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Fitting Censored and Truncated Regression Data Using the Mixture of
Experts Models

Tsz Chai Fung,' Andrei L. Badescu,” and X. Sheldon Lin?

'Department of Risk Management and Insurance, Georgia State University, Atlanta, Georgia
2Department of Statistical Sciences, University of Toronto, Ontario Power Building, Toronto, Ontario, Canada

The logit-weighted reduced mixture of experts model (LRMoE) is a flexible yet analytically tractable non-linear regression
model. Though it has shown usefulness in modeling insurance loss frequencies and severities, model calibration becomes challeng-
ing when censored and truncated data are involved, which is common in actuarial practice. In this article, we present an extended
expectation—conditional maximization (ECM) algorithm that efficiently fits the LRMoE to random censored and random trun-
cated regression data. The effectiveness of the proposed algorithm is empirically examined through a simulation study. Using real
automobile insurance data sets, the usefulness and importance of the proposed algorithm are demonstrated through two actuarial
applications: individual claim reserving and deductible ratemaking.

1. INTRODUCTION

In general insurance ratemaking and reserving applications, it is often of interest to model the frequencies, severities, and
reporting delays of insurance claims, and examine how the distributions of these quantities are influenced by policyholders’
attributes and risk profiles. Hence, it is important to build a suitable model that not only enables capturing the distributional
complexity (such as multimodality) but also flexibly captures the relationships between policyholders’ characteristics and the
claim distributions (including nonlinear patterns and interactions among explanatory variables). A suitable regression modeling
framework can help insurance companies to appropriately set different premiums among policyholders with varying risk pro-
files (see, e.g., Fung, Badescu, and Lin 2019a)), and accurately determine the claim reserves (see, e.g., Fung, Badescu, and Lin
2020; Wang, Wu, and Qiu 2021).

To address the aforementioned modelling challenges, the logit-weighted reduced mixture of experts models (LRMoE), a
class of flexible nonlinear regression models, was theoretically formulated by Fung, Badescu, and Lin (2019b) and has recently
been useful in both ratemaking and reserving applications (Fung, Badescu, and Lin 2019a; 2020). LRMOoE is regarded as a
regression extension of the finite mixture model, where the effects of the policyholder’s risk profile (covariates) are incorpo-
rated in the component weights of the mixture model. The LRMOoE inherits merits from both parametric models and machine
learning models, the two mainstream modeling frameworks. For example, being closed under marginalization and having sim-
plified-form expressions for moments and measures of associations, the LRMoE is mathematically and statistically tractable
like traditional parametric models. Also, satisfying several denseness properties, the LRMOoE is potentially a universal approxi-
mator to any distribution and regression structures, and hence its flexibility is comparable to machine learning models such as
neural networks.

Apart from the aforementioned desirable properties, the expectation—conditional maximization (ECM) algorithm presented
by Fung, Badescu, and Lin (2019a) for efficient parameter estimations ensures that the LRMoE is computationally tractable.
The ECM algorithm originated from the expectation—-maximization (EM) algorithm introduced by Dempster, Laird, and Rubin
(1977), which is a widely adopted approach that fits finite mixture models to insurance loss frequency or severity data; see, for
example, Lee and Lin (2010), Badescu et al. (2015) and Miljkovic and Griin (2016). The ECM algorithm further divides the
M-step into several computational feasible substeps such that the algorithm only requires low-dimensional convex optimiza-
tions that are easy to evaluate. Recently, Fung, Badescu, and Lin (2020) extended the ECM algorithm to incorporate parameter
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penalization. This addresses some problems inherited from finite mixture models such as unbounded likelihood and spurious
fitted model.

Though the standard ECM algorithm requires that the observed data are complete, it is often not the case in practice when
censored and truncated data are involved across various actuarial areas. From an insurance ratemaking perspective, insurance
losses are often left truncated and right censored due to the presence of deductibles and policy limits (Frees and Valdez 2008).
Reinsurers also encounter left-truncated loss data because insurance companies often report only the losses greater than a pre-
determined threshold to the reinsurers; see, for example, the Secura Re dataset discussed in Beirlant et al. (2006). Similarly, in
risk management, operational risk datasets are left truncated because immaterial operational losses are not recorded (Badescu
et al. 2015). Claim reserving is another actuarial area where the issue of incomplete data must be considered. Under individual
reserving framework (see, e.g., Antonio and Plat 2014, Badescu, Lin, and Tang 2016; Verrall and Wiithrich 2016; Badescu
et al. 2019), modeling the reporting delay of claims is essential for an adequate prediction of the incurred but not reported
claims (IBNR). Reporting delay data can be interval censored because it is often recorded as the number of days instead of the
exact time value. Claims are not observed if they are reported after an evaluation date, so the reporting delay data is also
right truncated.

To address the above practical concerns, a few articles in actuarial science developed fitting algorithms for censored and
truncated data. Verbelen et al. (2015) and Verbelen, Antonio, and Claeskens (2016) developed an EM algorithm that efficiently
fits the mixture of Erlang distribution to censored and truncated loss data, using the approach of Lee and Scott (2012). Under
this approach, censoring is handled by including uncensored observations in the complete data, and truncation is handled by
reweighting the component weights of the finite mixture model. See also Reynkens et al. (2017) and Blostein and Miljkovic
(2019) for other extensions using the same approach. Though this approach allows a convenient and efficient model calibration
to censored and truncated data, two major limitations arise. Firstly, the algorithms assume a constant fixed truncation interval
across all observations; however, as will soon be illustrated, random truncation is a common issue in actuarial practice.
Secondly and more important, the algorithms focus on fitting loss distributions without considering regression, but some actu-
arial applications (such as ratemaking) involve policyholder information as covariates. To the best of our knowledge, these
two shortcomings cannot be trivially addressed through extending the existing approach directly.

In addition to the actuarial literature, censoring and truncation problems for mixture-type models are widely studied in
statistics and engineering literature. For example, Jaspers et al. (2014) studied the penalized mixture approach as a semi-para-
metric model for interval-censored data, and Bordes and Chauveau (2016) derived a stochastic EM algorithm for right-cen-
sored data under parametric and semi parametric mixture models. Ducros and Pamphile (2018) further developed a Bayesian
restoration maximization algorithm for censored data under a Weibull mixture. These studies, however, did not incorporate
regression that is necessary in insurance modeling at a granular level in the mixture models. In the context of mixture-based
regression models, Mirfarah, Naderi, and Chen (2021) studied the EM estimation problem of mixture of linear experts model
for censored data, with a special specification of scale mixture normal class as the mixture components. Nonetheless, the ran-
dom truncation issue is yet to be investigated.

Motivated by the practical importance of modeling incomplete regression data and the limitations of the existing fitting
algorithms, the main contribution in this article is to develop an extended ECM algorithm for fitting the LRMoE to random
censored and truncated data. Handling random truncated data that appear in many practical problems, one cannot follow the
same approach as in the current actuarial literature, which manipulates the component weights. Inspired by (yet not identical
to) the (random) missing data construction technique proposed by Dempster, Laird, and Rubin (1977), in this article we con-
struct “hypothetical” complete data where each observation itself “generates” some random missing data beyond the truncation
intervals. This serves as an auxiliary tool that makes the complete data likelihood function computationally desirable and hence
facilitates the implementation of the ECM algorithm under data censoring and truncation. Using this technique, our proposed
ECM algorithm is capable of fitting random censored and random truncated regression data, addressing the two main limita-
tions of the existing algorithms.

After deriving an efficient fitting algorithm, we illustrate its usefulness through two important non-life actuarial applications
that involve random censored and truncated regression data. The first application is on individual claim reserving, where ran-
dom truncation exists in the reporting delay data. In addition to showing that our proposed algorithm fits the reporting delay
data very well, we introduce a new semiparametric method as a convenient alternative tool to predict the number of IBNR
claims. With this method, the ECM fitting procedures (for reporting delay) automatically produce a good IBNR frequency pre-
diction without the need to parametrically model the claim arrival process, as considered by most actuarial papers. Due to its
simplicity and due to the inclusion of covariate information, our semi parametric method may produce very accurate reserve
estimates and can replace the classical macrolevel models (chain ladder, Bornhuetter-Ferguson, etc.) that actuaries use
1n practice.
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The second application is on deductible ratemaking, where the loss severity data involve random truncation because differ-
ent policyholders may choose different deductible levels. Though treating the deductible level as a left truncation point (this
article's approach) is the theoretically correct approach to modeling insurance losses, practitioners may also be interested in the
regression approach, a more convenient and computationally less expensive approach where the deductible is treated as a cova-
riate for ratemaking purposes (Lee 2017). Using a real automobile insurance dataset, we compare and contrast these two
approaches from modeling and ratemaking perspectives, focusing on the shortcomings the later method may produce.

In a recent paper, Tseung et al. (2021) introduced a new Julia package, LRMOoE.jl, statistical software tailor-made for actu-
arial applications that allows actuarial researchers and practitioners to model and analyze insurance loss frequencies and severi-
ties using the LRMoE model. LRMoE.jl offers several new actuarially motivated features. Key features include a wider
coverage of actuarial distributions, and the flexibility to vary classes of distributions across components. The parameter estima-
tions under data censoring and truncation based on the ECM algorithm proposed in the current article are under current devel-
opment and continuous updating in our LRMoE.jl package. The source code and package documentation are available at
https://github.com/sparktseung/LRMOoE.jl and https://sparktseung.github.io/LRMoE.jl/dev/. Furthermore, we have developed
an R package with similar functionalities for users interested in running the package in R instead. We refer such readers to
Tseung et al. (2020) for the vignette, and https://github.com/sparktseung/LRMOoE for the code and documentation.

This article is organized as follows. We first revisit the class of LRMOoE introduced by Fung, Badescu, and Lin (2019b) in
Section 2. Then, the censoring and truncation framework is introduced in Section 3. In Section 4, we develop the ECM algo-
rithm that efficiently fits the LRMoE to random censored and truncated regression data. To examine the effectiveness of our
proposed fitting algorithm and to illustrate the necessity of using our proposed algorithm to fit censoring and truncated regres-
sion data, a simulation study is presented in Section 5. Using real automobile insurance datasets, Sections 6 and 7 demonstrate
the practical applicability of the proposed fitting algorithm to two important actuarial areas: individual claim reserving and
deductible ratemaking. The main findings of this article and future research directions are summarized in Section 8.

2. THE MIXTURE OF EXPERTS MODEL

This section briefly revisits the class of logit-weighted reduced mixture of experts models (LRMoE) proposed by Fung,
Badescu, and Lin (2019b) as a flexible regression model. Suppose that there are a total of n observations. Denote Y =
(Y1, ..., Y,,)T and y = (y1, ...,y,,)T respectively the response variable column vector and the corresponding realization. For each
sample i = 1,...,n, we also define x; = (x;. ...,.x,'p)T (with x;p = 1) as the corresponding covariates. Assuming that Yi,..., Y,
are mutually independent, the probability density function (pdf) of LRMOoE is given by

h(yisxia W, 8) = > m(xi; a)f (vis 7)), yi >0, (2.1)

H Moe

where g is the number of latent classes, f(y;; t//,) is an expert function that governs the distributional property of Y;, ¥ =
(W1, ) are the parameters of the expert functions, 7;(x;; ) = exp {a/x;}/ D51 exp {ajx;} is a gating function that gov-
erns the mixing weight for the jzh class, and & = (aj, ..., ;) With & = (%o, ..., op)" € RF*! are the regression parameters of
the mixing weights. To ensure model identifiability, we fix &, = 0. Similarly, the cumulative density function (cdf) of the
LRMOoE is given by

H(yi;xi’m"llag xla yla‘/,j) yi>Oa (22)

H M%

where F(yi;¥;) = = [ f0; ¥;)dy. We choose gamma expert function throughout this article with ¥ = (m, 0), ¥; = (m, 0;) and

yi"i e/l
C(m)0;"

J

FOisy) =f(yizm;, 0;) = yi-mj, 0;>0, (23)

where m = (my, ...,m,) and 0 = (0, ..., 0,) are respectively the shape and scale parameters of the gamma distribution.
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The key motivation of using the Gamma-LRMoE is its model flexibility, where Fung, Badescu, and Lin (2019b) proved
that the Gamma-LRMOoE is dense in the space of any univariate severity regression distributions. This means that the Gamma-
LRMOoE is fully flexible in capturing any distributional and regression structures, including distributional multimodality, non-
linear regression links, and interactions among covariates, even if the LRMoE contains only linear regressions on the gating
functions, suggesting that the LRMOoE is a parsimonious model class. As a result, regardless of the complexities of the model
generating the input data, the characteristics of the fitted LRMoE will be highly synchronous to those of the input data. This
theoretical result was also empirically justified through several simulation studies and real insurance data analyses by Fung,
Badescu, and Lin (2019a; 2020). The Gamma-LRMoE also possesses several desirable properties, including mathematical
tractability and model identifiability, thoroughly examined by Fung, Badescu, and Lin (2019a,b).

Remark 1. A competing model class to the LRMOoE is the finite mixture of regression (FMR) model (McLachlan and Peel
2000). Instead of incorporating regressions in the gating function, the regression links in FMR are incorporated in the expert
functions through the parameters ¥. Though both LRMoE and FMR are flexible in capturing complex distributional character-
istics including multimodality, the denseness property generally does not hold for the class of FMR in regression setting
(Fung, Badescu, and Lin 2019b), meaning that the FMR is not guaranteed to well resemble the characteristics of all dataset,
especially for regression links and more complex features that can hardly be visualized in practice (e.g., interactions between
regression links and distributional structures; see, for example, figure 5 of Fung, Badescu, and Lin 2020). This motivates us to
adopt the LRMOE instead of the FMR as the modeling framework.

Needless to say, the main focus of this article is to introduce a novel computational strategy to deal with censored and trun-
cated data (Sections 3 and 4) and demonstrate the empirical and practical importance of appropriately treating data censoring
and truncation (Sections 5 to 7). As will be discussed in Remarks 3 and 6, our proposed strategy is necessary and useful for
any mixture-based regression models (including not only the LRMoE but also the FMR) under censoring and truncation mech-
anisms. Because model selections between the LRMoE and FMR are not our main research interest, we present our results
only under the LRMoE modelling framework for the purpose of conciseness.

The LRMOE is also interpretable in the general insurance context. Each observation (e.g., policyholder or claim) is classi-
fied into one of the g latent risk subgroups through the gating functions. The probabilities of subgroup assignments can be
affected by the covariates (e.g., policyholder or claim characteristics) x;. Loss distributions, which are governed by the expert
functions, vary among subgroups but are homogeneous within a subgroup, so different subgroups have different risk levels.

3. CENSORING AND TRUNCATION

In general insurance practice, the true values of response variables y may be observed inexact (censoring) and may not be
fully observed (truncation). For example, the reporting delay of a claim can only be observed if the claim is reported before a
valuation date, and it is usually recorded as the number of days instead of an exact time (continuous value). This section for-
mally constructs the mechanisms of censoring and truncation, and defines the relevant notations. We will also state the under-
lying assumptions and provides visualizations to illustrate the practical meanings of the mechanism.

3.1. Formalism

Define T; := (T!, T") as the lower and upper random truncation points of the ith observation with the corresponding realiza-
tions ¢; := (tf 1), where we have 0 < Til <T# < oo. T is said to be the truncation mechanism of observation i. By truncation
we mean that the data point is observed conditioned on the situation that the response variable Y; falls into the truncation
range [Y, Y¥].

Define RY C [T/, T] as the random uncensoring region of observation i and similarly RS = [T/, T*]\R} as the random
censoring region. Denote {I;, ..., I;s,} as the S; disjoint random censoring intervals of observation i with L,If":lll;Y = Rf. Note
that S; is assumed to be random. We then call C; := (RlU s T\’,IC Si AL, .oy IiS;}) the censoring mechanism of observation i.

It is assumed that the censoring and truncation mechanisms (C;, T;) are independent of the true response variable ¥; condi-
tioned on the covariates x;. We will explain in Sections 5 to 7 why this assumption is reasonable in a general insurance context.

Define the lower and upper censoring points of observation i as

Y; Y, e RV Y; Y, e RY
YZ = d Y= Si ’
and & S 1Y € LYsup{li}, Y€ RE
s=1

Si
i > Y € I}inf{li}, Y€ R’ G-
s=1
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where both ¥/ and Y are undefined if Y; is outside of the truncation interval [T/, T*]. The above censoring mechanism is inter-
preted as follows. If the true response Y; falls into the uncensoring range RlU , we will have Y/ = Y* = ¥; such that observation
i is said to be observed in exact or uncensored. Otherwise, if Y; falls into the censoring range Ric, the lower and upper censor-
ing points (Yl’ ,Y!") will be the lower and upper end points of the censoring interval ;, that the true response ¥; belongs to. In
this case, we only know the range [Yi’, Y!] that the true response variable Y; belongs to. In the special case where T,-’ =
Y! < Y*<T", we call the observation left censored. The observation is right censored if T' < Y! < Y" = T". In the general case
where T! < Y! < Y* < T¥, the observation is interval censored.

Overall, under the censoring and truncation mechanisms, instead of observing the true response Y;, we observe only the cor-
responding lower and upper censoring points, as well as the censoring and truncation mechanisms, given that Y; is inside the
truncation interval, denoted as

{(Y,Y!. T, C)Y; € [T/, T!]},

and the corresponding realized ith observation is denoted by (yf, i, tf-, tf‘,ci). The observations are assumed to be independent
and identically distributed (iid) across i = 1, ..., n.

3.2. Visualization

We hereby present Figure 1 to help readers understand the censoring and truncation mechanisms through three examples. In
the figure, the shaded areas are the uncensored intervals, the semi-open brackets represent the censored intervals, the two long
vertical bars in each examples are the truncation ranges, and the stars are the true response Y; which is not fully observed in
practice (as described by the previous subsection). Example 1 showcases a typical interval-censored observation where Y; falls
inside the censoring interval I;;, so in practice we observe (Y’ l’ ,Y!] as the range of possible values of (unknown) response vari-
able Y;, with Yf < Y! displayed in the appropriate places in the figure. Example 2 is the case where the observation is uncen-
sored. Because the response Y; falls inside an uncensored region RZ-U, the response Y; is observed in exact and we have
Y! = Y* = Y;. Example 3 is the case where the true response is outside the truncation interval [T/, T¥]. This case is impossible
and hence is not considered because the observations are conditioned on ¥; € [T7, T].

4. PARAMETER ESTIMATION - AN ECM ALGORITHM

Model calibration of the LRMOoE can be efficiently achieved through the ECM algorithm presented by Fung, Badescu, and
Lin (2019a), which assumes that the response variables y are exact and fully observed. Therefore, in this section we develop
an efficient fitting algorithm for the LRMoE that caters for censored and truncated data, which is the main contribution of this
article. In Subsection 4.1, we identify the challenges for parameter estimation and present a novel complete data construction

Ry RE
1 k2 12
[ Y \
Example 1: I Lo J S; =2
{
—* K
v v |
Example 2: I 5 Lis I3 J S;=3
{
] ol { K
Yi=Yi=Y, ]
T; i
Example 3: I I ] S;i=1
[l

) 2

Nl
-—

FIGURE 1. Visualizations of the Censoring and Truncation Mechanisms through Three Examples.
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technique that makes an efficient ECM algorithm possible for the LRMOoE even if the data are censored and truncated. Then,
the procedures involved in the adjusted ECM algorithm will be presented in Subsections 4.2.1 to 4.2.3.

4.1. Likelihood Function and Complete Data Construction

Denote the observed data as D™ = {(y,y* 1, 1%, ¢;)},_ I the observed data likelihood is proportional to

o’

,CObS((D"DObS x) _ HH(ylu;xn ) H(y”x,, )H h(yi§xis (D)
7 H(tx;, @) — H(thx;, @) 5y H(t; x;, ®) — H(thx;, @)

> e )[F(y,, ) = s v)]
zeCZ (e )[ W) — F(d .p)} .1
> ln]<xl, a)f (yis ¥
’EUZ REIC AL [ tl,lll)—F(tf;l/Ij)]’

ieC

where ® = (o, ¥, g), C C {1, ...,n} is the subset of observations that are censored (i.e., yf #y!) and U C {1, ...,n} is the
subset of observations that are uncensored (i.e., yf = y¥ = y;). Note above that the censoring mechanism ¢; is not involved in
the log-likelihood function. It is difficult to optimize the likelihood directly.

Remark 2.  Verbelen et al. (2015) proposed a re-weighting scheme that is effective in simplifying the likelihood function of
finite mixture distributions under censoring and truncation and hence makes an EM algorithm implementable. However, such
a special technique cannot be extended to simplify Equation (4.1) when regression is incorporated and different truncation
intervals among observations are assumed. The arguments are as follows. Consider an uncensored observation i € U.
Following the procedures of Verbelen et al. (2015), the individual observed data likelihood is written as

> s af (i )

H(t;x;, ®) — H(thx;, ®)

7 (x5 o) [F(fl-" ;) — F(1; '/’j)} Fis ;)
H(t!;x;, ®) — H(thx, ®) F(is59;) — F(i))

,C?bs((l)) =

- M-

) (e 11, 115 @) (vis ),

1

J

with transformed weight 7;(x;, #, #/; &) and transformed density £y ;). The successful key by Verbelen et al. (2015) is that
the transformed weight parameters 7; are estimated instead of the original weight parameters. This requires that the trans-
formed weights 7; are unified across all observations, which is, however, not the case if either regression is incorporated or
truncation intervals are random. Similar arguments hold for censored observation i € C.

Remark 3.  Applying the same arguments as Remark 2, the transformed weight 7; would still differ across observations
even if the model class is FMR instead of LRMoE. Therefore, the reweighting scheme proposed by Verbelen et al. (2015)
would also fail for censored and truncated data under the FMR. This highlights the importance of devising a new computa-
tional strategy suitable for fitting censored and truncated data using finite mixture-based regression models.

Motivated by the construction technique proposed in Subsection 4.2 of Dempster, Laird, and Rubin (1977), we introduce
“hypothetical” complete data that lead to a much simpler likelihood function compared to Equation (4.1), enabling an exten-
sion of the ECM algorithm to censored and truncated data. The complete data are given by

DCOm = (y, k, {y;}i:l’u_’,ﬂ {zi}i:l,.“’]‘[’ {zi‘s}i:l,...,n;S:I,“.,k,')’ (42)

which consists of the following five elements:
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e y=01 ..., y,,)T : a vector of true (uncensored) values within the truncation intervals.

o k=(k, .. .,kn)T : the realization of a multivariate random vector K = (K, ..., Kn)T, where K; represents the number of
missing sample points (i.e., points that falls outside the truncation interval) corresponding to “generated by” the ith obser-
vation, with covariates x; and truncation interval [t, #].

e y;= (V> ---»Yy): the realization of a multivariate vector ¥; = (Y}, ..., Y} ), which represents the missing sample
points corresponding to the ith observation.

o zi= (%, ---» zig)" : the realization of a multinomial latent random vector Z; = (Z, . ..,Z;) such that Z; = 1 if the ith
observation comes from the jth component of the LRMoE and Z; = 0 otherwise.

o .= (2. - zjsg) : the realization of a multinomial latent random vector Zjg = (Zi, ..., Zj,) such that Zj; = 1 if the

sth missing sample point corresponding to the ith observation comes from the ]th component and Z”J = 0 otherwise.

We assume that ki, ..., k, are mutually independent and are independent of the remaining elements of the complete data. Also,
k; is artificially constructed to follow a geometric distribution with probability mass function

plkisx ®) = [1 — H(x:. ®) + H(t x. ®)]“ [H(" x, @) — H(x, ®)], k=0,1,... (4.3)

In short, the complete data consist of uncensored observed data within the truncation interval and missing data outside the trun-
cation interval. We call the complete data “hypothetical” because the distribution made above is unlikely to be realistic.
Missing sample points are “generated by” the observed sample points and the covariates of the missing sample points are
assumed to be identical to that of the observed sample points, but these obviously make no sense in reality. The geometric dis-
tribution in Equation (4.3) also may not adequately represent the true distribution on the number of missing sample points; for
example, when the insurance claim arrival follows a Poisson process. Indeed, we do not claim that in reality the number of
missing samples must follow the geometric distribution as mentioned. Instead, we will show that the complete data likelihood
function is much more computationally desirable than the observed data likelihood function in Equation (4.1). In other words,
the aforementioned artificial construction of hypothetical complete data provides a distribution extension of the missing sam-
ples that facilitates the implementation of the ECM algorithm under data censoring and truncation. The complete data likeli-
hood function is given by

Ecom (m; DCOm,x)
= H{P( =z, Y = y|Y: € [t 1],%;, ®) x p(ki; x;, @)
i=1
ki
x [[P(Z'ss =2 V'is = Y| V'is & [, ], xi, @)}
=1

= H{P(Yi =yilY; € [t tf].x:, ®)P(Z; = zi|Y; = yi.xi, ®)p(ki; x;, D)
ki

H tv =)y 1Y|Y/lS' € [ ]’xi, (D)P(Z/is - z/is|Y/is = y/issxi’ (D)}

T(o o) o)
1:[ H(tll‘5xi’q))x h(yi; x;. @)

=

x;.®) + H(t);x;. @) [H(t!;x;, @) — H(t);x;, ®)]

Z’le
o ﬁ ﬁ h(y'is; x:. @) y 7 (xi; )f (Vi3 9))
1 — H(tx:.®) + H(t; x;, ®) h(Y ;% @)

— I (s ) (vis o ””XHHH(% w2 () (4.4)

i=1j=1 i=1s=1j=
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Note that the geometric distribution on ki, ...,k, acts as a key to cancel out H(#;x;, ®) — H (tl x;,®) and 1 —H(t!;x;, @) +
H(t;x;, @) in Equation (4.4) that consist of summation of terms. Therefore, optimizing the complete data likelihood function
(involving the product of terms only) is much easier than optimizing the observed data likelihood function (Eq. [4.1], involving
the product of sums).

A natural approach for model calibration is to find the parameters (e, ¥) that maximize the likelihood function. However,
as discussed by McLachlan and Peel (2000) and Fung, Badescu, and Lin (2020), it is possible that the likelihood function is
unbounded for severity distributions when m; — oo and 0; — 0 for some j such that some mixture components have very small
variances specially fitting only one observation, leading to a spurious fitted model. To address such an issue, we adopt the
same approach as Fung, Badescu, and Lin (2020) that penalizes parameters taking extreme values through finding the max-
imum a posteriori estimates of the parameters. This would prevent the fitted parameters from inflating indefinitely and/or
shrinking to zero, which leads to a spurious fitted model. By assuming that all parameters are a priori independent, the
observed data posterior log-likelihood is given by

L (@; D, x)p(a, m, 0)

~obs

[ (®; D, x) = log

p(y;x)
= [°°5(®; D, x) + log p(a,m, 0) + const, 4.5)
where
g—1 P
logp(a,m,0) = Z log pi (o) + Z log p,(m;) + Z log p3(0;), (4.6)
j=1 p=0 j=1 j=1

p(+) represents the joint prior distribution of the parameters, and p;(-), p2(-) and p3(+) are the marginal prior density functions.

We also follow Fung, Badescu, and Lin (2020) in choosing the following prior distributions of parameters: o, ~N(0, a]p) for

j=1,.,g—1landp=0,..,P, mijamma(Vm,?»;l)) forj=1,...,g, and ijGamma(u(Z),kj@) forj=1,...,g, where g,

J J
V;l), ij, u}z), 7»}@ are all fixed numbers.

Remark 4. Following subsection 5.3.1 of Fung, Badescus, and Lin (2020), for each j = 1,...,g we choose the hyper-
parameters oo = 3, 0, = 2/(max;—1,__{x;p} —mini— _,{x;}) (» > 0), z/j(»]) = VJ@ =1, and }\}1) = k;»z) = 500. The resulting
prior distributions are weak priors, allowing for minimal distortions to the fitted model yet effectively addressing the
unbounded likelihood problem.

Similarly, the complete data posterior log-likelihood is given by

i

com (

®; D", x)
log £°°m((l) Deem, ) + logp(a,m, ) + const.
Yi
= ZZZ” {log mi(xi; ) + (mj — 1)logy; — 5 M log0; — log F(mj)}
j

i=1 j=

4.7

llYlj J

+ ZZZZIW llog (x5 0) + (mj — 1)logy';, — yF — m;log0; — log l"(mj)]
!
8 0.
_ ZZ -+ Z( 1)logm; — f) + 1 < 1)log6; — lé)) + const.
N - J

/1P0 J

4.2. The ECM Algorithm
After formulating the complete data posterior log-likelihood function, which takes a simple analytical form, we are able to
develop the ECM algorithm of the LRMoE under censoring and truncation.
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4.2.1. E-Step

In the Ith iteration of the E-step, we take an expectation of the complete data posterior log-likelihood conditioned on the

observed data:

Q((I), Dobs,x, (l)(lf ]))

=E |:?com(<l); Y’ K’ {Y/i}izl,.“,n’ {Zi}izl,...,n’ {Z/is}izl,...,n;s:l,...,k,-’x)|D0bS’x’ (D(l_ l):|
n__g ()
0] 0 Yy
= ZZZU logm;(x;; ) + (m; — 1)logy;” — o M log 0; — logI'(m;)
i=1 j=1 j
n_g , — );’U)
+ Z k§l>zi](.l> log mj(x;; ) + (m; — 1)logy' ;" — 0” — mjlogl; — logI'(m))
i=1 j=1 j

SN By NS m S/ 0;
_ZZﬁ—i_Z((VJ — 1) logm; — W) +Z((yj — 1)log0; — W) + const,

J

where

- w. o (1—1 -1
i (x;; o ”)[F(yi;l//; )~ FOh ))}

" =) I o i€C
o) = P(Zy = D™ x @) = ¢ HOTx @) = Hpx, @70 ,
(i el (i) .
= s ield
h(yi; x;, @)
3= E(D, X @Y,z = 1)
[F(y?;m}lil) n 1,91(171)) B F(yﬁ;m,(lfn n 1’9}171))}m1(171)0](171)
= P N , 1€C,
F(yi;l/’j ) — F<yi§'/’j )
Yi» ield
. [ togy £y ™)y .
logy; = E(log¥,|D™,x, @V, 7; = 1) = Fusyl ™) — Foby! ™) e
log y;, iel

1 —H(x, @)+ H(dyx;, @0V
H(t;x;, ®'7Y) — H(thx;, @7 Y)

K" = E(K,|D*™, x, @~ V)

i E

(i 0~ Y) [1 —F(tp ) + Fldsyl™Y)
I — H(#;x, @ Y) + H(tlx;, @' Y)

Z;ﬁl) _ P(ngj _ 1|D°bs,x, (I)(l—l)) _

q

bl

50 -
Vi =EY D™ x, @V 7 = 1)

| F(t,%‘;m(.l_])+1,6](1_1))+F(t§;m(1_])+1,6§1_1)) = Dgl=1n

J J J J

L= Fsy' )+ Fldsy )

J

i

4.8)

4.9

(4.10)

.11

(4.12)

(4.13)

(4.14)
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1! (1—1) 00 (1-1)
/\l Jo logy fOy;¥; ~ )dy + [ logy f(y; i~ )dy
1ogy/fj) — E(log Y} [ D™ x,®(~ 1,7, = 1) == - ‘ ! (4.15)

is, u. 1—1 A I—1
’ 1 — Fesy! ™)+ F gl ™)

4.2.2. CM-Step

The CM-step involves updating the parameters o'~V to @Y such that Q((I)(l);D"bs,x, d)(l’”) >
Q(@!=1: D% x, @!~1). One appealing feature of Q(®; D x, ®!~ 1) (Eq. [4.8]) is that many parameters can be linearly
separated through the following decomposition:

g
O(®; D x, ®! V) = sO(a) + Z Tj(l)(lllj) + const, (4.16)
=1
where
n g g—1 P 062
D) = 30D () + 2 tog s — S-S @.17)
i=1 j=1 j=1 p=0~"Jp
o ; 000 Ly L0y
;" () l(ul(’gyy +ki ulOgy/U)+l I(Zuyu k' zj>
— (mjlog 0; + logF(m]))Z( @ —|—k() ())
i=1
) m @) 0;
+ ((Vj — 1)logm; — W) + <(VJ 1)logt;, — l.2)>. (4.18)
j j

We first update al/ =1 to al) so that SO (a)) > 5@ (a!~1)). We adopt a conditional maximization approach that sequentially
maximizes SV (aﬁ”, s a}lz 15 %, oc](.ﬂ:l 1), s océF 1)) with respect to &; to obtain ozj@. This can be done by the iteratively reweighted

least squares approach (Jordan and Jacobs 1994), which conducts the following iterations until convergence:

260 () \ ' 950
0tjﬂﬁj_(as (a)) 95" (a) @.19)

D0l Da;j

Because SU)(a) is a concave function, convergence to the global maximum is guaranteed. We then maximize Tj(l) (¥;) with
respect to ¥; = (m;, 0;) separately for j = 1, ..., g to obtain an update (m®,0"):

m!) = argmax T( (mj, a,(-l) (m))); o =g (mw), (4.20)

J
m; >0

where 0 ( j(l ) is given by
o) n
50 A 2 I na
0, (m) ==L {(uj ) 1)—;71,21 () + K02
Z" T4 )
0 0 @ _ ()
+ (m] (le +kt Zij ) - (l/] ) 7\‘(2 - ( yl] + k zj y ij )} (421)

i=1 y

=

Overall, the CM-step ensures that Q(®"; D x, ®!=1) > g(®!~D; D x ®!~1)), and hence the observed data posterior
log-likelihood is guaranteed to converge to a local maximum. We terminate the ECM algorithm when the change of the
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observed data posterior log-likelihood is smaller than a tolerance threshold of 10 ~* or the maximum number of iterations of
500 is reached.

Remark 5. Involving numerical integration or numerical optimization, Equations (4.11), (4.15), and (4.20) are the rela-
tively more computationally intensive substeps of the ECM iteration. The main challenge of computing Equations (4.11) and
(4.15) is that a numerical integration is required for each observation i = 1, ..., n. Naive numerical integration may be computa-
tionally intensive if n is large, but we notice that for two different observations with the same censoring/truncation ranges, the

corresponding IEg\ijl) (or lgg\y’ Ejl)) are identical. Therefore, performing a numerical integration for each unique range suffices
and significantly reduces the computational cost if the number of unique ranges is much smaller than n, which usually holds in
a general insurance context. For example, when modeling losses under deductibles (left truncation points), an insurance com-
pany usually offers only a limited choices of deductibles to customers. For Equation (4.20), the function to be optimized (i.e.,

Tj(l)) seems complicated because n-term summations appear multiple times. Yet, these summations do not involve any parame-

ters m; or 0; and hence they can be computed before that the function is optimized. As a result, the computational burden of
Equation (4.20) is indeed minimal.

Remark 6.  For efficient parameter estimations, our proposed hypothetical complete data approach (Eq. [4.2]) for censored
and truncated data is useful not only to the LRMoE but also to finite mixture-based regression models in general including the
FMR. We do not bog down the mathematical details for conciseness purpose, but we briefly discuss the logic as follows. After
applying the proposed hypothetical complete data approach in the context of FMR, the resulting complete data posterior likeli-
hood function would be the same as Equation (4.7), except that the parameters in the expert functions (m, #) would depend on
the covariates x; and some regression parameters. Then, the E-step can be computed using the same formulas presented above,
and the CM-step can be computed by optimizing the complete data posterior log-likelihood with respect to the regression
parameters in the expert functions instead of (m, 6).

4.2.3. Initialization and Parameter Adjustments
We use a clusterized method of moments approach similar to Gui, Huang, and Lin (2018) and Fung, Badescu, and Lin
(2020) to set the initial parameters @), This comes with the following steps:

1. Perform K-means clustering on (yf +y¥)/2 (or just on yf if y¥ = 0o) with g clusters and obtain the clustering mean
lust ; luster 2
{ ptuster j—1,..¢» Variance {(0’; uster’) }j:Lm’g,

2. Set m(o) — (‘u;:luster/O_jt‘:luster)2 and 9](0) — (O_J(;lusler)z/ﬂjcgluster.

3. Set a;(())) = log (7" /ng*ster) and oc]([(,)) =0 for p>0.

: cluster
and weights {m{"""},_, .

Following the above initialization steps, the information on the truncation range is disregarded and the true observed value is
approximated by the mid-point between the two censoring points. Therefore, the moments of the initial model only very
roughly match that of the data. However, the above initialization strategy is already found stable and robust for both simulated
and real datasets presented in the preceding sections. Finally, the optimal number of subgroups (hyperparameter g) is chosen
using some standard statistical criteria, such as the Akaike information criterion (AIC) and the Bayesian information criterion.

5. A SIMULATION STUDY

To examine the effectiveness of the proposed fitting algorithm in recovering the true model and to compare our proposed
method to some existing methods that deal with censored and truncated data, this section presents a simulation study that is
designed in the context of modeling insurance claim reporting delay.

Suppose that 20,000 claims occur to an insurance company within 5 years, where the choice of the number of samples is
motivated by the typical portfolio size of insurance companies. We set the time unit as “day” so the (current) evaluation date is
given by T = 5 x 365 = 1825. Assume that the arrival date of claim i € {1, ...,20,000} is W; := | W;| where W; follows a pdf
fiv,(w) =2w/ 72 1{0 < w < t}. The density function represents that the business size or exposure of the insurance company
is growing constantly over time. The reporting delay Y; of claim i is generated from the Gamma-LRMoE with g =2 compo-
nents with pdf given by Equation (2.1). Corresponding to each claim, we also have P =2 covariates that explain the policy-
holder/claim characteristics. The first covariate x;; is a time-independent variable simulated from N(O, 1). Meanwhile, the
second covariate x;, is a time-dependent variable simulated from N(W;/z, 1), meaning that policyholders’ characteristics are
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generally changing over time. In reality, reporting delay is usually observed as the number of days (instead of being observed
in exact) and, further, each claim i is observed only if its reporting date R; = W; + Y} is no later than the evaluation date (i.e.,
Ri <tor0 <Y/ <1—W,). As aresult, we have the following censoring and truncation mechanisms adopting the framework
and notations from Section 3: For truncation mechanism 7, the lower and upper truncation points of claim i are respectively
T! =0 and T" = v — W;. For censoring mechanism C;, we have R{ = (0,7 — W;] = (T}, "] and RY = ¢ such that there is no
uncensoring region. To reflect the one-day imprecision of measuring the reporting delay, we construct S; = 1 — W; one-day
intervals such that I;; = (s —1,s] for s = 1, ..., S;. Using Equation (3.1), the lower and upper censoring points that we are
observing are Y/ = |¥;] and Y* = [Y;]. Overall in this simulation study, the observed data are given by D =
{0yt ei) Y yuer > Where (Vi ¥4, 2, 2, w;) are the realizations of (Y}, Y, T}, T¢, W;). We can then directly apply the pro-
posed ECM algorithm in Section 4 for parameter estimations. Note that the number of claims observed can be significantly
fewer than 20,000.

The remaining quantities we need to set are the parameters of the Gamma-LRMOoE that simulate the reporting delay Y.
Here we construct two cases: in the first one (Case A), we set the shape parameters m = (2, 1), scale parameters 6 = (2, 100),
and regression parameters o; = (2,0.5, — O.S)T so that the average reporting delay is around 21 days; in the second one (Case
B), we adopt the same shape and regression parameters as Case A but the scale parameters are changed to 0 = (5,250), so the
average reporting delay is much longer (around 53 days). In both cases, the larger time-independent variable x;; leads to a
smaller average reporting delay, whereas the larger time-dependent variable x;, leads to a greater average reporting delay.

Under each of the two cases described above, we fit the Gamma-LRMOoE to the observed data using the proposed ECM
algorithm for censored and truncated data. To ensure a thorough examination on the proposed algorithm, the whole simulation
and fitting process is replicated 200 times. Using the AIC, the proposed algorithm identifies the correct number of components
(i.e., g=2) in 192 and 184 out of 200 replications respectively under Case A and Case B. Using the Bayesian information cri-
terion, the algorithm even correctly detects the number of components in all replications under both cases. To examine whether
the true model is recovered by the proposed algorithm, we plot the density function of each fitted parameter and compare it to

Density of regression coefficient alpha11 Density of regression coefficient alpha12
T~ T
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w _| —— proposed w0 | : —— proposed
- ' ---- remove 0d - ! ---- remove 0d
' remove 125d 1 remove 125d
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a f —— proposed a i .;' —— proposed
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FIGURE 2. Density Plots of Fitted Regression Coefficients &y and &,. Note: In the legends, “proposed” represents the use of our proposed ECM algorithm
for censored and truncated data; “remove 0d,” “remove 125d,” and “remove 500d” represent removing claims observed with £/ <¢* (+* = 0, 125,500) and
using a standard ECM algorithm that ignores data truncation. The vertical dotted line is the true model parameter.
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FIGURE 3. Density Plots of Fitted Component Mean Ratios fi;/u; := ﬁ”lj[)j/mj()j G=1,2).
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FIGURE 4. Exposure and Weekly Number of Claims Reported versus Time.

the true model parameter. For the sake of preciseness, we only present the density plots for the fitted regression coefficient &,
(p=1, 2) in Figure 2 and the fitted component mean (ratio) defined by j;/u; := rhj@j /m;0; (j=1, 2) in Figure 3. As observed
from these two figures, the peaks and medians of the thick, solid density curves (generated using our proposed ECM algo-
rithm) are very close to the true values (vertical dotted lines), showcasing empirically the unbiasedness of estimated parameters
and revealing the effectiveness of the proposed algorithm in recovering the true model.

To demonstrate the usefulness and importance of our proposed fitting algorithm, we compare it with some commonly used
methods that fits truncated reporting delay data. The first method (named “remove 0d”), which is adopted by, for example,
Badescu et al. (2019), simply fits the untruncated reporting delay distribution to the observed data. Without a proper fitting
algorithm for truncated data, ignoring the truncation points makes model calibration computationally feasible, but the true
reporting delay distribution will be underestimated. To mitigate such a bias, one can discard the data points with small upper
truncation points (i.e., # <t* for some *). By selecting a large enough ¢*, the biases induced from data truncation may be sig-
nificantly reduced at the expense of having fewer data points for model fitting procedure; see remark 5.1 of Badescu et al.
(2019) for a more detailed discussion. This results in the second and third methods (called “remove 125d” and “remove
500d”), where t* = 125 (roughly the 95% quantile of reporting delay in Case A) and t* = 500 (roughly the 97.5% quantile in
Case B) are chosen, respectively.

For each method and each case, the simulation and fitting procedures are replicated by 200 times. The resulting distributions
of the fitted parameters are displayed as dotted curves in Figures 2 and 3. From the right panels of Figures 2 and 3, the density
curves of &, and fi,/u, by the method “remove 0d” substantially deviate from the true values under both cases, revealing a
significant bias of the fitted model if the data truncation issue is ignored. Such a bias is larger in Case B (where the average
reporting delay is longer) than in Case A. Though the bias is reduced using methods “remove 125d” or “remove 500d,” it can-
not be completely removed in Case B even if 500 days of reporting delay data are discarded. From the left panels of Figures 2
and 3, we observe no substantial deviations on the density curves of &;; and fi, /g, from the corresponding true values under
any methods. However, the distributions of these fitted parameters under method “remove 500d” are more dispersed (see the
lower peaks) than those under other methods, implying that removal of reporting delay data would induce a significant increase
in the uncertainties of fitted parameters.

Overall, without an efficient fitting algorithm catering for data truncation, there exists a bias—variance trade-off in fitting
truncated reporting delay data. If the truncation issue is neglected, the fitted reporting delay distribution will be biased.
Though the bias can be mitigated through discarding some data points, this would reduce the number of observations and thus
result in greater parameter uncertainties. In contrast, using our proposed ECM algorithm, one does not need to concern about
the bias—variance trade-off problem.

6. APPLICATION: MODELING REPORTING DELAY
In this section, we apply our proposed ECM algorithm to fit reporting delay data from a real insurance dataset. We will also
demonstrate how the proposed algorithm facilitates convenient yet accurate prediction for the number of IBNR.

6.1. Data Overview
The dataset is from a major European insurer that was also analyzed by Fung, Badescu, and Lin (2020). It contains two
files: “policies” and “claims.” The policies file contains 594,908 third-party liability insurance contracts from January 1, 2007,
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FIGURE 5. (a) — Q-Q Plots for Each Run. Note: (b) Average Reporting Delay versus Day of the Year (in Run 6) Using the Nonparametric Approach. Note:
Two dotted curves represent the empirical patterns of upper and lower censoring points of reporting delay. Two solid curves represent the patterns generated
by the fitted model, where the lower (red) one caters to data truncation but the upper (blue) one does not. The shaded areas are the 95% confidence intervals.

TABLE 1
Summary of the Covariates for the ith Claim, Where w; Is the Accident Date and 7y = January 1, 2017

Variable Description Type Notes
Xi1 Policyholder age Discrete
Xp Car age Discrete
X3 Car fuel Categorical Diesel: x;3 =1

Gasoline: x;3 =0
Xig—Xi7 Geographical location Categorical Region I: x4 = 1

Region II: x;5 = 1
Region III: x;6 = 1
Region IV: xi7 =1
Capital: xiy = x5 = Xjg = X7 =0

Xig—Xi9 Car brand class Categorical Class A: xg =1
Class B: x;9 = 1
Class C: x;8 = x0 =0
Xi10 Contract type Categorical Renewal contract: x;;0 = 1
New contract: x;10 = 0
Xil1—Xi14 Day of the year Continuous X1 = sin (2n(w; — 10)/365.25)

Xi12 = cos (2n(w; — 19) /365.25)
xi13 = sin (4zn(w; — 19)/365.25)
Xi14 = COS (47Z(W,' — ‘CQ)/36525)

TABLE 2
Summary of Data Segmentation Process, Fitted Model and p Values of In-Sample Residual Tests under Six Different Runs
Data segmentation Fitted model Residual test p values
Run IS training OS test T IS data no. Component no. Kolmogorov-Smirnov test > test  AD test
1 2007-2012 2013-2017 1/1/2013 9,608 5 0.9728 0.4086 0.9300
2 2007-2013 2014-2017 1/1/2014 11,699 7 0.9504 0.3301 0.9245
3 2007-2014 2015-2017 1/1/2015 15,061 7 0.9771 0.5048 0.9620
4 2007-2015 2016-2017 1/1/2016 18,994 13 0.9662 0.7178 0.9770
5 2007-2016  2017-2017 1/1/2017 23,668 13 0.9588 0.8017 0.9571
6 2007-2017 Nil 1/1/2018 28,256 12 0.9440 0.6165 0.9528
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to December 31, 2017. For each of the contracts we have the contract number, start date, end date, and several policyholders’
information. The claims file contains n’ = 28,256 claims incurred and reported until December 31, 2017. For each claim, we
have the corresponding contract number, accident date w; and reporting date r;. The number of in-force contracts (total expos-
ure) over time, as well as the weekly number of claims reported, are displayed in Figure 4.

The contract numbers provide a link between two files so that we can append the policyholder information in each claim.
Then, in this application we mainly deal with the claims file because our aim is to model the truncated reporting delay data.
The censoring and truncation mechanisms in this application are exactly the same as in the simulation study (Section 5),
because the precision unit of the accident and reporting dates is still one day (interval censoring), and the data observed are
already given that the reporting date is no later than the validation date. The lower and upper censoring points for each
observed claim i are respectively given by y! = r; —w; and y* = y! + 1. The truncation points are given by # =0 and # =
T —w;, where 7 is the validation date, which will be described in the following paragraph. Similar to the simulation study, the
observed data are given by {(y.y¥.7.#.¢;},_; .., where we recall ¢; as the censoring mechanism, which is irrelevant to the
log-likelihood function (see Subsection 4.1). The summary of the covariates x; is presented in Table 1. Note that apart from
the policyholder attributes x;; — x;;9, we added four linearly independent sinusoidal functions x;;; — x;14 to flexibly capture the
effect of the the accident’s day of the year to its reporting delay, which will be found to be important in the right panel of
Figure 5. With all variables properly defined, the proposed ECM algorithm is then directly applied to estimate the parameters.

To examine the predictive power of the proposed modeling framework, which will be discussed in Subsection 6.3, we segment
the claim dataset into two parts: an in-sample (IS) training set containing all claims reported before the validation date 7 and an
out-of-sample (OS) test set containing the remaining claims that are not yet observed until 7 but are reported before January 1,
2018. To make our analysis comprehensive, we perform model fitting and out-of-sample testing under six different validation
dates summarized in the “Data segmentation” column of Table 2. For example, in run 3, 15,061 claims reported before the valid-
ation date T = 1/1,/2015 are fitted to our proposed model and the resulting IBNR prediction as at January 1, 2015, is compared to
the realized IBNR from the test set claims, which are reported between January 2, 2015, and December 31, 2017.

6.2. Estimation Results and In-Sample Validation Tests

In each run, we fit the Gamma-LRMOoE to the reporting delay training set using the proposed ECM algorithm for censored
and truncated data. Using the AIC, the resulting fitted models contain 5 to 13 components, displayed in Table 2. In general, a
larger number of observed data points results in more subgroups for the optimal fitted model.

After model fitting, it is important to assess the goodness-of-fit. We first construct a Q-Q plot as follows: Using the parame-
ters from the fitted model, simulate the reporting delay of each claim i given that it is below the upper truncation point (i.e.,

.

function A(y;; x;, ®)/H(t*; x;, ®). Denote ¥, as the realization from the simulation and ' := |3, the lower censoring point of

the simulated reporting delay. Then, compare the quantiles of {5’5}1':1,, to that of the empirical left censoring points

{yf}izlw_’n(,. The resulting Q-Q plot for each run is displayed in the left panel of Figure 5, showing that the Gamma-LRMoE
fits the reporting delay data very well in all runs.

Apart from the Q-Q plot, we evaluate the goodness of fit through a residual test that tests the null hypothesis (H,) that the
reporting delay data are generated from the fitted model against the alternative hypothesis (H;) that Hy is false. To do so, we

first compute the fitted cdfs of truncated data flf ‘= H(y\;x;, ®)/H(“;x;,®) and H, := H(y";x;, ®)/H(t*; x;, ®) for each

claim i. We then simulate H; ~ U [ﬁ i,I:I ;‘] If H, is true, then H; will follow U [0, 1] for every i = 1, ...,n°. Finally, three com-
mon goodness-of-fit statistics (from the Kolmogorov-Smirnov test, the chi-square test [using 200 equiprobable intervals] and
the Anderson-Darling test) are computed to examine the difference between the empirical distribution of the simulated data

cees

margins in all runs, so Hy cannot be rejected and our model fitting performances are robust.

Using the fitted model, we can also construct a visualization tool to understand how the covariates impact the reporting
delay of a claim. The methodology is similar to Fung, Badescu, and Lin (2019a; non-parametric approach) and is described as
follows. We define X as the covariates space and partition it into Q disjoint subspaces X, ..., Xy such that X U---U Xy =
X. The average reporting delay of a claim given that its covariates x; belong to X, can be estimated by

npar 1 F 1 : “\i3r.0)
Y P (q) = — Z E[Yi|x,~,cl)] = — Z an(xi;oz)mjﬂj, (61)

N(C]) i<n®:xi€X, N(C]) i<nox;eX, j=1
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where N(g) = Y1, 1{x; € X,} is the number of claims with covariates x; € X,. By plotting Y"*"(¢) across g, we can exam-
ine the influence of the covariates to the reporting delay. The right panel of Figure 5 demonstrates an example of the visualiza-
tion plot, where the average reporting delay is plotted against the day of the year of the claim’s accident date. In this example,
we choose Q=30 and construct X, = {x : (¢ —1.5)/29 < (day of the year)/365.25 < (¢ —0.5)/29} (note that the day of
the year of each claim i can be retrieved by the covariates x;;;—x;14). The resulting ¥"*" () ~ g plot is represented by the upper
(blue) solid curve. One may observe that this curve is consistently higher than the average reporting delay from the empirical
data (two dotted curves). This is because the empirical (observed) reporting delay data points are right truncated, but Equation
(6.1) is evaluated based on untruncated distributions. To make the solid curve directly comparable to the empirical data, we
also calculate the average reporting delay of a claim given that it is reported on or before 7 with covariates x; belong to X, :

ioar 1 . 1 ¢ (s &)F (e iy + 1, 0;)im,0;
v Pa,t(q) =5 Z E{Y,~|Y[ < tﬁ‘,xi,d)} =% Z szl ;i ( ) u( J )i i 6.2)
(a) i<noxieX, (9) i<noxEX, H(t!;x;, ®)

Plotting ?”par’t(q) against g results in the lower (red) solid curve in the right panel of Figure 5. This curve aligns well with the
empirical average reporting delay. Both solid curves suggest that June—August (February—April) are the months where claims
are expected to experience longer (shorter) reporting delays. Apart from the day-of-the-year effect, a similar visualization tool
can be deployed to analyze the impact of other variables. Though we refrain from showing them one by one for conciseness,
several variables that significantly affect the reporting delay are summarized as follows:

e Claims from younger drivers (<40 years old) experience longer reporting delays (by 2.5 days on average) than those
from older drivers (>40 years).

e The average reporting delay of claims from the capital region (24.7 days) is much longer than that from other regions
(19.1 days).

e Claims from car class A (the best class) have shorter reporting delays than those from other car classes (17.4 versus 22.2
days on average).

6.3. IBNR Prediction and Out-of-Sample Tests
In the microlevel reserving framework, a topic that received plenty of interest in recent years, prediction of the number of
IBNR requires modeling both claim frequencies and reporting delays either separately (Antonio and Plat 2014; Badescu et al.
2019; Crevecoeur, Antonio, and Verbelen 2019) or jointly (Verbelen et al. 2018). Therefore, the claim arrival process and its
regression link need to be specified before the IBNR prediction can be obtained. In this section, we propose an alternative
semiparametric approach for the number of IBNR prediction, where the fitted reporting delay distribution itself suffices to pro-
duce an adequate IBNR count prediction without the need to fit a claim frequency distribution. This is a very simple microle-
vel procedure that produces very accurate estimates and can potentially be applied by practitioners with minimal
computational costs. A paper that will focus solely on the estimation of the IBNR and the reported but not settled reserve using
the class of LRMoE and the comparisons with macro- and micro- level methods including covariates is part of our current
research objectives, as described in more details in the last section.

For simplicity, two assumptions are made as follows. Note that relaxation of the assumptions may be possible, but it is
beyond the scope of this article, which mainly focuses on the calibration of censored and truncated data.

e The claim arrival process of each contract i follows an inhomogeneous Poisson process with intensity A(¥;,¢)1{r € T},
where 7; is the contract period (from contract start date to end date) and x; is the policyholder information (including
only x;;—x;10 in Table 1).

e The claim arrival process is independent of the reporting delay distribution P(-;x;).

Suppose that there are a total of N* contracts. Denote N, N°, and NBNR a5 the total number of claims that occurred, observed
(reported) claims, and IBNR at time 7. The standard thinning property of the Poisson process results in the following:

N ~ Poi (NZ J AMxL 1)1t € T{}dr) := Poi(}), (6.3)

i=1 J7%
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N* (1
N° ~ Poi (ZJ Mx,HP(t — t;x;)1{r € Ti}dz> := Poi(1%), (6.4)
i=1 7%
N*  p1
NBNR _ po (ZJ AMx, (1 — P(t — t;x;))1{r € T,-}dt) = Poi(XIBNR)’ ©6.5)
i=1 7%

Where 0= January 1, 2007, is the business start date. To predict the number of IBNR, it suffices to find a reasonable predictor
of 1° , which results in the following proposition.

Proposition 1.  Suppose that the IBNR process is given by Equation (6.5). Then
N No
7 7 ‘/Vl ) xl)
k= ki == 6.6
; ; Z:j m - (6.6)
is an unbiased estimator of XIBNR, where W; is the accident (occurrence) time of the ith claim.
Proof.  We take an expectation on k.

S| el

E
—~ P(t — Wix;) T — W;x)

>

T N* — — . . . .
0 XJ Zl P(t—t;x;) " Mx, 014t e 7;}P( t,x,)dt
% P(‘C — t;x,») Iy

i=1

|
.M%

Jr (xz’ )I{IE T}(l — P( t§xi))dl‘: XIBNR-

i=1 7%

|

Now, assume that the fitted reporting delay distribution H(-;x;, (i)) synchronizes well with the true reporting delay distribution
P(-;x;). Then k; in Equation (6.6) can be accurately estimated by

. 1=Pt—Wgsx) 1—H(t%x, ®

joo Lo P Wax) (1} xi, @) ©67)
P(t — Wisx;) H(t;x;, @)

which is equivalent to Equation (4.12) involved in the E-step of the proposed fitting algorithm. Note that the above assumption

is reasonable under the class of LRMOoE as reporting delay distribution, because of its denseness property (Fung, Badescu, and

Lin 2019b), which guarantees its flexibility to synchronize well any true distributions. The semi-parametric IBNR prediction is

now given by

- x,,(i))
k= Z: x”(D) . (6.8)

Overall, under our proposed semi parametric approach, the parameter calibration procedure automatically produces the IBNR
estimate. Also, this approach makes no assumptions on the impact of covariates and time to the claim arrival intensity (regres-
sion link), enabling convenient yet realistic prediction of the IBNR.

To obtain a full predictive distribution of the IBNR, it is also important to take parameter uncertainties into account. To do

so, we apply a bootstrapping technique as follows for each run b: Firstly, simulate the number of observed claims
No®) NPoi(XO). Then, for i = 1,..., N°®), bootstrap {(yﬁ“’) y'.‘(b) (b) ju(b)

/A A ,x,@)} iid with replacement from the observed claim

dataset. After that, we re-fit the proposed model to the re sampled data using the proposed ECM algorithm, with the fitted

model parameters @ being the initialization. The re-fitted model parameters d)(b) is finally obtained. The whole process above
is repeated for b = 1, ..., B, where we choose B =200.
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TABLE 3
Summary of the OS Predictions on the Number of IBNR

IBNR prediction period IBNR prediction results
Run  Start date End date Total IBNR  Truncated IBNR Lower 95% CI  Upper 95% CI  Realized p value

1 1/1/2013 1/1/2018 133.2958 133.0842 106 165 144 0.4606
2 1/1/2014 1/1/2018 139.7749 139.5201 107 175 120 0.2775
3 1/1/2015 1/1/2018 195.0955 193.6148 159 233 212 0.3400
4 1/1/2016 1/1/2018 213.0416 200.1773 167 236 223 0.2067
5 1/1/2017 1/1/2018 268.2051 222.5120 189 259 217 0.7982
6 1/1/2018 Infinite 230.4764 230.4764 194 271 Nil Nil
Run #1 Run #2
§ L T T T § ! T : T T § L T T T T
100 150 200 100 150 200 150 200 250 300
IBNR claim count IBNR claim count IBNR claim count
Run #4 Run #5 Run #6
5. | 5. 5o
§ L T E T T § L T T * T T § = T T T T
150 200 250 300 150 200 250 300 150 200 250 300 350
IBNR claim count IBNR claim count IBNR claim count

FIGURE 6. The Predictive Distributions of the Truncated IBNR. Note: Red vertical line: Realized value from the test set. Blue dotted lines: Predictions from
the proposed method. Green dotted lines: Predictions from chain ladder approach.

Now, the IBNR predictive distribution that caters to parameter uncertainties can be obtained through simulations. We com-

pute - Z:’i?(l - H(t?(b);xgm,(i)(b))) /H(tf'(b);xgb),(i)(m) and generate 10,000 random samples from Poi(l}(w

b =1, ...B. This will generate 2 million simulated points in total.

The out-of-sample IBNR predictions for each of the six runs are summarized in Table 3 and Figure 6. In Table 3, “Total
IBNR” represents the predicted IBNR computed by Equation (6.8). However, the total IBNR prediction cannot be directly
compared to the realized value from the test set because our dataset only contains information up to December 31, 2017. Any
claims reported after December 31, 2017, are not observed. To properly examine the predictive power of our proposed frame-
work, we also compute the estimates of “Truncated IBNR” that considers only the claims that occurred before 7, reported on
or after the “Start date” (Tgy,y) and reportgtd before the o“End date” (Tepq). Fol}owing arguments similar to Proposition 1, the
truncated IBNR estimation is given by & (tena) = > (H(t* + Tena — T3 %, @) — H(t!; x;, @)) /H(1;x;, ®). The lower and
upper 95% confidence intervals (CIs) in Table 3 are based on the truncated IBNR. They are computed using the afore-men-
tioned bootstrap technique. Because the realized (truncated) IBNR falls inside the 95% CI of the truncated IBNR predictive
distribution for all runs 1-5, we conclude that our proposed modeling framework provides adequate predictions on the IBNR.

) for each
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On the other hand, Figure 6 shows that the truncated IBNRs determined under the traditional distribution-free chain ladder
(CL) approach overestimate the true value in all five runs, suggesting a potential biasedness of the CL approach in estimating
the IBNR under the dataset we used.

Careful readers may further notice in Table 3 that the total IBNR prediction in run 6 decreases suddenly, as opposed to an
increasing trend from run 1 to run 5. To see why this prediction looks abnormal, we compare it to the predicted IBNR using
the CL approach under run 6. As also displayed in Figure 6, the total IBNR prediction using our proposed framework (230.5)
is 22% fewer than that using the CL approach (295.5). Such a large discrepancy can be explained qualitatively as follows.
Controlling for the average business exposure over the previous year (i.e., year 2017 in run 6), an increasing trend in the
exposure during the year will lead to greater expected IBNR than a decreasing trend. This is because in the former case a larger
proportion of claims arrive toward the end of the year (close to the validation date t), which are less likely to be reported
before 7. On the other hand, though the CL approach captures the change of the yearly average exposures across years, it does
not cater to any within-year exposure change effects because the claim development data are aggregated by each calendar
year. From the left panel of Figure 4, the business exposure decreases drastically during the year 2017, compared with a pro-
longed increasing trend from year 2007 to 2016. This explains why our proposed framework, which uses granular claim data,
produces a significantly smaller IBNR estimate than the CL approach in run 6. Though the OS data are not available under run
6, we expect that the CL approach will continue to overestimate the IBNR because it fails to capture the micro-effects of an
IBNR process.

7. APPLICATION: DEDUCTIBLE RATEMAKING

Apart from reporting delay, insurance loss data involve censoring and truncation if insurance contracts are subject to deduc-
tibles and policy limits. In this section we investigate the usefulness of the proposed ECM algorithm in the context of deduct-
ible ratemaking.

7.1. Data Overview

In this study, we analyze n =10, 032 car damages claim that occurred during 2016. For each claim i = 1, ...,n, we have the
policyholder information the same as x;;—x;1o described in Table 1. We also have the claim amount y}, deductible d; and pol-
icy limit u; corresponding to each claim. There are six choices of deductibles: 0, 100, 200, 300, 500, and 1000 euros, where
over 25% of claims have nonzero deductibles. The policy limits #; are continuously distributed, ranging from 900 to 183,610
euros with an average of 12,126 euros. The claim amounts y; range widely from 0.9 to 45,449 euros, with mean and median of
837.3 and 443.8 euros, respectively. Also, note that the observed loss amount of claim i is given by y; := y; 4 d; and it is right
censored at u;. Therefore, if the observed loss amount is exactly u;, the actual loss amount of claim i will not be fully observed
(i.e., can be greater than the observed one). Only 6 out of 10,032 observations hit the policy limit.

To understand the body and tail behavior of claim severities, a preliminary analysis is performed by fitting Gamma, Log-
normal, and Pareto (Lomax) distributions to {y;},_; , without considering covariates. To assess the goodness of fit, three
normalized residuals Q-Q plots are displayed in Figure 7. It is obvious that the Gamma distribution undercaptures the heavi-
ness of the right tail implied by the data, whereas the Pareto distribution misfits the body of the data. The Log-normal distribu-
tion provides a better fit, but all three goodness-of-fit statistics (Kolmogorov-Smirnov test, y* test and Anderson-Darling (AD)
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FIGURE 7. The Q-Q Plot of the Normalized Residuals Based on Three Preliminary Distributions Fitted to the Claim Amounts y;.
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FIGURE 8. Loss Data and Normalized Residual Q-Q Plots (Deductible Excluded as Covariate).

test) report extremely small p values (< 10 ~7), so the fitting performance can still be substantially improved through a flexible
modeling framework.

Our main goal is to model loss severities subject to deductibles and policy limits. The censoring and truncation mechanisms
are as follows. The (observed realizations of) the truncation points are apparently tl d; and t} = oo, showcasing that actual
loss amounts of smaller than the deductible level d; are not observed. For the censoring mechamsm we have S; = 1, RY =
(d;, u;] and R,C = I;; = (u;, 0], reflecting right censoring of loss amounts. Using Equation (3.1), the (observed realizations of)
censoring points are yi = y* =, if y; <u; and (y!,y%) = (;, 00) if y; = u;. Because the preliminary analysis reveals that the
Gamma distribution under-captures the tail-heaviness of the empirical loss severity, fitting the proposed Gamma-LRMOoE dir-
ectly to the dataset may not help extrapolate the tail-heaviness effectively. Instead, we follow the transformation technique pro-
posed by Fung, Badescu, and Lin (2020), which transform the heavy-tailed data into lighter-tailed data first before fitting the
Gamma-LRMOoE. Define a Box-Cox transformation function

(I+y)' -1
&) = , 10, (7.1)
log(1+y), =0

where 7y is the transformation hyperparameter If y <1, applying &, to the dataset will reduce its tail-heaviness and vice versa.
We transform the dataset (!, 7%, fl, D) =(&04),E,01),&,(1), &, (1)) and now the input of the ECM algorithm (observed data)

l~u"~l't

iS giVCIl by DObS = {(yl yl i l)}zzl,..t,n'

7.2. Estimation Results

We fit the (transformed) observed data via the proposed calibration algorithm using the policyholder information x;;—x;;9 in
Table 1 as well as the (transformed) policy limit x;;; := log (1 4+ u;) as the covariates x;. For each number of subgroups g, we
try various values of transformation parameter y € {0,0.1,0.2,...,1} and choose the y that maximizes the observed data
log-likelihood. Then, the optimal g is determined based on the AIC. Note that because the observed data are transformed, the
likelihood function obtained by Equation (4.1) is distorted. In order to make a fair comparison of the log-likelihood among dif-
ferent values of y, we should use the untransformed observed data likelihood £°™* obtained by simple probabilistic arguments:

log L (®; D™, x,7) = log L (®; D, x,9) + (y = 1) Y _ log (1 + y;) 1{y: <us}, (7.2)

i=1

where £°°(®; D, x, ) is simply computed by Equation (4.1).

The optimal fitted model contains seven components with y = 0.3. Two goodness-of-fit tests very similar to those presented
in Subsection 6.2 are performed to assess the in-sample performance of the fitted model. The first one, the loss data Q-Q plot,
simulates the lower censoring points {§ jo from the fitted model and compares them to the empirical left censoring points

{y }ie1....n- The resulting Q-Q plot dlsplaye'dﬂm the left panel of Figure 8 demonstrates an excellent f1t The second test, the
residual test computes the fitted truncated cdfs H = HGLx, ®)/(1 - ( :x;, ®)), and sets H; = H if y; < u; or simulates
Hi~U [H 1] if y; = u;. The three goodness-of- f1t statistics, which compare {H;},_, _, to U[0,1], report p values all greater

than the 5% significance threshold (0.2505, 0.1921, and 0.1033, respectively). We also display the normal Q-Q plot of the
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normalized residuals {\ ~' (& D ictoa N '() is the inverse normal cdf) in the right panel of Figure 8. The fitting is greatly
improved compared to traditional parametric models (Fig. 7).

Using the same visualization technique presented by Equation (6.1) and the right panel of Figure 5 (not fully displayed in
this section for conciseness), it is also possible to identify several risk factors that are related to larger loss severities. In sum-
mary, the model reveals that younger drivers, car age of about 5 years, diesel cars, driving in Region I or III, car class C, new
contract, and larger policy limit are the higher risk drivers.

In the above analysis, the deductible is treated only as a truncation point. Many actuarial studies (see, e.g., Lee 2017; Lee
and Shi 2019), in contrast, consider the deductible as an explanatory variable under a regression framework, providing a con-
venient way to model insurance losses and price insurance contracts in the presence of deductibles. Therefore, here we include
(transformed) deductible x;;, := log (1 + d;) as a covariate, refit the proposed model, and contrast the result to that when the
deductible is excluded as a covariate. We will show that through (from a modeling perspective) the deductible level has some
predictive power to the claim severity (from a ratemaking perspective), inclusion of the deductible as a covariate would lead to
unreasonably high premiums charged to policyholders choosing high deductible levels. Hence, this may suggest that deductible
levels should be treated as a truncation point instead of an explanatory variable.

The optimal new refitted model contains nine components with y = 0.3. Though the standard visualization tools show that
the influence of covariates x;;—x;;; produced by the new model (deductible included as covariate) is very similar to that pro-
duced by the original model (deductible excluded as a covariate), the overall fitting performance of the new model is signifi-
cantly better than the original model (AIC improved from 150,899 to 150,480), revealing an intrinsic relationship between the
choice of deductible and the loss distribution that cannot be fully explained by the truncation effect.

To quantify the effect of deductible choice to the expected loss after controlling for other variables, we calculate the expected
loss severity across each deductible level using the partial dependence approach (a similar approach also studied by eq. [6.4] of
Fung, Badescu, and Lin 2019a). The expected severity per accident/loss with deductible d € {0; 100; 200; 300; 500; 1000} is

P = 1S [ @.0] =13 mw @ [ & owta a3

J=1

where x*(d) = (xi0, Xi1, ... xi11, log (1 +d))" and ¢ !is the inverse function of &,. The result computed in Table 4 shows that
policyholders choosing a higher deductible contract are more prone to more severe losses. This is theoretically unreasonable
and counter-intuitive because one should not expect that an alteration of the deductible level itself would directly change a pol-
icyholder’s driving behavior and risk characteristics. In other words, the deductible level and loss severity are linked by con-
founding variables and their relationship is not causal. A possible interpretation of the result is that dangerous drivers may
have a preference for in choosing high-deductible contracts, and at the same time they are more likely to incur severe losses.
This interpretation is related to deductible selection behavior, which was studied by, for example, Sydnor (2010). Though such
a behavioral insurance problem is beyond the scope of this paper, practicing actuaries should be especially vigilant to interpret
the true relationship between deductible level and loss severities very carefully under a regression framework.

7.3. Deductible Ratemaking

A natural application of censored and truncated regression models is deductible ratemaking. In this subsection, we illustrate
how policyholder information, deductible level, and policy limit affect several quantities (e.g., distribution and moment)
related to the loss severity random variable (of the /th loss) Y;;, claim amount of a loss Y} (d;) := (Yy — d;) . A(u; — d;), aggre-
gated claim amount §?(d;) := SV, ¥/(d;), and claim frequency N (d;) = )", 1{Y4>d;}, where N; is the number of losses/
accidents that occurred. Such quantities serve as a basis to calculate premiums for a policyholder under various deductible
choices. For illustrative purposes, three hypothetical risk profiles, namely, “Good,” “Average,” and “Bad,” are constructed in

TABLE 4
Expected Severity per Loss versus Deductible Choice under Partial Dependence Approach
(Deductible Included as Covariate)

Deductible
0 100 200 300 500 1000

Expected severity per loss 750.08 1126.63 1185.69 1220.86 1265.84 1328.05
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TABLE 5
Three Different Hypothetical Risk Profiles to Be Considered
Profile Xl Xi2 X3 Xi4 Xis Xi6 X7 xig Xi9 Xi10
Good 60 10 0 0 1 0 0 1 0 1
Average 45 2 1 0 0 1 0 0 1 0
Bad 25 5 1 1 0 0 0 0 0 0
TABLE 6

Relativities, Expected Loss, and Expected Payments (Deductible Excluded as Covariate)

Relativity with deductible of

Profile Policy limit 100 200 300 500 1000 Expected loss Expected payment
Good 6,000 0.828 0.681 0.569 0.414 0.226 583.63 574.14
Average 6,000 0.853 0.719 0.613 0.476 0.303 711.99 670.19
Bad 6,000 0.919 0.842 0.777 0.676 0.509 1487.21 1213.45
Good 15,000 0.867 0.747 0.645 0.487 0.27 745.79 744.99
Average 15,000 0.902 0.811 0.733 0.619 0.456 1036.10 1008.15
Bad 15,000 0.956 0.913 0.874 0.804 0.669 2410.96 2260.14

Table 5. For example, a policyholder with a “Bad” profile has many high-risk characteristics, such as young driver, diesel
vehicle, and poor car class (Class C).

To avoid excessive complications, in the following analysis we assume a classical frequency—severity framework for aggre-
gated loss, where loss frequency is independent of severity. From a pricing perspective, deductible relativity is a simple yet
widely adopted indicator that measures the proportion of covered loss retained by introducing a deductible d;. The deductible
relativity for aggregate loss is defined by REL;(d;) = E[S? (d;)|x;]/E[S? (0)|x;] and satisfies the following relationships:

oy ElS@)] _ EINE[(Yi —di) A — di)xi]  E[(Y; — di) A — di) ]
REL() = E[S(O)x] E[Ni|[]E[Y; A uilx;] B E[Y; nuilxi]

JV (&' 0) — d)f(yiv))dy + (w; — di)(1 — F(f«,(ui);t//j))]
= 5(@) — . (7.4)

As a result, under the classical frequency—severity framework, the deductible relativity for aggregate loss is equal to the
deductible relativity for each loss, which can be computed directly from the fitted model. We first consider the original model
where the deductible is excluded as a covariate. The relativities are computed in Table 6 across five possible choices of (non-
zero) deductible levels d; € {100,200, 300,500, 1000} and two different policy limits u; € {6000, 15,000}. Note that the
expected loss and payment are E[Y;|x;] and E[(Y; — d;) , A(u; — d;)|x;], and they are, as expected, greater for policyholders with
poorer risk profiles and larger policy limits. Given a fixed deductible level, the relativity is also greater with poorer risk pro-
files and larger policy limits. This is rather intuitive, because such policyholders file larger claims in general, so a fixed amount
of deductible should lead to a relatively less impact on the expected claims. This result is in contrast to the GLM regression
approach for deductible ratemaking proposed by Lee (2017), which results in a unified value of relativity (for each fixed
deductible level) across all policyholders with different risk profiles.

Another quantity of interest in deductible ratemaking is related to coverage modification. With deductibles, the expected
number of claims E[N]|x;] is smaller than the expected number of losses E[N;|x;| because any loss amounts below the
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TABLE 7
Claim Probability Given a Loss P(Y; > d;|x;) (Deductible Excluded as Covariate)

P(Y; > d;]x;) with deductible of

Profile Policy limit 100 200 300 500 1000
Good 6,000 0.989 0.944 0.857 0.664 0.330
Average 6,000 0.990 0.939 0.818 0.618 0.392
Bad 6,000 0.993 0.956 0.876 0.730 0.513
Good 15,000 0.991 0.959 0.885 0.692 0.341
Average 15,000 0.993 0.961 0.880 0.726 0.518
Bad 15,000 0.996 0.977 0.932 0.832 0.644
TABLE 8

Relativities, Expected Loss, and Expected Payments (Deductible Included as Covariate)

Relativity with deductible of

Profile Policy limit 100 200 300 500 1000 Expected loss Expected payment
Good 6,000 1.390 1.273 1.139 0.893 0.482 550.63 544.77
Average 6,000 1.640 1.620 1.557 1.425 1.146 637.33 604.16
Bad 6,000 1.730 1.743 1.707 1.603 1.338 869.29 789.75
Good 15,000 1.232 1.128 1.013 0.804 0.462 681.44 681.11
Average 15,000 1.868 1.952 1.966 1.937 1.794 905.57 883.43
Bad 15,000 1.831 1.910 1.927 1.902 1.759 1300.38 1253.25

deductible threshold are not reported as claims. These two quantities satisfy E[N;|x;] = E[N;|x;]P(Y; > di|x;), where
P(Y; >dilx;) = 1 — H(E,(di); xi, ¥), the probability that a loss results to a payment, is usually treated as an offset (same treat-
ment as policyholder exposure) under the claim frequency regression model. The probabilities across different risk profiles,
deductible levels, and policy limits are displayed in Table 7. It is expected that a poorer risk profile results in a larger claim
probability (given the same deductible level and policy limit), but, surprisingly it is not always true. For example, at a deduct-
ible of 300 and policy limit of 6000, the claim probability for an “Average” profile (0.818) is slightly lower than that of a
“Good” profile (0.857). In other words, our proposed flexible modeling framework does not assume a (first-order) stochastic
dominance relationship of loss distributions between two different risk profiles. In contrast, this is usually implicitly assumed
under the GLM framework.

As a comparison, we also investigate the implication of including the deductible level as a covariate from an insurance rate-
making perspective. Table 8 shows the deductible relativities under the new refitted model (deductible included as covariate).
As discussed in the previous section, the new refitted model reveals a positive correlation between deductible level and loss
severity. Hence, the expected loss and payment obtained from the new refitted model (Table 8), which are calculated assuming
a zero deductible, are generally smaller than those obtained from the original model (Table 6). More important, the key obser-
vation is that the relativities obtained by the new refitted model are sometimes greater than 1 and are not monotonically
decreasing as a function of deductible level. This is very unreasonable, because higher-deductible contracts pay strictly less
than lower-deductible contracts. If the pricing policy is set according to Table 8, most (if not all) policyholders will simply
switch to zero-deductible contracts, which are now underpriced compared to prices obtained by the original model (Table 6).
In this case, the deductible preference of policyholders is distorted, so the link between deductible levels and loss severities
implied by the new refitted model will no longer hold true.

Overall, including the deductible as an explanatory variable for ratemaking purposes is a tricky problem. Unlike other cova-
riates, deductible level can be easily altered or manipulated subject to policyholder selection behavior. Also, as mentioned in
the previous subsection, the positive correlation between deductible levels and loss severities is not a casual relationship and
can be affected by the ratemaking policies. Assuming that a change of deductible level itself does not directly change the driv-
er’s risk characteristics, we therefore believe that more reasonable and fair premiums for different policyholders may be
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produced if the deductible is excluded as a covariate, even though it is statistically more preferable (based on the AIC) to
include the deductible as a covariate.

8. CONCLUDING REMARKS

In this article, we extend the ECM algorithms presented by Fung, Badescu, and Lin (2019a; 2020) such that a non-linear
flexible regression model (called LRMoE) can be fitted to random censored and random truncated regression data. The key
feature of the extended ECM algorithm is that the complete data are constructed in a way where each observed data point itself
randomly “generates” some unobserved data points beyond the truncation interval. The complete data are a pure hypothetical
construction because they not resemble reality. Nonetheless, it serves as a very convenient tool that makes the ECM fitting
procedures efficiently implementable in the context of censored and truncated regression.

We then demonstrate the usefulness and importance of proposed fitting algorithm through two real data case studies.

The first one fits the proposed algorithm to insurance claim reporting delay data, which are interval censored and random
right truncated, with an application to IBNR prediction. Several goodness-of-fit tests reveal that our proposed algorithm fits
the reporting delay data very well. To predict the number of IBNR claims, we propose a new semiparametric approach such
that by assuming a Poisson claim arrival process, an adequate IBNR predictive distribution is automatically produced by the
proposed ECM fitting procedures. The proposed approach is convenient because there is no need to model the claim arrival
process explicitly in order to obtain the number of IBNR claims. An appealing extension to our proposed IBNR count predic-
tion approach is to relax the Poisson assumption. Our future research investigations will focus on the possibility of relaxing
such assumptions to more complex point arrival processes for which the unbiasedness property of the estimator in Equation
(6.1) may still hold. Moreover, it will be interesting to investigate whether this very simple and convenient nonparametric
method can be applied directly to raw data without the use of any special point process structure. Assuming success in the
above mentioned steps, this microlevel method may represent a viable alternative to the triangular methods currently used in
practice and can be grouped with claim amount estimation in order to produce very accurate IBNR reserves.

The second application considers an insurance loss dataset that is random left truncated due to deductibles and right cen-
sored due to policy limits, with an application to deductible ratemaking. The proposed model not only fits the loss data excel-
lently but also produces reasonable ratemaking related quantities (e.g., deductible relativity) across various risk profiles and
deductible levels. We further study the effects when the deductible level is included as a covariate (instead of only as a trunca-
tion point), which is a common actuarial practice. The resulting new refitted model, however, recommends unreasonably high
premiums charged to insurance contracts with higher deductible levels. This may be attributed to the possibility that deductible
selection preference differs among policyholders with different risk attitudes. This investigation raises big doubts on the cur-
rent actuarial approach of considering deductible as a covariate in premium and ratemaking calculation. Our future investiga-
tions will therefore focus on studying the implications of policyholders’ risk appetite and insurance pricing policies to the
deductible selection behavior. All of the above issues can only be addressed by a proper estimation procedure for censored and
truncated data such as the one proposed in this article.
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