0.096 0.147 0.129
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TABLE C.3
Fitted Reporting Delay AIC Model Parameters and the Related Quantities

Component j

j¼ 1 j¼ 2 j¼ 3 j¼ 4 j¼ 5 j¼ 6 j¼ 7 j¼ 8

âj0 –1.227 0.763 –2.317 –1.097 –2.533 0.061 –0.364 0.000
âj1 –0.042 –0.030 0.012 –0.003 0.003 0.002 –0.004 0.000
âj2 0.023 –0.085 –0.076 0.064 0.176 0.005 –0.012 0.000
âj3 0.914 0.070 0.047 –0.097 0.306 0.070 0.190 0.000
âj4 1.840 1.871 0.535 0.266 –0.160 0.295 –0.870 0.000
âj5 1.471 1.439 0.730 –0.058 0.608 0.430 –0.636 0.000
âj6 –0.280 2.107 0.548 –0.441 –0.954 0.520 –0.164 0.000
âj7 2.148 1.543 –0.681 0.644 1.240 0.964 –0.278 0.000
âj8 –0.909 –1.461 0.462 –0.294 2.688 0.030 0.148 0.000
âj9 –1.450 –2.364 1.071 –0.204 0.016 –0.390 –0.042 0.000
âj10 0.046 –0.953 0.013 1.515 –1.874 0.227 0.134 0.000
m̂j 2.212 3.431 11.514 2.199 1.990 12.450 0.808 1.050
ĥj 28.984 1.027 0.257 1.468 1.592 0.089 226.712 11.164
E½YijZj ¼ 1� 64.112 3.523 2.963 3.227 3.169 1.106 183.126 11.722
PðZj ¼ 1Þ 0.027 0.084 0.073 0.174 0.082 0.295 0.086 0.180

TABLE C.2
Fitted Severity Model Parameters and the Related Quantities (BIC)

Component j

j¼ 1 j¼ 2 j¼ 3 j¼ 4

âj0 1.446 –2.792 –1.031 0.000
âj1 –0.097 –0.011 –0.004 0.000
âj2 0.186 0.054 0.003 0.000
âj3 0.475 0.110 –0.016 0.000
âj4 –0.558 1.335 1.081 0.000
âj5 –1.130 1.394 0.983 0.000
âj6 0.671 0.623 0.510 0.000
âj7 –1.486 2.111 1.272 0.000
âj8 –0.134 0.035 0.163 0.000
âj9 –1.302 0.148 0.047 0.000
âj10 –2.134 –0.547 –0.162 0.000
âj11 –0.137 0.743 0.058 0.000
m̂j 123.777 11.887 81.090 45.445
ĥj 0.131 1.040 0.129 0.276
ĉ 0.100
E½~Y ijZj ¼ 1� 16.209 12.363 10.421 12.540
PðZj ¼ 1Þ 0.025 0.183 0.305 0.486
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TABLE C.5
Estimated Regression Coefficients for Poisson GLM

Without contract date with contract date

Estimate SE p Value Estimate SE p Value

Intercept –2.0771 0.0491 .0000 –2.0554 0.0514 .0000
Policyholder age –0.0085 0.0009 .0000 –0.0084 0.0009 .0000
Car age –0.0157 0.0035 .0000 –0.0146 0.0036 .0001
Car fuel
>Diesel 0.1389 0.0213 .0000 0.1402 0.0213 .0000
>Gasoline – –

Geographical location
>Region I –0.0324 0.0285 .2570 –0.0365 0.0287 .2038
>Region II 0.1523 0.0283 .0000 0.1498 0.0283 .0000
>Region III –0.0996 0.0362 .0060 –0.1003 0.0362 .0056
>Region IV –0.1346 0.0331 .0000 –0.1381 0.0332 .0000
>Capital – –

Car brand class
>Class A –0.0461 0.0268 .0860 –0.0456 0.0268 .0890
>Class B –0.1216 0.0239 .0000 –0.1235 0.0240 .0000
>Class C – –

Contract type
>Renewal –0.2083 0.0212 .0000 –0.2015 0.0218 .0000
>New – –

Contract date – –0.0092 0.0065 .1565

Note: The left panel is the frequency model adopted for IBNR prediction. The right panel includes policyholder contract date as a
covariate and aims to examine the time effect on claim frequencies.

TABLE C.4
Fitted Reporting Delay BIC Model Parameters and the Related Quantities

Component j

j¼ 1 j¼ 2 j¼ 3 j¼ 4

âj0 0.321 0.618 0.883 0.000
âj1 –0.005 –0.013 –0.006 0.000
âj2 –0.004 –0.017 0.008 0.000
âj3 –0.053 0.296 –0.048 0.000
âj4 –0.098 –0.555 0.326 0.000
âj5 –0.339 –0.711 0.136 0.000
âj6 –0.508 –0.629 –0.095 0.000
âj7 –0.838 –0.888 –0.263 0.000
âj8 –0.159 –0.280 –0.079 0.000
âj9 0.279 0.079 0.106 0.000
âj10 –0.324 –0.259 –0.335 0.000
m̂j 0.909 0.508 2.776 12.189
ĥj 12.558 244.550 1.096 0.091
E½YijZj ¼ 1� 11.410 124.249 3.042 1.106
PðZj ¼ 1Þ 0.183 0.142 0.423 0.253
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