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A B S T R A C T

Multilevel data are prevalent in many real-world applications. However, it remains an open research problem
to identify and justify a class of models that flexibly capture a wide range of multilevel data. Motivated by
the versatility of the mixture of experts (MoE) models in fitting regression data, in this article we extend
upon the MoE and study a class of mixed MoE (MMoE) models for multilevel data. Under some regularity
conditions, we prove that the MMoE is dense in the space of any continuous mixed effects models in the sense
of weak convergence. As a result, the MMoE has a potential to accurately resemble almost all characteristics
inherited in multilevel data, including the marginal distributions, dependence structures, regression links,
random intercepts and random slopes. In a particular case where the multilevel data is hierarchical, we further
show that a nested version of the MMoE universally approximates a broad range of dependence structures of
the random effects among different factor levels.
1. Introduction

1.1. Background and literature review

Mixture of experts (MoE) model, which is first introduced by Jacobs
et al. [1] (see also, e.g., Jordan and Jacobs [2],McLachlan and Peel [3]
for details), is a probabilistic version of neural network architecture
useful for flexible regression, classification and distribution modeling,
with applications to various areas including healthcare, business, social
and environmental science. Readers may refer to Yuksel et al. [4],
Masoudnia and Ebrahimpour [5],Nguyen and Chamroukhi [6] for the
literature reviews on both the theories and applications of the MoE.

The model structure of the MoE is as follows. Suppose that we have
𝑁 observations (𝒚,𝒙) = {(𝒚𝑖,𝒙𝑖)}𝑖=1,…,𝑁 , where 𝒚𝑖 = (𝑦𝑖1,… , 𝑦𝑖𝐾 ) is a
𝐾-dimensional response variable with output space  ⊆ R𝐾 and 𝒙𝑖 =
(𝑥𝑖1 … , 𝑥𝑖𝑃 ) are the 𝑃 covariates or features with input space  ⊆ R𝑃 .
Under the MoE framework, the conditional distribution function of 𝒚𝑖
given 𝒙𝑖 is

𝐹 (𝒚𝑖;𝜶,𝝍 , 𝑔|𝒙𝑖) =
𝑔
∑

𝑗=1
𝜋𝑗 (𝒙𝑖;𝜶)𝐹0(𝒚𝑖;𝝍𝑗 |𝒙𝑖), (1)

where 𝑔 is the number of latent classes. Here, 𝜋𝑗 (𝒙𝑖;𝜶) > 0 is called
the gating function with ∑𝑔

𝑗=1 𝜋𝑗 (𝒙𝑖;𝜶) = 1 and parameters 𝜶. The left
panel of Fig. 2 graphically illustrates the MoE model architecture. While
the most commonly used gating function is the logit-linear or softmax
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gating [1], expressed as 𝜋𝑗 (𝒙𝑖;𝜶) = exp{𝛼𝑗 ,0 + 𝜶𝑇
𝑗 𝒙𝑖}∕

∑𝑔
𝑗′=1 exp{𝛼𝑗′ ,0 +

𝜶𝑇
𝑗′𝒙𝑖} with 𝜶 = {𝛼𝑗0,𝜶𝑗 ∶ 𝑗 = 1,… , 𝑔}, various alternative gating

functions have also been explored in the literature. These include Gaus-
sian gating [7], student-t gating [8], probit gating [9], as well as more
advanced ‘‘sparse’’ gating functions designed to reduce the complexity
of MoE models, such as the Top-𝑘 gate [10] and the DSelect-𝑘 gate [11].
Also, 𝐹0(𝒚𝑖;𝝍𝑗 |𝒙𝑖) is a probability distribution called the expert function
with parameters 𝝍 ∶= {𝝍𝑗 ∶ 𝑗 = 1,… , 𝑔}. While a common choice
for the expert function is a Gaussian distribution [12], there has been
substantial developments on alternative choices of expert functions to
cater for various distributional characteristics such as heavy-tailedness
(Laplace by Nguyen and McLachlan [13], t-distribution by Chamroukhi
[14], skewed t by Chamroukhi [15] and transformed gamma by Fung
et al. [16]) and discrete distributions (Poisson by Grun and Leisch [17]
and Erlang Count by Fung et al. [18]).

Model flexibility is a crucial desirable property for the class of MoE,
and there are extensive research work on the approximation theory for
the MoE. Zeevi et al. [19] shows that the mean function of a univariate
(𝐾 = 1) logit-gated MoE can approximate any Sobolev class functions.
This result is extended by Jiang and Tanner [20], who considers
the transformed Sobolev class. Without considering the convergence
rate, Nguyen et al. [21] proves that the MoE mean function is dense
in the class of any continuous functions without the restriction of the
https://doi.org/10.1016/j.neucom.2025.129357
Received 3 October 2022; Received in revised form 8 September 2024; Accepted 8
vailable online 7 February 2025 
925-2312/© 2025 Elsevier B.V. All rights are reserved, including those for text and
 January 2025

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
https://orcid.org/0000-0003-0238-0636
mailto:tfung@gsu.edu
mailto:spark.tseung@mail.utoronto.ca
https://doi.org/10.1016/j.neucom.2025.129357
https://doi.org/10.1016/j.neucom.2025.129357
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2025.129357&domain=pdf


T.C. Fung and S.C. Tseung

o
d
a
a

b

i
f
i

d
(
[
o
p

f

i

t
M

a

w

s

t
e

a
t
e
[

v

u
p
i
t

Neurocomputing 626 (2025) 129357 
Sobolev class, and Nguyen et al. [22] shows similar denseness results
using a multivariate (𝐾 > 1) Gaussian-gated MoE.

Apart from studying the mean functions, some research works focus
n conditional density approximation with respect to the Hellinger
istance, Kullback–Leibler (KL) divergence, or Lebesgue space. Jiang
nd Tanner [23],Mendes and Jiang [24] generalize the results of Jiang
nd Tanner [20] by demonstrating the approximation capability of the

MoE to any exponential family non-linear regression models. Norets
et al. [25] shows that the logit-gated MoE with Gaussian expert function
can approximate any conditional densities. Similar results are proved
y Nguyen et al. [22],Norets and Pelenis [26], who consider the

Gaussian gating functions. Recently, Nguyen et al. [27] proves that the
class of MoE is dense in the Lebesgue space.

Another stream of distribution approximation theorems studies the
denseness in the sense of Prohorov metric of weak convergence. Extend-
ng upon Tijms [28],Breuer and Baum [29] who explore denseness of
inite mixture and phase-type distributions in the space of any probabil-
ty distributions, Fung et al. [30] formulates the concept of ‘‘denseness’’

in regression settings and shows that the class of MoE is dense in
the space of any regression distributions, subject to some regularity
conditions such as Lipschitz continuity and distribution tightness. In
contrast to other existing works on distribution approximations, the
results of Fung et al. [30] are very general as: (i) they hold under a
wide range of choices of expert functions (not restricted to Gaussian
or other symmetric expert functions); (ii) the target distribution is not
restricted to a special class (e.g., exponential family regression models).

Despite its model flexibility, the aforementioned framework implic-
itly assumes that input–output pairs are independent across observa-
tions. However, this assumption does not hold for multilevel data [31].
In addition to the inputs 𝒙𝑖, the dataset includes 𝐿 levels of factors, each
corresponding to a categorical variable used to group or cluster data
into different units or categories. Observations that share the same unit
within a factor level are likely to have unobserved common characteris-
tics, creating clear interdependencies among them. Overlooking these
dependencies can result in spurious, misleading, or biased clustering
and prediction outcomes [31].

Multilevel data are prevalent across many applications. The most
classic one is the school problem [32–34], where ‘‘school’’ and ‘‘class-
room within a school’’ act as two levels of factors affecting the per-
formance of a student (as an observation). Multilevel data structure
can also be caused by repeated measurements collected in longitu-
inal studies. This is common across various areas including health
e.g., Molenberghs et al. [35]) and business (e.g., Boucher and Denuit
36]). For instance, the medical outcome of a patient or the amount
f insurance claims by a policyholder are measured or collected re-
eatedly over time. A remarkable special case of multilevel data is the

hierarchical (or nested) data, where the 𝐿 factor levels can be ranked
rom high to low. The school problem is a clear example of hierarchical

data.
A popular model to account for the interdependencies among obser-

vations is the generalized linear mixed effects model (GLMM) [33,37],
which assumes that the output 𝒚𝑖 depends on the sum of fixed effects
(i.e., the impact of the inputs 𝒙𝑖) and random effects (i.e., the impact
of the factors 𝜽𝑖). To improve model flexibility or achieve specific
clustering purposes, the GLMM framework is extended to a non-linear
setting [38,39], formulated in a neural network structure [40] or
ntegrated to a finite-mixture modeling framework [41,42]. Despite

of the desirable properties of the MoE models leading to extensive
applications, the research works of mixed effects models in the context
of MoE framework are relatively scarce. Yau et al. [43] first proposes
a two-component logit-gated Gaussian-expert MoE with random effects
incorporated in both gating and expert functions. Ng and McLachlan
[44] then formulates a general 𝑔-component mixed effect MoE with
he use of logistic expert functions for binary classifications. Ng and
cLachlan [45] considers a similar framework with random effects

only incorporated to the expert functions. Nonetheless, all the afore-
mentioned mixed effect MoE models only deal with a single level of
random effect (i.e., 𝐿 = 1).
 c

2 
1.2. Contributions of this paper

Driven by the growing popularity of MoE models, the widespread
use of multilevel data, and the need to formally establish model flex-
ibility through approximation theories, this paper introduces several
innovative contributions to the theoretical modeling framework and
approximation theory in the field of mixture of experts (MoE) models
for multilevel data analysis.

First, we introduce the mixed MoE (MMoE) model for multilevel
regression data, addressing a gap in the literature on MoE models
for multilevel data. Our model incorporates multiple levels of random
effects, providing a more comprehensive approach to multilevel data
compared to the limited scope of existing works by Yau et al. [43],Ng
and McLachlan [44], and Ng and McLachlan [45], which only consider
 single level of random effects. Such a restriction is inadequate for

handling complex multilevel data structures, such as the hierarchical
structure seen in the school problem discussed in Section 1.1. Our
model also features a reduced structure aimed at preserving parsimony
and interpretability without sacrificing flexibility or approximation
capability. Specifically, our model is simplified in two key ways: (i)

e assume that random effects in the gating functions are shared
across mixture latent classes and are independent, unlike the approach
in Ng and McLachlan [44], which allows for varying and dependent
random effects across latent classes; and (ii) we exclude the effects
of observed inputs and random effects from the expert functions, as
specified by Ng and McLachlan [44]. These reductions significantly
decrease the number of model parameters and, as demonstrated in our
ubsequent work [46], are essential for feasible and effective model

estimation, particularly with large datasets.
Second, we define the concept of denseness for mixed effects models

in terms of weak convergence and demonstrate that the proposed
MMoE class is dense in the space of continuous mixed effects models
under certain mild regularity conditions. While universal approxima-
tion theories for standard input–output models, including MoE and
neural network models, have been extensively explored in the statistics
and machine learning literature (see Section 1.1), this paper represents
the first attempt to formulate and prove approximation theories for
multilevel models. Existing studies on mixed effects models within
the MoE framework (e.g., Ng and McLachlan [44]) do not address
he theoretical approximation capability of their models. This paper
xtends the setting in Fung et al. [30], which formulated denseness

for regression distributions, to accommodate multilevel data. Our novel
denseness theory not only illustrates the flexibility of the proposed
model in capturing various characteristics of multilevel data, such as
joint distributions, regression patterns, random intercepts, and random
slopes, but also suggests that our model is parsimonious with a reduced
structure. Compared to Fung et al. [30], this paper also relaxes several
ssumptions required for the denseness theorem, such as Lipschitz con-
inuity and distribution tightness. Consequently, the proof techniques
mployed in this paper differ significantly from those in Fung et al.
30].

Third, in the context of hierarchical data, we prove that a nested
ersion of the MMoE can effectively approximate a wide range of

dependence structures between upper and lower-level factors, even
when the MMoE is simplified to include only independent random
effects across levels. This result is particularly relevant for applications
where dependencies exist between factors, such as the impact of a
classroom on a student’s performance being influenced by the school
the student attends.

The focus of this paper is to formulate the MMoE model for mul-
tilevel data and theoretically justify its versatility. In a subsequent
paper [46], we will address the estimation and application problems
nder the proposed MMoE. A stochastic variational ECM algorithm is
roposed to efficiently estimate the model parameters. Also, the MMoE
s applied to an automobile insurance dataset, demonstrating its ability
o reasonably predict policyholders’ future claims based on their past
laim histories.
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Table 1
Hypothetical school problem dataset with 𝑁 = 12 students, including scores, gender, and income.
Student School ID Classroom ID Score (year 1) Score (year 2) Gender (Male) Income
𝑖 𝑐1(𝑖) 𝑐2(𝑖) 𝑦𝑖1 𝑦𝑖2 𝑥𝑖1 𝑥𝑖2
1 1 1 79.48 80.18 0 10.82
2 1 1 66.16 60.96 1 11.29
3 1 2 77.28 67.48 0 12.21
4 2 3 77.30 53.53 1 10.31
5 2 3 85.91 80.29 0 11.16
6 2 4 75.65 73.99 1 10.13
7 2 5 85.02 74.35 0 11.41
8 2 5 72.84 82.08 1 11.92
9 3 6 78.21 83.41 0 11.00
10 3 7 57.64 65.50 0 11.61
11 4 8 64.47 66.21 1 10.60
12 4 8 73.38 52.63 1 11.70
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1.3. Structure of the paper

This paper is structured as follows. Section 2 mathematically defines
a multilevel data with an example. Section 3 defines a generalized class
of mixed effect models for multilevel data, which includes nearly all
mixed effect models in the literature. In Section 4, we introduce the
MMoE as a candidate class of mixed effect models to flexibly capture
multilevel data. Interpretation and visualization of the proposed model
are also provided. Section 5 defines ‘‘denseness’’ in the context of mixed
effect models and proves that the MMoE is a universal approximator
of most mixed effect models subject to some mild conditions. In Sec-
tion 6, we discuss the model formulation and denseness property in
 special case where the dataset is hierarchical with nested random
ffects. The intuitive explanations on the proof idea of the theoretical
esults are demonstrated in Section 7, accompanied by a numerical
llustration in Section 8. The findings are summarized in Section 9,

accompanying some limitations of the denseness theory in justifying
the approximation capability of the proposed MMoE.

2. Multilevel data structure

This section mathematically defines a multilevel data and provides a
hypothetical example to illustrate how multilevel dataset is structured.

The observed multilevel data structure can be mathematically rep-
resented as  ∶= {(𝒚𝑖,𝒙𝑖, 𝒄(𝑖))}𝑖=1,…,𝑁 , where 𝒚𝑖, 𝒙𝑖, and 𝑁 are defined
in Section 1.1, and 𝒄(⋅) is a function that maps each observation 𝑖 to
the corresponding units across all 𝐿 levels of factors. Specifically, we
denote 𝒄(𝑖) ∶= (𝑐1(𝑖),… , 𝑐𝐿(𝑖)), where 𝑐𝑙(⋅) ∶ {1,… , 𝑁} ↦ {1,… , 𝑆𝑙} is
a known function that maps observation 𝑖 to its corresponding level-𝑙
unit, with 𝑆𝑙 being the number of possible level-𝑙 units for 𝑙 = 1,… , 𝐿.
In other words, 𝑐𝑙(𝑖) identifies the level-𝑙 unit or category to which
observation 𝑖 belongs. The box in the top left of Fig. 1 provides a visual
epresentation of the multilevel data structure.

Example 1. We construct a small hypothetical multilevel dataset in
he context of the ‘‘school problem’’, consisting of 𝑁 = 12 students, as

shown in Table 1. The output of this dataset, 𝒚𝑖 = (𝑦𝑖1, 𝑦𝑖2), is bivariate
(𝐾 = 2), with 𝑦𝑖1 and 𝑦𝑖2 representing the average exam scores of
student 𝑖 in year 1 and year 2, respectively. The dataset also includes
𝑃 = 2 covariates 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2) as inputs, where 𝑥𝑖1 is a binary indicator
for gender (1 for male) and 𝑥𝑖2 is the log of household income. There
are 𝐿 = 2 levels of factors: ‘‘school’’ and ‘‘classroom’’. The second and
third columns of the table, 𝑐1(𝑖) and 𝑐2(𝑖), represent the identifiers for
the school and classroom to which each student belongs. For instance,
observation 𝑖 = 7 corresponds to a student in classroom 5 (a level-2
unit of the factor ‘‘classroom’’), which is in school 2 (a level-1 unit of
the factor ‘‘school’’). This dataset includes a total of 𝑆1 = 4 schools and
𝑆2 = 8 classrooms.
3 
Remark 1. One might wonder why not treat these factors as cate-
gorical variables, include them in the input 𝒙𝑖 using one-hot encoding,
and then fit a standard input–output model (e.g., regression or neural
network), rather than organizing the dataset in a multilevel format
and using mixed effects models. Although this approach is theoreti-
cally possible, it faces practical challenges. Typically, the number of
possible level-𝑙 units, 𝑆𝑙, grows with the sample size at a rate of
𝑂(𝑁). When 𝑁 is large, as in the case of the automobile insurance
dataset discussed by Tseung et al. [46], the dimensionality of 𝒙𝑖 would
become computationally prohibitive, and the model would be highly
susceptible to overfitting if the factors were treated as one-hot encoded
categorical variables. Moreover, this approach ignores the interdepen-
dencies between outputs across different observations, leading to the
problems discussed in Section 1.1. Additionally, standard input–output

odels have limitations in prediction when new units within a factor
merge (e.g., a new school or classroom not represented in the training
ata). Mixed effects models, which we will discuss in the next section,
void this issue and can effectively predict future observations with
reviously unseen factor units.

3. Mixed effect models for multilevel data

Datasets with a multilevel structure are typically modeled using a
mixed effects framework. In this approach, the known inputs 𝒙𝑖 are con-
sidered the ‘‘fixed effects’’ or ‘‘hard parameter sharing’’. Additionally,
it is assumed that there are 𝐿 unobserved variables 𝜽𝑖 = (𝜽𝑖1,… ,𝜽𝑖𝐿)
that jointly influence the output 𝒚𝑖, where 𝜽𝑖𝑙 represents the effect of the
evel-𝑙 unit on observation 𝑖. We define 𝜽(𝑠)𝑙 ∶= 𝜽𝑖𝑙 = 𝜽𝑖′𝑙 if 𝑐𝑙(𝑖) = 𝑐𝑙(𝑖′) =
for 𝑠 = 1,… , 𝑆𝑙 and 𝑙 = 1,… , 𝐿. This means that if two observations
and 𝑖′ belong to the same level-𝑙 unit, they share the same level-𝑙
nobserved variable 𝜽𝑖𝑙 = 𝜽𝑖′𝑙, making the observations statistically
ependent. The unobserved variables 𝜽𝑖 are treated as random and are
pecified by a probability distribution, thus 𝜽𝑖 is regarded as a ‘‘random
ffect’’ or ‘‘soft parameter sharing’’.

Example 2. For the hypothetical ‘‘school problem’’ data in Table 1,
the variable 𝜽(𝑠)1 represents the unobserved characteristics shared by
students from the same school, so 𝜽𝑖1 = 𝜽𝑖′1 if students 𝑖 and 𝑖′ attend
school 𝑠. Similarly, 𝜽(𝑠)2 represents the shared characteristics of students
n the same classroom, meaning 𝜽𝑖2 = 𝜽𝑖′2 if they belong to classroom 𝑠.
or instance, 𝜽(2)1 = 𝜽4,1 = 𝜽6,1 because students 4 and 6 attend the same
chool (#2), but 𝜽4,2 ≠ 𝜽6,2 since they are in different classrooms. The
ariables 𝜽(𝑠)1 and 𝜽(𝑠)2 can be interpreted as unobserved factors, such as
he quality of teachers and the learning environment, that influence the
xam performance of all students within the same school or classroom.

In this section, we will discuss some technical details regarding a
generalized framework of the mixed effects models. Let (𝜴, ,P) be the
robability space and suppose that 𝜽(𝑠)𝑙 is a  -measurable map from
𝜴, ) to (𝜣𝑙 ,𝑙) for every 𝑙 = 1,… , 𝐿 and 𝑠 = 1,… , 𝑆𝑙, where 𝜣𝑙 is the

space of 𝜽(𝑠) or 𝜽 . 𝜽(𝑠) is a random variable if (𝜣 , ) = (R,) where
𝑙 𝑖𝑙 𝑙 𝑙 𝑙
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Fig. 1. Multilevel data structure and mixed effects modeling framework. The box in the top left illustrates the level-𝑙 unit to which observation 𝑖 belongs across all factor levels
𝑙 = 1,… , 𝐿, corresponding to the mapping function 𝒄(𝑖). In this example, observation 𝑖 is associated with the second level-1 unit, third level-2 unit, and first level-𝐿 unit. These
factor unit classifications govern the random effects 𝜽𝑖 for observation 𝑖. For all observations 𝑖 = 1,… , 𝑁 , the random effects 𝜽𝑖, drawn from a distribution 𝐺, along with the inputs
𝒙𝑖, are used in the mixed effects model 𝐻 as defined in Eq. (2). This model generates the joint probability distribution of outputs 𝒚, denoted by 𝐻̃(𝒚|𝒙) in Eq. (4).
 is a Borel set, but we do not want to impose such a restriction. It
is because the random effects 𝜽(𝑠)𝑙 are unobserved and we are unsure if
they can be quantified as a real number. In the context of the school
problem, summarizing the aforementioned unobserved characteristics
of schools or classrooms into a single number is not feasible. The space
𝜣𝑙 also varies among different mixed effects models in literature. For
example, 𝜣𝑙 = R for most GLMMs [37], 𝜣𝑙 = R2𝑔−1 for the GLMM MoE
model by Ng and McLachlan [44], and 𝜣𝑙 = R𝑔 𝐾 for the mixture of
random effects models by Ng and McLachlan [45], where 𝑔 and 𝐾 are
those defined in Section 1.

Under the generalized mixed effects model, we assume that 𝒚𝑖
depends only on 𝒙𝑖 and 𝜽𝑖. Conditioned on 𝒙𝑖 and 𝜽𝑖, we further assume
that {𝒚𝑖}𝑖=1,…,𝑁 are mutually independent. Specifically, we denote

𝒚𝑖|𝒙𝑖,𝜽𝑖
ind∼ 𝐻(⋅|𝒙𝑖,𝜽𝑖), 𝑖 = 1,… , 𝑁 , (2)

where 𝐻 ∶= 𝐻(⋅|𝒙𝑖,𝜽𝑖) can be any probability distributions on 𝒚𝑖 given
𝒙𝑖 and 𝜽𝑖. With these assumptions, the joint distribution of 𝒚 given 𝒙 is
given by

𝐻̃(𝒚|𝒙) = ∫𝛺

[ 𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)

]

𝑑P. (3)

Suppose that each measurable space (𝜣𝑙 ,𝑙) is also equipped by
a probability measure 𝐺𝑙, corresponding to the ‘‘distribution’’ of 𝜽(𝑠)𝑙 .
Denote further (𝜣̃, ̃, 𝐺) as the product of probability spaces
{(𝜣𝑙 ,𝑙 , 𝐺𝑙)}𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙

. Then, the joint distribution in Eq. (3) can
be re-written as

𝐻̃(𝒚|𝒙) = ∫𝜣̃

[ 𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)

]

𝑑 𝐺(𝜽̃), (4)

where 𝜽̃ = {𝜽(𝑠)𝑙 }𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙
. Fig. 1 graphically summarizes the mod-

eling framework. The model framework above encompasses a broad
range of models designed for multilevel or hierarchical data, including
generalized linear mixed models (GLMM) and nonlinear mixed effects
models (see, e.g., Goldstein [33],Davidian and Gallant [38]). Since
there are no constraints on the functional forms of 𝐻 and 𝐺, this
structure is highly flexible. It naturally incorporates any potential joint
distributions of 𝒚𝑖|𝒙𝑖,𝜽𝑖, regression links between 𝒙𝑖 and 𝒚𝑖 (nonlinear
effects and interactions among covariates), the influence of random
effects 𝜽𝑖 on 𝒚𝑖 (random intercepts), and the interactions between 𝜽𝑖
and 𝒙𝑖 (random slopes).

The following assumption has been implicitly made on 𝜽(𝑠):
𝑙

4 
Assumption 1. {𝜽(𝑠)𝑙 }𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙
are mutually independent.

The above assumption implies that (𝜣̃, ̃, 𝐺) is a product probability
space, so 𝐺(𝜽̃) can be written as

𝐺(𝜽̃) =
𝐿
∏

𝑙=1

𝑆𝑙
∏

𝑠=1
𝐺𝑙(𝜽

(𝑠)
𝑙 ) or 𝑑 𝐺(𝜽̃) =

𝐿
∏

𝑙=1

𝑆𝑙
∏

𝑠=1
𝐺𝑙(𝑑𝜽

(𝑠)
𝑙 ). (5)

Note that the prior independence assumption across factors within
a level (i.e., 𝑠 = 1,… , 𝑆𝑙) is very natural for most data structures espe-
cially for those involving repeated measurements (see, e.g., Goldstein
[33],Boucher and Denuit [36],Ng et al. [41],Yau et al. [43], and Ng
and McLachlan [44]). The prior independence across levels (i.e., 𝑙 =
1,… , 𝐿) is also often assumed for datasets with multilevel structure
(see, e.g., Goldstein [33],McGilchrist [37]).

4. Mixture of experts model with random effect

Despite of the generality of the above mixed effect model (Eq. (3)),
it is essential to appropriately specify the functional forms of 𝐻 and 𝐺
to model a multilevel dataset. However, this is challenging, especially
when the space 𝜣̃ of the latent random effects 𝜽̃ defined in Section 3
is not observed from the dataset. Recall that a multilevel dataset only
provides information on how each observation is classified into one of
the factors for each level 𝑙, but not on what the factors are or how to
quantify these factors.

In this section, we introduce the mixture of experts (MoE) model
with random effects, called the mixed MoE (MMoE), as a candidate
regression model to cater for multilevel data structure. The justification
of the proposed model, which analyzes the ability of the MMoE to
accurately approximate the generalized form of the mixed effect model
(Eq. (3)), will be presented in the next section.

4.1. Model set-up

Under the MMoE, we assume that each observation 𝑖 is equipped by
𝐿 levels of random effects, denoted as an 𝐿-vector 𝒘𝑖 = (𝑤𝑖1,… , 𝑤𝑖𝐿).
Similar to the mapping of the unobserved factors introduced in Sec-
tion 3, we also have 𝑤𝑖𝑙 = 𝑤𝑖′𝑙 ∶= 𝑤(𝑠)

𝑙 if 𝑐𝑙(𝑖) = 𝑐𝑙(𝑖′) = 𝑠. Hence,
𝑤(𝑠)

𝑙 represents the level-𝑙 random effect associated with all observations
that correspond to the 𝑠th level-𝑙 factor. The only difference between
𝜽𝑖 and 𝒘𝑖 is that we restrict 𝑤𝑖𝑙 ∈ R into a Euclidean space instead of
a general space 𝜣̃, which is unknown and hard to specify. Similar to
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Fig. 2. Model architectures for the MoE (left panel) and MMoE (right panel) models. In the MoE model, inputs 𝒙𝑖 are processed by both the gating and expert functions. The
gating function determines the classification probabilities 𝜋𝑗 ∶= 𝜋𝑗 (𝒙𝑖;𝜶) (𝑗 = 1,… , 𝑔) for each of the 𝑔 expert functions. In the proposed MMoE model, the random effects 𝒘𝑖,
drawn from a distribution 𝛷, together with the inputs 𝒙𝑖, are fed exclusively into the gating functions.
𝜽̃, we also define 𝒘 = {𝑤(𝑠)
𝑙 }𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙

as the random effects across
all levels and factors.

The distribution function of 𝒚𝑖 conditional on 𝒙𝑖 and 𝒘𝑖 is given by

𝐹 (𝒚𝑖;𝜶, 𝜷,𝝍 , 𝑔|𝒙𝑖,𝒘𝑖) =
𝑔
∑

𝑗=1
𝜋𝑗 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷)𝐹0(𝒚𝑖;𝝍𝑗 ), (6)

where 𝑔 is the number of latent classes, 𝜋𝑗 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) is the mixing
weight for the 𝑗th class (called the gating function) parameterized by
𝜶 and 𝜷, and 𝐹0(𝒚𝑖;𝝍𝑗 ) is the multivariate distribution function of 𝒚𝑖 for
the 𝑗th class (called the expert function) parameterized by 𝝍𝑗 . Here, we
denote 𝜶 = {𝛼𝑗0,𝜶𝑗 ∶ 𝑗 = 1,… , 𝑔} ∈  as the regression parameters of
the gating function, 𝜷 = {𝜷𝑗 ∶ 𝑗 = 1,… , 𝑔} ∈  as the coefficients of the
random effects, and 𝝍 = {𝝍𝑗 ∶ 𝑗 = 1,… , 𝑔} ∈ 𝜳 as the parameters of
the expert functions, where ,  and 𝜳 are defined respectively as the
parameter spaces for 𝜶, 𝜷 and 𝝍 . Moreover, we specify 𝜋𝑗 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷)
as a logit linear gating function, given by

𝜋𝑗 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) =
exp{𝛼𝑗0 + 𝜶𝑇

𝑗 𝒙𝑖 + 𝜷
𝑇
𝑗 𝒘𝑖}

∑𝑔
𝑗′=1 exp{𝛼𝑗′0 + 𝜶

𝑇
𝑗′𝒙𝑖 + 𝜷

𝑇
𝑗′𝒘𝑖}

, 𝑗 = 1, 2,… , 𝑔 . (7)

Apart from that, the random effects {𝑤(𝑠)
𝑙 }𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙

are as-
sumed to be independent across 𝑙 and 𝑠, and 𝑤(𝑠)

𝑙 follows a fixed
pre-specified distribution 𝛷𝑙 with no extra parameters in it. Based on
the above model specification, the joint distribution of 𝒚 given 𝒙 is

𝐹 (𝒚;𝒙) ∶= 𝐹 (𝒚;𝜶, 𝜷,𝜳 , 𝑔|𝒙) = ∫

𝑁
∏

𝑖=1
𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖)𝑑 𝛷(𝒘), (8)

where 𝛷 is the joint distribution of 𝒘, given by

𝛷(𝒘) =
𝐿
∏

𝑙=1

𝑆𝑙
∏

𝑠=1
𝛷𝑙(𝑤

(𝑠)
𝑙 ) or 𝑑 𝛷(𝒘) =

𝐿
∏

𝑙=1

𝑆𝑙
∏

𝑠=1
𝛷𝑙(𝑑 𝑤(𝑠)

𝑙 ). (9)

The model can be interpreted as follows with a visual illustration
displayed in the right panel of Fig. 2. Each observation is assigned into
one of the 𝑔 homogeneous subgroups with classification probabilities
𝜋𝑗 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷). The classification probabilities vary among observa-
tions as they depend on both inputs 𝒙𝑖 and unobserved factors 𝒘𝑖.
Conditioned on the subgroup observation 𝑖 belongs to, the outputs
𝒚𝑖 are governed by a homogeneous probability distribution 𝐹0(𝒚𝑖;𝝍𝑗 )
independent of 𝒙𝑖 and 𝒘𝑖.

Example 3. The hypothetical data in Table 1 was generated using the
proposed MMoE model with two subgroups (𝑔 = 2). The parameters
are set as follows: 𝛼1,0 = −5.5, 𝜶1 = (0, 0.5), 𝜷1 = (0.5, 0.5), 𝛼2,0 = 0,
𝜶2 = (0, 0), and 𝜷2 = (0, 0). Both 𝛷1 and 𝛷2 are assumed to follow a
standard normal distribution. The distributions of the outputs for the
5 
subgroups are modeled as 𝐹0(𝒚𝑖;𝝍1) ∼ MVN(𝝁 = (80, 80),𝜮 = diag(5, 5))
and 𝐹0(𝒚𝑖;𝝍2) ∼ MVN(𝝁 = (65, 65),𝜮 = diag(10, 10)), where ‘‘MVN’’
denotes a multivariate normal distribution, 𝝁 is the mean vector, 𝜮
is the covariance matrix, and ‘‘diag’’ indicates a diagonal matrix. The
model can be interpreted as follows:

1. The two subgroups likely represent ‘‘good students’’ (subgroup
1) and ‘‘bad students’’ (subgroup 2), as indicated by the higher
average score in subgroup 1 (80) compared to subgroup 2 (65).
If it is known that student 𝑖 is ‘‘good’’ (resp. ‘‘bad’’), then
𝐹0(𝒚𝑖;𝝍1) (resp. 𝐹0(𝒚𝑖;𝝍2)) represents the probability distribution
of student 𝑖’s exam scores.

2. The parameters 𝜶 indicate how gender and income influence
the likelihood of a student being classified as ‘‘good’’ or ‘‘bad’’.
The values 𝜶1 = (0, 0.5) suggest that gender does not influence
the probability of a student being classified as ‘‘good’’ or ‘‘bad’’.
However, students from wealthier families are more likely to be
categorized as ‘‘good students’’ (subgroup 1).

3. Students attending the same school (level-1 random effect 𝑤𝑖1)
or classroom (level-2 random effect 𝑤𝑖2) share the same random
effects, making them more likely to be classified into the same
category. For instance, both students 11 and 12, who belong to
the same school and classroom, are classified as ‘‘bad students’’
and have lower exam scores. The magnitudes of 𝜷 govern the
likelihood that students from the same school or classroom will
be categorized within the same group.

4.2. Comparisons to the literature

Our proposed MMoE model extends the standard MoE model (e.g.,
Jacobs et al. [1]) described in Eq. (1) to account for multilevel data
by incorporating random effects 𝒘𝑖 into the gating function. If the
coefficients of the random effects in Eq. (6) are set to 𝜷 = 𝟎, the
proposed MMoE model simplifies back to the standard MoE model.

Our proposed MMoE model builds on the limited literature con-
cerning mixed effects MoE models, such as Yau et al. [43], Ng and
McLachlan [44], and Ng and McLachlan [45], which only account for
a single level of random effects (i.e., 𝐿 = 1). By incorporating multiple
levels of random effects, our model addresses the complex multilevel
data structures seen in contexts like the school problem. Additionally,
our approach diverges from existing mixed effects MoE models in two
key ways that simplify the model structure. First, we eliminate the
regression relationship in the expert functions, meaning they do not
depend on the inputs 𝒙 (see also Fig. 2), following the reduced MoE
𝑖
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(RMoE) model concept introduced by Fung et al. [30]. Second, our
odel assumes that the level-𝑙 random effect 𝑤𝑖𝑙 is consistent across all

𝑔 gating functions (i.e., 𝑤𝑖𝑙 does not vary with 𝑗), contrasting with Ng
and McLachlan [44], which allows for varying and independent level-𝑙
andom effects across gating functions.

These model simplifications offer several advantages. First, they
llow for a broader selection of probability distributions as the ex-
ert function 𝐹0, including more complex non-exponential distributions
e.g., phase-type distributions) where regression modeling may be im-
ractical or computationally intensive. Second, the simplified structure
nhances interpretability, as our model can cluster observations into
omogeneous subgroups and explain the variability of each level-𝑙
actor through a single source (i.e., 𝑤𝑖𝑙 ∈ R) rather than the multiple
ources considered by Ng and McLachlan [44]. Third, the reduction

in model parameters significantly decreases the computational burden
during parameter estimation. Specifically, our follow-up work [46],
which employs a variational ECM algorithm for parameter estimation,
identifies that the primary computational challenge lies in simulating
and computing the posterior samples of the random effects 𝒘𝑖 given
the observed data. By reducing the dimension of random effects from
R2𝑔−1 [44] or R𝑔 𝐾 [45] to R for each level, our estimation algorithm
ecomes significantly more computationally efficient and scalable to

large datasets.
The remaining issue is: how does such a reduced structure affect its

odel flexibility? To justify the proposed model, we will demonstrate
he denseness property in the following section, meaning that the

MMoE model structure of Eq. (8) can approximate any generalized form
f mixed effect models expressed by Eq. (3). This will provide evidences

suggesting that our proposed model is parsimonious. In other words,
he MMoE has the simplest structure without harming its representation
apability.

5. Denseness theory

This section studies the approximation capability of the class of
MMoE models. Our goal is to show that the proposed MMoE is versatile
enough to approximate any mixed effects models under mild regularity
conditions, even if the MMoE is constructed in a reduced form: (i) the
gating function is restricted to be a logit linear gating; (ii) regression
ink is removed in the expert functions; (iii) the random effects are re-
tricted to follow some fixed pre-determined distributions. Before that,
e need to technically formulate a class of mixed effects models and
efine ‘‘denseness’’ for mixed effects models. These definitions are the
xtensions of Fung et al. [30], who defines ‘‘regression distributions’’
nd ‘‘denseness’’ in the regression settings without considering random

effects.
Following the notations defined in Section 3, for 𝑙 = 1,… , 𝐿, let 𝑙

denote a collection of some spaces of level-𝑙 random effects 𝜣𝑙, and 𝑙
denote a collection of probability measures 𝐺𝑙 on 𝜽(𝑠)𝑙 . We also denote
 ∶= 1 ×⋯ × 𝐿 as a collection of product spaces 𝜣 ∶= 𝜣1 ×⋯ ×𝜣𝐿,
 as a collection of some distribution functions 𝐻 on (𝒚𝑖|𝒙𝑖,𝜽𝑖), and
 ∶= 1 ×⋯ × 𝐿 as a collection of product probability measures 𝐺 on
𝜽̃. Also, let  be a set containing all possible mappings 𝒄(⋅), and define a
vector 𝑺 = (𝑆1,… , 𝑆𝐿) with  = N𝐿. ‘‘A class of mixed effects models’’
and ‘‘mixed effects distributions’’ are first defined as follows:

Definition 1. A class of mixed effects models 𝐿( ;  ,,) ∶=
{𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺) ∶ 𝜣𝑙 ∈ 𝑙 , 𝐻 ∈ , 𝐺𝑙 ∈ 𝑙 , 𝑙 = 1,… , 𝐿} is a collec-
tion of mixed effects distributions 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺), where each mixed
effects distribution 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺) ∶= {𝐻̃(𝒚|𝒙) ∶= 𝐻̃(𝒚|𝒙;𝜣, 𝐻 , 𝐺) =
∫𝜣̃

[

∏𝑁
𝑖=1 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)

]

𝑑 𝐺(𝜽̃) ∶ 𝒙𝑖 ∈  , 𝑖 ∈ {1,… , 𝑁}, 𝑁 ∈ N,𝑺 ∈  , 𝒄 ∈
} is itself a collection of joint probability distributions.

In simpler terms, a ‘‘mixed effects distribution’’ refers to the col-
lection of all possible joint probability distributions, as described by
q. (4), that can be generated by a mixed effects model outlined in
6 
Section 3, based on a specified 𝐻 and a specified 𝐺. It is impor-
ant to note that a single mixed effects model can produce various
ossible joint probability distributions since Eq. (4) depends on the
ovariates (𝒙1,… ,𝒙𝑁 ), sample size 𝑁 , and the mapping 𝒄(⋅). ‘‘A class

of mixed effects models’’ refers to the set of all possible ‘‘mixed effects
istributions’’ that can be generated by varying 𝜣, 𝐻 , and 𝐺.

In the spirit of Fung et al. [30], denseness is defined in the sense
f weak convergence of probability distributions. Therefore, before
efining denseness, we need to define weak convergence of mixed

effects distributions. Let {𝜣(𝑛)}𝑛=1,2,… denote a sequence of (product)
spaces of random effects, {𝐻 (𝑛)}𝑛=1,2,… denote a sequence of distribu-
tion functions on 𝒚𝑖 given 𝒙𝑖 and 𝜽𝑖, and {𝐺(𝑛)}𝑛=1,2,… denote a sequence
of product probability measures on 𝜽̃. The definition is as follows:

Definition 2. Consider a sequence of mixed effects distributions
𝑯̃ (𝑛) ∶= 𝐻̃(⋅; ;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛)) and a target mixed effects distribution
𝑯̃ ∶= 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺). We say that {𝑯̃ (𝑛)}𝑛=1,2,… weakly converges to
𝑯̃ if and only if, for every 𝒙𝑖 ∈  (for all 𝑖 ∈ {1,… , 𝑁}), 𝑁 ∈ N, 𝑺 ∈ ,
and 𝒄 ∈ , we have 𝐻̃(⋅|𝒙;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛))


←←←←←←←←→ 𝐻̃(⋅|𝒙;𝜣, 𝐻 , 𝐺) as 𝑛 → ∞,

where

←←←←←←←←→ denotes weak convergence or convergence in distribution. If

the convergence in distribution is uniform across any compact input
space ̄ ⊆  , meaning that 𝐻̃(𝒚|𝒙;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛)) → 𝐻̃(𝒚|𝒙;𝜣, 𝐻 , 𝐺)
uniformly on (𝒚,𝒙) with 𝒙𝑖 ∈ ̄ (for all 𝑖 ∈ {1,… , 𝑁}), then we say
that {𝑯̃ (𝑛)}𝑛=1,2,… weakly converges to 𝑯̃ compactly.

In essence, the definition above requires that all distributions pro-
duced by the mixed effects models converge in order to assert that the
‘‘mixed effects distributions’’ themselves converge. We are now able to
extend the formalism of Fung et al. [30] and define denseness in the
ettings of mixed effects models. Similar as above, denote  ′, ′ and
′, respectively, as the collections of 𝜣, 𝐻 and 𝐺. The definition is as
ollows:

Definition 3. Consider two classes of mixed effects models 𝐿 ∶=
𝐿( ;  ,,) and ′

𝐿 ∶= 𝐿( ;  ′,′,′). 𝐿 is dense in ′
𝐿 if

and only if for all (𝜣, 𝐻 , 𝐺) ∈  ′ × ′ × ′, there exists a sequence
of {(𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛))}𝑛=1,2,… with (𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛)) ∈  × ×  such that
the mixed effects distributions {𝑯̃ (𝑛) ∶= 𝐻̃(⋅; ;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛))}𝑛=1,2,…
weakly converge to 𝑯̃ ∶= 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺). If {𝑯̃ (𝑛)}𝑛=1,2,… weakly
converge to 𝑯̃ compactly, then 𝐿 is said to be compactly dense in
′

𝐿.

It is evident that if 𝐿 includes ′
𝐿, then 𝐿 is dense in ′

𝐿.
However, if 𝐿 is a smaller class than ′

𝐿, the definition of denseness
implies that any mixed effects model in ′

𝐿 can be represented or
losely approximated by models within the more extensive class 𝐿.
ut more simply, 𝐿 can be seen as a model class that is, in practice,
t least as rich or flexible as ′

𝐿 even if it is a theoretically smaller set.
With all the necessary definitions established, we now introduce

 class of generalized mixed effects models denoted by gen
𝐿 () ∶=

𝐿( ;  gen,gen,gen). Here,  gen ∶=  gen
1 × ⋯ ×  gen

𝐿 ,  gen
𝑙 (𝑙 =

,… , 𝐿), gen, and gen represents the collections of all possible 𝜣, 𝜣𝑙,
, and 𝐺 that satisfy the following two mild technical assumptions:

Assumption 2. Each space 𝜣𝑙 ∈  gen
𝑙 is equipped by a complete

eparable metric 𝑑𝜣𝑙
.

Assumption 3. For every probability distribution functions 𝐻 ∈ gen,
(𝒚𝑖|𝒙𝑖,𝜽𝑖) is continuous with respect to (𝒚𝑖,𝒙𝑖,𝜽𝑖).
Assumption 2 is a mathematical framework designed to ensure

the rigor of the theoretical results and has no practical implications
or constraints. Although Assumption 3 requires 𝐻 to be a continu-
ous distribution, it can be readily adapted to accommodate discrete
distributions. For further details, see Remark 2.

Next, we consider the class of MMoE models with a predeter-
mined expert function 𝐹 and joint distribution of random effects 𝛷
0
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defined in Section 4. We denote this class as MMoE
𝐿 ( ;𝐹0, 𝛷) ∶=

𝐿( ;  MMoE,MMoE,MMoE). Here,  MMoE ∶=  MMoE
1 ×⋯× MMoE

𝐿 rep-
resents the set of all possible spaces for MMoE random effects 𝒘, where
 MMoE
𝑙 contains the possible spaces for 𝑤(𝑠)

𝑙 for level 𝑙 ∈ {1,… , 𝐿}. The
set MMoE contains all conditional distributions given by Eq. (6), and

MMoE encompasses all possible distributions of the random effects 𝒘.
Given that the proposed MMoE model assumes a scalar random effect
or each level, with R as its domain, it follows that  MMoE

𝑙 = {R}
and  MMoE = {R𝐿} each contain only a single element. Additionally,
ince the distribution of 𝒘 is fixed as 𝛷 according to Eq. (9), we have
MMoE = {𝛷}, also containing just one element. Moreover, we can
express MMoE = {𝐹 (𝒚𝑖;𝜶, 𝜷,𝝍 , 𝑔|𝒙𝑖,𝒘𝑖) ∶ 𝜶 ∈ , 𝜷 ∈ ,𝝍 ∈ 𝜳 , 𝑔 ∈
N}, where 𝐹 (𝒚𝑖;𝜶, 𝜷,𝝍 , 𝑔|𝒙𝑖,𝒘𝑖) takes the form given in Eq. (6). The
ollowing two conditions on the choices of 𝐹0 and 𝛷 are crucial for
stablishing the denseness property of the MMoE model class:

Assumption 4. 𝐹0 satisfies the denseness condition outlined by
Proposition 3.1 of Fung et al. [30], meaning that for every 𝒒 ∈
R𝐾 , there exists a sequence of parameters {𝝍 (𝑛)(𝒒)}𝑛=1,2,… such that

0(⋅;𝝍 (𝑛)(𝒒))

←←←←←←←←→ 𝒒 as 𝑛 ←←→ ∞.

Assumption 5. 𝛷𝑙 is a continuous distribution function for every
𝑙 = 1,… , 𝐿.

The above two assumptions are not necessarily mild. As discussed
in Fung et al. [30], some common distributions, such as Pareto and
xponential distributions, do not satisfy the denseness condition under

Assumption 4. Moreover, Assumption 5 does not hold whenever we
hoose any discrete distributions for 𝛷𝑙. Nonetheless, note that the
xpert function 𝐹0 and random effect distribution 𝛷𝑙 are both pre-
etermined, so we have the control to choose suitable functions that
ulfill Assumptions 4 and 5 before modeling a multilevel dataset via the

MMoE. For example, one may choose Gamma, Weibull, log-normal, or
inverse-Burr distributions as the expert function 𝐹0 [30], and select a
ormal distribution as the random effect distribution 𝛷𝑙.

We now introduce the main result that validates the representa-
tional power of the proposed MMoE model class. The detailed technical
proof is provided in Appendix A, while Section 7 offers intuitive expla-
ations of the key steps in the proof to aid in understanding the core
oncepts.

Theorem 1. Suppose that Assumptions 1 to 5 are satisfied. Then,
MMoE

𝐿 ( ;𝐹0, 𝛷) is compactly dense in gen
𝐿 ().

Remark 2. It is also important to investigate into the above theorem
for discrete distributions (see, e.g., Jiang and Tanner [23],Fung et al.
[30]) instead of continuous distributions. As discussed by Norets et al.
25], any discrete distribution can be represented by a continuous

latent distribution. Then, it is obvious that Theorem 1 still holds for
iscrete distributions if the denseness condition in Assumption 4 is

changed from 𝒒 ∈ R𝐾 to 𝒒 ∈ N𝐾 .
Theorem 1 demonstrates that the proposed MMoE model, described

n Eq. (8), can closely approximate any mixed effects models in the
form of Eq. (4), which has not been addressed by the existing liter-
ature on multilevel MoE models, including Ng and McLachlan [44,
45]. This denseness property offers a theoretical foundation for the
MMoE model’s flexibility in capturing a wide range of model fea-
ures, including joint distributions (such as multimodal distributions
nd dependencies among outputs), regression patterns (like non-linear
inks and interactions among covariates), random intercepts (reflecting
nique effects of unobserved factors on the outputs), and random slopes
accounting for interactions between covariates and random effects).
s discussed in Section 4, our proposed model features a reduced
tructure. Therefore, the result in Theorem 1, which provides approx-
mations within a narrower class of models, is remarkably stronger
7 
compared to proving the result based on a broader class of unreduced
MMoE models, such as those proposed by Ng and McLachlan [44,45].
Additionally, the denseness property suggests the parsimony of the
roposed model.

6. Nested mixed effects models for hierarchical data

A nested mixed effects model is a specific case of the model dis-
ussed in Section 3, involving multiple random effects. In nested mod-

els, the 𝐿 levels of factors in a multilevel dataset must be arranged
hierarchically, with the first level representing the highest level and the
𝐿th level representing the lowest. In this structure, observations that
share the same unit at a lower level must also share the same unit at
the higher level. If the factors across levels are not nested, the resulting
model is referred to as a ‘‘crossed’’ mixed effects model.

Before defining a nested model, it is helpful to introduce an alter-
native notation for identifying observations. Denote 𝒊 = (𝑖1, 𝑖2,… , 𝑖𝐿+1)
s an identifier of an observation, and 𝒊𝑙 = (𝑖1, 𝑖2,… , 𝑖𝑙) as an identifier

up to level 𝑙. Here, 𝑖1 indicates the label of the level-1 unit to which
he observation belongs. For 𝑙 = 2, 3,… , 𝐿, 𝑖𝑙 serves as the label for
he level-𝑙 unit, given that the labels for the first (𝑙 − 1) levels are 𝒊𝑙−1.
inally, 𝑖𝐿+1 represents the label of the observation itself, given that the
units corresponding to the 𝐿 levels of factors are labeled by 𝒊𝐿.
A classic example of nested factors is the school problem (see,

.g., Aitkin and Longford [32]), where two levels of factors influence
a student’s performance: school and classroom. Here, since students in
he same classroom must belong to the same school, we have 𝐿 = 2,
ith ‘‘school’’ as the first level and ‘‘classroom’’ as the second. For
xample, in the school problem with 𝐿 = 2, 𝒊 = (2, 3, 5) refers to the
ifth student in the third classroom of the second school.

Furthermore, denote 𝑁0 as the number of possible level-1 factors, so
that the support of 𝑖1 is given by 1 ∶= {1,… , 𝑁0}. For 𝑙 = 2, 3,… , 𝐿,
define 𝑁𝒊𝑙−1 as the number of possible level-𝑙 factors where the first
(𝑙 − 1) factor levels are labeled as 𝒊𝑙−1, such that the support of 𝒊𝑙
is 𝑙 ∶= {𝒊𝑙 ∶ 𝒊𝑙−1 ∈ 𝑙−1, 𝑖𝑙 = 1,… , 𝑁𝒊𝑙−1}. Similarly, 𝑁𝒊𝐿 is the
umber of observations having 𝒊𝐿 as the label of the 𝐿 factors. Then,

the support of 𝒊 is  ∶= {𝒊 ∶ 𝒊𝐿 ∈ 𝐿, 𝑖𝐿+1 = 1,… , 𝑁𝒊𝐿}. Also, the total
number of observations is given by 𝑁 =

∑𝑁0
𝑖1=1

∑𝑁𝒊1
𝑖2=1

⋯
∑𝑁𝒊𝐿−1

𝑖𝐿=1
𝑁𝒊𝐿 .

Hence, the nested multilevel dataset is given by (𝒚,𝒙) ∶= {(𝒚𝒊,𝒙𝒊)}𝒊∈ ,
where 𝒙𝒊 ∈  and 𝒚𝒊 ∈  are respectively the input and output of an
observation labeled as 𝒊 ∈ .

Example 4. The school problem serves as an example of nested factors.
As seen in Table 1, students in the same classroom must also belong to
the same school. Therefore, we have 𝐿 = 2, where ‘‘school’’ and ‘‘class-
room’’ are the first and second levels of factors, respectively. In this
dataset, there are 𝑁0 = 4 schools, and the number of classrooms in each
school is (𝑁1, 𝑁2, 𝑁3, 𝑁4) = (3, 5, 2, 2). Observations are relabeled from
𝑖 to 𝒊 to reflect this structure. For instance, student 𝑖 = 7 is relabeled as
𝒊 = (2, 3, 1), indicating the first student in the third classroom (classroom
#5) of the second school (school #2). The support set for this data
is  = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 3, 1), (2, 3, 2),
(3, 1, 1), (3, 2, 1), (4, 1, 1), (4, 1, 2)}. To summarize the above descriptions,
Fig. 3 provides a visual representation of the hierarchical data structure

ithin the context of the school problem.
In this section, we will define the generalized class of nested mixed

effects models, formulate the proposed MMoE model with nested ran-
dom effects, and construct the denseness theory for the class of nested
MMoE.

6.1. Generalized nested mixed effect model

Similar to the MMoE defined in Section 3, under the nested MMoE,
the response 𝒚𝒊 depends on its covariates 𝒙𝒊 and 𝐿 levels of latent
andom effects denoted as 𝜽𝒊1 ,… ,𝜽𝒊𝐿 . The dependence assumption

among the latent factors is stated as follows:
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Fig. 3. Hierarchical data structure for a hypothetical ‘‘school problem’’ dataset, illustrating two nested levels of factors: school and classroom. Note that ‘‘Stud’’. means ‘‘Student’’.
The units shaded in darker color (red) indicate the specific school and classroom to which a student belongs. In this example, the highlighted units correspond to student #7, who
is the first student in the third classroom (classroom #5) within the second school (school #2). The dashed arrows depict the hierarchical organization of the data, indicating that
students from the same classroom must also belong to the same school.
←←
Assumption 6. Conditioned on 𝜽𝒊1 ,… ,𝜽𝒊𝐿 , the 𝑁 observations are in-
dependent. The set of parents of 𝜽𝒊𝑙 is given by pa(𝜽𝒊𝑙 ) = (𝜽𝒊1 ,… ,𝜽𝒊(𝑙−1) )
for 𝑙 = 1,… , 𝐿, meaning that 𝜽𝒊𝑙 may depend only on (𝜽𝒊1 ,… ,𝜽𝒊(𝑙−1) ).

In other words, the lower level factor only depends directly on
its corresponding upper level factors. Under a nested hierarchical
data structure, we are able to relax the independence assumption in
Assumption 1 by allowing the dependence of lower level random effects
on their parents (upper level effects). For 𝑙 = 1,… , 𝐿, we also denote
𝐺𝑙 as the distribution of the level-𝑙 factor conditioned on pa(𝜽𝒊𝑙 ).

The joint distribution of 𝒚 given 𝒙 is given by

𝐻̃(𝒚|𝒙) = ∫𝜣̃

[

∏

𝒊∈
𝐻(𝒚𝒊;𝒙𝒊|𝜽𝒊)

]

𝑑 𝐺(𝜽̃) (10)

with

𝐺(𝜽̃) =
𝑁0
∏

𝑖1=1
𝐺1(𝜽𝒊1 )

𝑁𝒊1
∏

𝑖2=1
𝐺2(𝜽𝒊2 |𝜽𝒊1 )⋯

𝑁𝒊𝐿−1
∏

𝑖𝐿=1
𝐺𝐿(𝜽𝒊𝐿 |𝜽𝒊1 ,… ,𝜽𝒊𝐿−1 ), (11)

where 𝜽̃ = {𝜽𝒊𝑙 ∶ 𝒊𝑙 ∈ 𝑙 , 𝑙 = 1,… , 𝐿}.

6.2. Nested mixed mixture of experts model

Analogous to the MMoE introduced in Section 4, we construct a
nested MMoE for hierarchical data. Denote 𝒘𝒊 = (𝑤𝒊1 ,… , 𝑤𝒊𝐿 ) ∈
R𝐿 as the 𝐿 levels of random effects of observation 𝒊. Also, define
𝒘 = {𝑤𝒊𝑙}𝒊𝑙∈𝑙 ,𝑙=1,…,𝐿 as all the random effects aggregated across all
observations. With a slight change of notations from Eqs. (6) and (7),
the distribution function of 𝒚𝒊 conditional on 𝒙𝒊 and 𝒘𝒊 is then

𝐹 (𝒚𝒊;𝜶, 𝜷,𝝍 , 𝑔|𝒙𝒊,𝒘𝒊) =
𝑔
∑

𝑗=1
𝜋𝑗 (𝒙𝒊,𝒘𝒊;𝜶, 𝜷)𝐹0(𝒚𝒊;𝝍𝑗 ), (12)

where the gating function given by

𝜋𝑗 (𝒙𝒊,𝒘𝒊;𝜶, 𝜷) =
exp{𝛼𝑗0 + 𝜶𝑇

𝑗 𝒙𝒊 + 𝜷
𝑇
𝑗 𝒘𝒊}

∑𝑔
𝑗′=1 exp{𝛼𝑗′0 + 𝜶

𝑇
𝑗′𝒙𝒊 + 𝜷

𝑇
𝑗′𝒘𝒊}

, 𝑗 = 1, 2,… , 𝑔 . (13)

Similar to Section 4, the random effects {𝑤𝒊𝑙}𝑙=1,…,𝐿;𝑖𝑙=1,…,𝑁𝒊𝑙−1
are

constructed to be independent across 𝑙 and 𝑖𝑙 with 𝑤𝒊𝑙 ∼ 𝛷𝑙. This
construction is simplified from Assumption 6 of the generalized nested
mixed models where the random effects may depend on their parents.
Adapting from Eqs. (8) and (9), the joint distribution of 𝒚 given 𝒙 is

𝐹 (𝒚;𝒙) ∶= 𝐹 (𝒚;𝜶, 𝜷,𝜳 , 𝑔|𝒙) = ∫
∏

𝑖∈
𝐹 (𝒚𝒊;𝜶, 𝜷,𝜳 |𝒙𝒊,𝒘𝒊)𝑑 𝛷(𝒘), (14)

where 𝛷 is the joint distribution of 𝒘 given by

𝛷(𝒘) =
𝐿
∏

𝑙=1

∏

𝒊𝑙∈𝑙

𝛷𝑙(𝑤𝒊𝑙 ) or 𝑑 𝛷(𝒘) =
𝐿
∏

𝑙=1

∏

𝒊𝑙∈𝑙

𝛷𝑙(𝑑 𝑤𝒊𝑙 ). (15)

From Eq. (15) above, the random effects are still assumed to be
independent under the nested MMoE. However, we will show in the
8 
following subsection that such a specification suffices to approximate
the dependence of lower level random effects on their parents under a
hierarchical data structure.

6.3. Denseness theory for nested MMoE

Analogous to Section 5, it is desirable to develop an approxima-
tion theory for the nested MMoE in the space of the generalized
nested mixed effect models. Denote 𝑵 = (𝑁0, {𝑁𝒊1}𝒊1∈1 , {𝑁𝒊2}𝒊2∈2 ,… ,
{𝑁𝒊𝐿}𝒊𝐿∈𝐿 ) as the number of factors belonging to each parent factors
for each level with 𝑁0 ∈ N and 𝑁𝒊𝑙 ∈ N for 𝑙 = 1,… , 𝐿, and
 contains all combinations of possible 𝑵 . Other notations, unless
specified otherwise, are consistent to those defined by Section 5. The
equivalent definitions analogous to Section 5 for hierarchical data
structure are listed as follows:

Definition 4. A class of nested mixed effects models 𝐿( ;  ,,) ∶=
{𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺) ∶ 𝜣𝑙 ∈ 𝑙 , 𝐻 ∈ , 𝐺𝑙 ∈ 𝑙 , 𝑙 = 1,… , 𝐿} is a
collection of nested mixed effects distributions 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺), where
each nested mixed effects distribution 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺) ∶= {𝐻̃(𝒚|𝒙) ∶=
𝐻̃(𝒚|𝒙;𝜣, 𝐻 , 𝐺) = ∫𝜣̃

[
∏

𝒊∈ 𝐻(𝒚𝑖|𝒙𝒊,𝜽𝒊)
]

𝑑 𝐺(𝜽̃) ∶ 𝒙𝒊 ∈  , 𝒊 ∈ ,𝑵 ∈  }
is itself a collection of joint probability distributions.

Definition 5. Consider a sequence of nested mixed effects distribu-
tions 𝑯̃ (𝑛) ∶= 𝐻̃(⋅; ;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛)) and a target nested mixed effects
distribution 𝑯̃ ∶= 𝐻̃(⋅; ;𝜣, 𝐻 , 𝐺). We say that {𝑯̃ (𝑛)}𝑛=1,2,… weakly
converge to 𝑯̃ if and only if for every given 𝒙𝒊 ∈  (for all 𝒊 ∈ ), 𝑵 ∈
 , we have 𝐻̃(⋅|𝒙;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛))


←←←←←←←←→ 𝐻̃(⋅|𝒙;𝜣, 𝐻 , 𝐺) as 𝑛 → ∞, where


←←←←←←→ represents a weak convergence or convergence in distribution. If the
distributional convergence is uniform across any compact input space
̄ ⊆  , i.e. 𝐻̃(𝒚|𝒙;𝜣(𝑛), 𝐻 (𝑛), 𝐺(𝑛)) → 𝐻̃(𝒚|𝒙;𝜣, 𝐻 , 𝐺) uniformly on
(𝒚,𝒙) with 𝒙𝒊 ∈ ̄ (for all 𝒊 ∈ ), then we say that {𝑯̃ (𝑛)}𝑛=1,2,… weakly
converge to 𝑯̃ compactly.

The denseness definition for hierarchical data structure (nested
mixed effects models) is exactly the same as Definition 3. Define
∗gen

𝐿 () as the class of generalized nested mixed effects models
expressed in Eq. (10), subject to Assumptions 2 and 3. Also denote
∗MMoE

𝐿 ( ;𝐹0, 𝛷) as the class of nested MMoE given by Eq. (14). We
have the following denseness theorem:

Theorem 2. Suppose that Assumptions 2 to 6 hold. Then, ∗MMoE
𝐿 ( ;

𝐹0, 𝛷) is compactly dense in ∗gen
𝐿 ().

The proof is leveraged to Appendix B. Theorem 2 suggests that the
nested MMoE has a potential to approximate any generalized nested
mixed effect models arbitrarily accurately, even if the random effects
are restricted to be independent under the nested MMoE while the
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random effects under the generalized nested mixed effect models can
be dependent (Assumption 6). In contrast, under Theorem 1, the MMoE
can only approximate mixed effect models with independent random
effects (Assumption 1). Therefore, given that the data structure is
hierarchical, Theorem 2 is a stronger theoretical result than Theorem 1.

7. Proof idea of Theorem 1

In this section, we provide a simplified illustration and intuitive ex-
planation of the key steps involved in proving Theorem 1. The detailed
echnical proofs can be found in Appendix A. To demonstrate that the

proposed MMoE class is dense in the space of generalized mixed effects
models, we need to identify an MoE distribution 𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖)
in Eq. (6) such that the MMoE joint distribution 𝐹 (𝒚;𝒙) described
in Eq. (8) closely approximates the joint distribution 𝐻̃(𝒚|𝒙) given
by Eq. (4), i.e.,

∫

[ 𝑁
∏

𝑖=1
𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖)

]

𝑑 𝛷(𝒘) ≈ ∫𝜣̃

[ 𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)

]

𝑑 𝐺(𝜽̃) (16)

The main challenge in finding a suitable 𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖) that
satisfies Eq. (16) is that the two sides of the formula integrate two dif-
erent spaces. Specifically, the left side of Eq. (16) involves a Lebesgue
ntegration on Euclidean space, while the right side integrates with
espect to an arbitrary abstract measure. One potential approach to
ddress this issue is to apply an integral transformation on the right
ide. To ensure that Eq. (16) holds, we construct a mapping 𝑀(⋅) ∶
̃ → ̃ and identify an appropriate MoE distribution such that
(𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖) ≈ 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖) for all 𝑖 = 1,… , 𝑁 whenever 𝑀(𝜽̃) =
with 𝜽̃ ∈ 𝜣̃ and 𝒘 ∈ ̃ , where ̃ represents the space of 𝒘. The

echnical details correspond to Appendix A.2 (Step 2). For simplicity,
e consider only a single level of factors (𝐿 = 1), where the random

effect in the generalized mixed effects models is 𝜽𝑖 = 𝜽𝑖1, and the MMoE
random effect is 𝒘𝑖 = 𝑤𝑖1. Here, 𝜣1 and 1 represent the spaces for 𝜽𝑖1
nd 𝑤𝑖1 respectively. This result can be extended to cases with multiple

levels of factors, with rigorous derivations provided in Appendices A.1
and A.2 (Steps 1 and 2).

To construct a mapping 𝑀(⋅) that effectively links the two spaces
1 and 1, we propose discretizing both 𝜣1 and 1 into 𝐷1 sub-

paces. Let {𝜣1,𝑑1}𝑑1=1,…,𝐷1
denote the disjoint partitions on 𝜣1, and

1,𝑑1}𝑑1=1,…,𝐷1
denote the disjoint partitions on 1. These parti-

ions are selected so that the probabilities match for each partition,
.e., 𝐺1(𝜣1,𝑑1 ) = 𝛷1(1,𝑑1 ) for 𝑑1 = 1, 2,… , 𝐷1. For each subspace 𝜣1,𝑑1 ,

we select a representative point 𝜽∗𝑑1 ∈ 𝜣1,𝑑1 such that 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 )
serves as a reasonable approximation of 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖) for any 𝜽𝑖 ∈ 𝜣1,𝑑1 .
Rigorous technical details regarding the space partitioning procedures
are presented in Appendices A.1 and A.2 (Steps 1 and 2). We then
approximate 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖) using an MoE model with a representation
analogous to 𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖) in Eq. (6), denoted as

𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) =
𝐷1
∑

𝑑1=1
𝜋𝑑1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷)𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ), (17)

where 𝜋𝑑1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) is given by Eq. (7). Note that Eq. (17) corre-
sponds exactly to 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) in Eq. (22) of the appendix, using
implified notations. The only distinction between 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) and
(𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖) lies in the expert functions they employ: 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,
𝑖) uses 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ), which depends on 𝒙𝑖, while 𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖)
ses 𝐹0(𝒚𝑖;𝝍𝑗 ), which is independent of 𝒙𝑖. Nevertheless, following the
pproach outlined in Fung et al. [30], it is shown in Appendices A.3

and A.4 (Steps 3 and 4) that 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ) can itself be approximated
y an MoE distribution, with 𝐹0(𝒚𝑖;𝝍𝑗 ) serving as the expert function.

This approximation process is not illustrated here to avoid unnecessary
complexity, as it is unrelated to random effects and has already been
demonstrated by Fung et al. [30]. Therefore, if 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖) can be

ell approximated by 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖), it follows that it can also be
ffectively approximated by 𝐹 (𝒚 ;𝜶, 𝜷,𝜳 |𝒙 ,𝒘 ).
𝑖 𝑖 𝑖
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To perform approximations, we first observe that the softmax gating
function 𝜋𝑑1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) in Eq. (17) is shown by Lemma 3.2 of Fung
et al. [30] to be ‘‘fully flexible’’, allowing an observation 𝑖 to be
ssigned to any of the 𝐷1 mixture components based on the random
ffects 𝒘𝑖. Specifically, by expressing 𝜷 = 𝑢𝜷, where 𝑢 > 0 is a
uning parameter that controls how ‘‘hard’’ the softmax gating function
ssigns observations to the mixture components, one can carefully

select parameters 𝜷 such that for any 𝒘𝑖 ∈ 1,𝑑1 and sufficiently large
, we have 𝜋𝑑1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) ≈ 1 and 𝜋𝑑′1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) ≈ 0 for any 𝑑′1 ≠ 𝑑1,
ffectively assigning the observation to mixture component 𝑑1 when
𝑖 ∈ 1,𝑑1 . This process interprets Lemma 2 in the appendix. Hence,

we have 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) ≈ 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ) from Eq. (17). If the partition
of spaces 𝜣1 and 1 are sufficiently fine by selecting a large enough

1, then each subspace 𝜣1,𝑑1 will become sufficiently small, ensuring
hat 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ) ≈ 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖). Summarizing, we have

𝐹 (𝒚𝑖;𝜶, 𝜷,𝜳 |𝒙𝑖,𝒘𝑖) ≈ 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) ≈ 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ) ≈ 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖),

(18)

and thus Eq. (16) holds, leading to the desired result.

8. Numerical illustration

We provide a numerical example to illustrate the denseness property
f the proposed MMoE model, using the approximation procedures dis-
ussed in Section 7. For simplicity, the output considered in this exam-

ple is one-dimensional, meaning 𝒚𝑖 ∶= 𝑦𝑖 ∈ R with 𝐾 = 1. Additionally,
we exclude the covariates 𝒙𝑖 from this illustration, i.e., 𝑃 = 1, so that 𝜷,
as defined in Section 7, can be expressed as 𝜷 = {(𝛽𝑑1 ,0, 𝛽𝑑1 ,1)}𝑑1=1,2,…,𝐷1

.
Here, 𝛽𝑑1 ,0 ∶= 𝑢𝛽𝑑1 ,0 and 𝛽𝑑1 ,1 ∶= 𝑢𝛽𝑑1 ,1 correspond, respectively, to
the intercept and random effect coefficients of the 𝑑1-th latent class

ithin 𝜋𝑑1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) in Eq. (17), which can be notationally simplified
as 𝜋𝑑1 (𝒙𝑖,𝒘𝑖;𝜶, 𝜷) ∶= exp{𝛽𝑑1 ,0 + 𝛽𝑑1 ,1𝑤1}∕

∑𝐷1
𝑑′1=1

exp{𝛽𝑑′1 ,0 + 𝛽𝑑′1 ,1𝑤1} in
his example. Considering only 𝐿 = 1, we choose 𝜣1 = [−2, 2] ⊆ R as the
pace for generalized random effect 𝜽𝑖 ∶= 𝜃𝑖1. We construct 𝜃𝑖1 to follow
 uniform distribution over the range −2 to 2, so that the distribution

function of 𝜃𝑖1 is (2 + 𝜃𝑖1)∕4. The conditional distribution of 𝑦𝑖 given 𝜃𝑖1
is assumed to be normal with a mean of 𝜃𝑖1 and a standard deviation
of 1, such that the density of 𝑦𝑖 given 𝜃𝑖1 is 1

√

2𝜋
𝑒−

1
2 (𝑦𝑖−𝜃𝑖1)

2
.

In this context, many of the notations introduced in Section 7
can be greatly simplified. Specifically, we express 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) as

∗∗(𝑢)(𝑦𝑖|𝑤𝑖1), 𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖1) as 𝐻(𝑦𝑖|𝜃𝑖1), and 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝑑1 ) as 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ),
here 𝜃∗1,𝑑1 is a scalar representative point in 𝜣1,𝑑1 as defined in the
revious section. To improve clarity, we restate the approximation
elations in Eq. (18) using these simplified notations as follows:

𝐹 ∗∗(𝑢)(𝑦𝑖|𝑤𝑖1)
𝑢→∞
≈ 𝐻(𝑦𝑖|𝜃∗1,𝑑1 )

𝐷1→∞
≈ 𝐻(𝑦𝑖|𝜃𝑖1). (19)

As a concrete example, Table 2 illustrates the procedure described in
Section 7 with 𝐷1 = 5 partitions for 𝜣1 and 1. We select the midpoint
∗
1,𝑑1

as the representative value for the subspace 𝜣1,𝑑1 . The values
f {(𝛽𝑑1 ,0, 𝛽𝑑1 ,1)}𝑑1=1,2,…,𝐷1

are carefully chosen following Lemma 2 in
the appendix (or see Section 7 for brief description). This example is
isually represented in the second row of Fig. 4. Specifically, in Fig. 4,

each vertical slice of the blue 2D images plots 𝐹 ∗∗(𝑢)(𝑦𝑖|𝑤𝑖1) against 𝑦𝑖
(vertical axis) and 𝑤𝑖1 (horizontal axis) for 𝑢 = 1, 10, 100 and 1000 from
left to right and for 𝐷1 = 2, 5, 10 and 100 from top to bottom, while
the green 2D images in the rightmost panel plot 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ) against 𝑦𝑖
(vertical axis) and 𝜃𝑖1 for 𝐷1 = 2, 5, 10 and 100 from top to bottom,
where 𝜃∗1,𝑑1 is the representative point of the subspace 𝜣1,𝑑1 to which
𝑖1 belongs. For example, under Table 2, if 𝜃𝑖1 = −0.6, then 𝜃𝑖1 ∈ 𝜣1,2

and thus 𝜃∗1,𝑑1 = 𝜃∗1,2 = −0.8. Two key observations can be made:

• As 𝑢 increases, i.e., moving from the left panels to the right
panels, 𝐹 ∗∗(𝑢)(𝑦 |𝑤 ) visually converges towards 𝐻(𝑦 |𝜃∗ ) as
𝑖 𝑖1 𝑖 1,𝑑1
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Fig. 4. Illustration of using 𝐹 ∗∗(𝑢)(𝑦𝑖|𝑤𝑖1) (blue) to approximate 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ) (green) for different numbers of partitions of 𝜣1 and 1. Each vertical slice corresponds to the conditional
density of 𝐹 ∗∗(𝑢)(𝑦𝑖|𝑤𝑖1) or 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ). From left to right, the control parameter 𝑢 ranges from 1, 10, 100 to 1000 in the blue plots, and eventually 𝐹 ∗∗(𝑢)(𝑦𝑖|𝑤𝑖1) = 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ) for
all 𝑤1 ∈ 1,𝑑1 as 𝑢 → ∞. From top to bottom, the number of partition 𝐷1 ranges from 2, 5, 10 to 100. When the partition becomes infinitely fine and 𝑢 → ∞, each 𝐻(𝑦𝑖|𝜃1,𝑑1 ) is
approximated arbitrarily well by some 𝐹 ∗∗(∞)(𝑦𝑖|𝑤𝑖1), e.g., 𝐻(𝑦𝑖|𝜃1,𝑑1 = 1) = 𝐹 ∗∗(∞)(𝑦𝑖|𝑤1 = 0.67).
Table 2
Example of approximation with five partitions of 𝜣1 and 1.
𝑑1 1 2 3 4 5

𝜣1,𝑑1 [−2.00,−1.20] (−1.20,−0.40] (−0.40, 0.40] (0.40, 1.20] (1.20, 2.00]
1,𝑑1 (−∞,−0.84] (−0.84,−0.25] (−0.25, 0.25] (0.25, 0.84] (0.84,+∞)
𝜃∗1,𝑑1 −1.60 −0.80 0.00 0.80 1.60
𝛽𝑑1 ,0 0.00 0.23 0.29 0.23 0.00
𝛽𝑑1 ,1 0.00 0.25 0.50 0.75 1.00

shown in the rightmost panel. This provides empirical support for
the convergence 𝐹 ∗∗(𝑢)(𝑦𝑖|𝑤𝑖1) → 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ) as 𝑢 → ∞.

• As 𝐷1 increases, making the partitions finer (moving from top
to bottom in the rightmost panel), 𝐻(𝑦𝑖|𝜃∗1,𝑑1 ) transitions from
resembling a step function to becoming a smooth function of
𝜃𝑖1. The bottom-right panel closely resembles 𝐻(𝑦𝑖|𝜃𝑖1), which is
a continuous function of (𝑦𝑖, 𝜃𝑖1). This supports the convergence
𝐻(𝑦𝑖|𝜃∗1,𝑑1 ) → 𝐻(𝑦𝑖|𝜃𝑖1) as 𝐷1 → ∞.

In summary, this numerical example supports the approximation re-
lationship given by Eq. (19), thereby demonstrating the denseness
property of the proposed MMoE model as outlined in Section 7.

9. Discussions

In this paper, we introduce a class of the mixed mixture of experts
models (MMoE) for multilevel regression data. We prove that the
MMoE is dense in the space of generalized mixed effects models, which
10 
is a rich class containing almost all models in the literature having
independent random effects, in the sense of weak convergence. We
further study a special case where the data is hierarchical in structure.
In this case, the proposed nested MMoE is shown to be dense in the
space of generalized nested mixed effects models where the random
effects can possibly be dependent. The two denseness theorems justify
the versatility of the MMoE in catering for a broad range of multilevel
data characteristics, including the marginal distribution, dependence,
regression link, random intercept and random slope.

This paper aims to prove the most general results imposing minimal
assumptions. The only practical restriction is that the expert function
𝐹0(𝒚𝑖;𝝍𝑗 ) in Eq. (6) needs to approximate any degenerate distributions
(Assumption 4). This assumption is much weaker than those applied
to the existing approximation theorems (see, e.g., Nguyen et al. [22],
Norets and Pelenis [26]), which require that the expert density function
is a scalable symmetric function (Equation (3.1) of Norets and Pelenis
[26]), and that the target density function does not change abruptly
w.r.t. 𝒚𝑖 and 𝒙𝑖 (Equation (3.2) of Norets and Pelenis [26]). On the
other hand, there are several limitations of the denseness theorems for-
mulated in this paper. Firstly, weak convergence does not guarantee the
approximation capability in terms of moments (e.g., the mean function
studied by Nguyen et al. [21]) or some distance metrics (e.g., the KL
divergence studied by Jiang and Tanner [20],Nguyen et al. [22],Norets
et al. [25]). To establish such denseness theorems, one needs to further
assume that the moments of the MMoE expert functions and the target
distributions are finite, and that the conditions indicated by Equations
(3.1) and (3.2) of Norets and Pelenis [26] are fulfilled. Secondly, as
described in Section 3.4 of Fung et al. [30], the denseness theorems
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do not provide a convergence rate, so there is no control on the
mixture components 𝑔 to approximate any generalized mixed effects
distributions at a desired level of accuracy. To establish the rate results,
one needs to impose further assumptions on the target distribution
𝐻̃(𝒚|𝒙) in Eq. (4) and the MMoE distribution 𝐹 (𝒚;𝒙) in Eq. (8). We
eave these technical establishments as a future research direction.
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Appendix A. Proof of Theorem 1

We begin by introducing the following functions, with detailed
notation to be clarified later in the proof.

̃ (𝒚|𝒙) = ∫𝜣̃

[ 𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)

]

𝑑 𝐺(𝜽̃), (20)

̃ ∗(𝒚|𝒙) =
∑

𝒅∈̃

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅(𝑐(𝑖)) )𝐺(𝜣̃𝒅), (21)

𝐹 ∗∗(𝑢)(𝒚|𝒙) = ∫

𝑁
∏

𝑖=1
𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖)𝑑 𝛷(𝒘) (22)

with 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) =
∑

𝒅∈+ 𝜉(𝑢)𝒅 (𝒘𝑖)𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅),

𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚|𝒙) = ∫

𝑁
∏

𝑖=1
𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖)𝑑 𝛷(𝒘) (23)

with 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) =
∑

𝒎∈
∑

𝒒∈
∑

𝒅∈+ 𝜋(𝑡,𝑢)
𝑗 (𝒙𝑖,𝒘𝑖; 𝜶̃

𝑄
𝒒 , 𝜷𝒅)1

𝒚𝑖 ≥ ⌊𝒚⌋𝑀𝒎 },

𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚|𝒙) = ∫

𝑁
∏

𝑖=1
𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚𝑖|𝒙𝑖,𝒘𝑖)𝑑 𝛷(𝒘) (24)

with 𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚𝑖|𝒙𝑖,𝒘𝑖) =
∑

𝒎∈
∑

𝒒∈
∑

𝒅∈+ 𝜋(𝑡,𝑢)
𝑗 (𝒙𝑖,𝒘𝑖; 𝜶̃

𝑄
𝒒 , 𝜷𝒅)𝐹0

𝒚𝑖;𝝍
𝑀(𝑣)
𝒎 ). Note that Eq. (20) is in the form of the generalized mixed

effects models under Eq. (4), while Eq. (24) is in the MMoE framework
under Eq. (8). The main proof idea is to bound the approximation errors
between any two consecutive functions from Eqs. (20) to (24):

A.1. Step 1: Approximating Eq. (20) by Eq. (21)

As the metric space (𝜣𝑙 , 𝑑𝜣𝑙
) is complete separable (Assumption 2),

the probability measure 𝐺𝑙 on 𝜽(𝑠)𝑙 is tight, i.e. ∀𝜖1 > 0, ∃𝜣̄𝑙 ⊆ 𝜣𝑙
ompact such that 𝐺𝑙(𝜣̄𝑙) ∶= P(𝜽(𝑠)𝑙 ∈ 𝜣̄𝑙) ≥ 1 − 𝜖1. Since 𝜣̄𝑙 is compact,

for any 𝛿1 > 0 we can find subspaces {𝜣𝑙 ,𝑑𝑙}𝑑𝑙=1,…,𝐷𝑙
(𝑑𝑙 is called the

subspace index) and points {𝜽∗𝑙 ,𝑑𝑙}𝑑𝑙=1,…,𝐷𝑙
such that ∪𝑑𝑙=1,…,𝐷𝑙

𝜣𝑙 ,𝑑𝑙 =
̄ 𝑙, 𝜽∗𝑙 ,𝑑𝑙 ∈ 𝜣𝑙 ,𝑑𝑙 for every 𝑑𝑙 = 1,… , 𝐷𝑙 and 𝜣𝑙 ,𝑑𝑙 is covered by the

ball with radius 𝛿1∕𝐿 centered at 𝜽∗𝑙 ,𝑑𝑙 . Due to the uniform continuity
f 𝐻 w.r.t. 𝜽𝑖 on 𝜣̄𝑙 (Assumption 3 implies uniform convergence in
ompact space), for any 𝜖2 > 0 we can choose sufficiently small 𝛿1
ith the aforementioned subspace partitioning such that |𝐻(𝒚 |𝒙 ,𝜽 ) −
𝑖 𝑖 𝑖
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𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅(𝑐(𝑖)) )| ≤ 𝜖2 if 𝜽𝑖𝑙 ∈ 𝜣𝑙 ,𝑑(𝑐(𝑖))𝑙
for every 𝑙 = 1,… , 𝐿, where 𝜽∗

𝒅𝑐(𝑖)
=

{𝜽∗
1,𝑑(𝑐(𝑖))𝑙

}𝑙=1,…,𝐿 and 𝒅(𝑐(𝑖)) = {𝑑(𝑐(𝑖))𝑙 }𝑙=1,…,𝐿 with 𝑑(𝑐(𝑖))𝑙 ∈ {1,… , 𝐷𝑙}.

ote here the superscript (𝑐(𝑖)) of 𝑑(𝑐(𝑖))𝑙 represents the subspace index
𝑙 corresponding to the 𝑖th observation.

Define 𝐻̃∗(𝒚|𝒙) in the form of Eq. (21), where ̃ =
∏𝐿

𝑙=1
∏𝑆𝑙

𝑠=1 
(𝑠)
𝑙

ith (𝑠)
𝑙 = {1,… , 𝐷𝑙}, 𝒅 = {𝑑(𝑠)𝑙 }𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙

and 𝜣̃𝒅 =
∏𝐿

𝑙=1
∏𝑆𝑙

𝑠=1

𝑙 ,𝑑(𝑠)𝑙
. We first introduce the following technical lemma which can be

asily proved by induction:

Lemma 1. Given 0 ≤ 𝑎𝑖, 𝑏𝑖 ≤ 1 and |𝑎𝑖 − 𝑏𝑖| ≤ 𝜖 for all 𝑖 = 1,… , 𝑁 , then
|

∏𝑁
𝑖=1 𝑎𝑖 −

∏𝑁
𝑖=1 𝑏𝑖| ≤ 𝑁 𝜖.

Since P(𝜽̃ ∉ ∪𝒅∈𝑫̃𝜣̃𝒅) ≤
∑

𝑙=1,…,𝐿;𝑠=1,…,𝑆𝑙
P(𝜽(𝑠)𝑙 ∉ 𝜣̄𝑙) ≤ 𝑁 𝐿𝜖1, we

an now rewrite 𝐻̃(𝒚|𝒙) as

𝐻̃(𝒚|𝒙) =
∑

𝒅∈̃
∫𝜣̃𝒅

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)𝑑 𝐺(𝜽̃) +𝑁 𝐿1(𝜖1), (25)

and 𝐻̃∗(𝒚|𝒙) as

𝐻̃∗(𝒚|𝒙) =
∑

𝒅∈̃
∫𝜣̃𝒅

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅(𝑐(𝑖)) )𝑑 𝐺(𝜽̃), (26)

where 0 ≤ 1(𝜖1) ≤ 𝜖1, and we have the following approximation error
bound between 𝐻̃(𝒚|𝒙) and 𝐻̃∗(𝒚|𝒙):

|𝐻̃∗(𝒚|𝒙) − 𝐻̃(𝒚|𝒙)| ≤
∑

𝒅∈̃
∫𝜣̃𝒅

|

|

|

|

|

|

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅(𝑐(𝑖)) ) −

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)

|

|

|

|

|

|

𝑑 𝐺(𝜽̃) +𝑁 𝐿𝜖1

≤ 𝑁 𝜖2 +𝑁 𝐿𝜖1, (27)

where the second inequality is resulted from Lemma 1.

A.2. Step 2: Approximating Eq. (21) by Eq. (22)

Partition the space of 𝑤𝑖𝑙 (i.e. R) into 𝐷𝑙 + 2 adjacent half open
half closed intervals 𝑙 ,𝑑𝑙 = (𝑤∗

𝑙 ,𝑑𝑙−1, 𝑤
∗
𝑙 ,𝑑𝑙 ] (for 𝑑𝑙 = 1,… , 𝐷𝑙), 𝑙 ,0 =

−∞, 𝑤∗
𝑙 ,0] and 𝑙 ,𝐷𝑙+1 = (𝑤∗

𝑙 ,𝐷𝑙
,∞) such that 𝛷𝑙(𝑙 ,𝑑𝑙 ) = 𝐺𝑙(𝜣𝑙 ,𝑑𝑙 ) for

very 𝑑𝑙 = 1,… , 𝐷𝑙. Note that such a partitioning always exists as 𝛷𝑙
is a continuous distribution. Also denote the domain of (the 𝐿-vector)
𝒅 = (𝑑1,… , 𝑑𝐿) as  =

∏𝐿
𝑙=1{1,… , 𝐷𝑙} and the corresponding extended

domain + =
∏𝐿

𝑙=1{0, 1,… , 𝐷𝑙 + 1}.
Denote 𝐹 ∗∗(𝑢)(𝒚|𝒙) as the form of Eq. (22) with 𝜉(𝑢)𝒅 (𝒘𝑖) given by

𝜉(𝑢)𝒅 (𝒘𝑖) = exp{𝑢(𝛽𝒅,0 + 𝜷𝑇𝒅𝒘𝑖)}∕
∑

𝒅′∈+
exp{𝑢(𝛽𝒅′ ,0 + 𝜷𝑇𝒅′𝒘𝑖)}. (28)

We have the following technical lemma to help us choose suitable
parameters {(𝛽𝒅,0, 𝜷𝒅)}𝒅∈+ of 𝜉(𝑢)𝒅 (𝒘𝑖):

Lemma 2. There exists parameters {(𝛽𝒅,0, 𝜷𝒅)}𝒅∈+ of 𝜉(𝑢)𝒅 (𝒘𝑖) such that
𝜉(𝑢)𝒅 (𝒘𝑖)

𝑢→∞
←←←←←←←←←←←←←←←←←←←←←→

∏𝐿
𝑙=1 1

∗
𝑤𝑖𝑙

(𝑙 ,𝑑𝑙 ) for every 𝒅 ∈ +, where 1∗𝑤() is an
ndicator which equals to 1 if 𝑤 falls inside the interior of  , equals to a
onstant 𝑐 ∈ [0, 1] if𝑊 is on the boundary of , and equals to 0 otherwise.

Proof. With a slight (notational) variant of Lemma 3.1 of Fung et al.
[30], one can easily show the existence of parameters {(𝛽𝒅,0, 𝜷𝒅)}𝒅∈+

such that 𝛽𝒅,0 + 𝜷𝑇𝒅𝒘𝑖 > max𝒅′≠𝒅;𝒅′∈+ 𝛽𝒅′ ,0 + 𝜷𝑇𝒅′𝒘𝑖 if and only if
𝑖𝑙 ∈ ∗

𝑙 ,𝑑𝑙 for every 𝒅 ∈ +, where ∗
𝑙 ,𝑑𝑙 is the interior of 𝑙 ,𝑑𝑙 .

nder a slight variation of Lemma 3.2 of Fung et al. [30], we have
𝜉(𝑢)𝒅 (𝒘𝑖)

𝑢→∞
←←←←←←←←←←←←←←←←←←←←←→ 1{𝛽𝒅,0 + 𝜷𝑇𝒅𝒘𝑖 > max𝒅′≠𝒅;𝒅′∈+ 𝛽𝒅′ ,0 + 𝜷𝑇𝒅′𝒘𝑖} + 1(1) ×

{𝛽𝒅,0 + 𝜷𝑇𝒅𝒘𝑖 = max𝒅′≠𝒅;𝒅′∈+ 𝛽𝒅′ ,0 + 𝜷𝑇𝒅′𝒘𝑖} =
∏𝐿

𝑙=1 1
∗
𝑤𝑖𝑙

(𝑙 ,𝑑𝑙 ), where
≤ 1(1) ≤ 1. □

Choosing the parameters indicated by the above lemma, we have
the following approximation result between 𝐻̃∗(𝒚|𝒙) and 𝐹 ∗∗(𝑢)(𝒚|𝒙):

̃∗∗(𝑢)(𝒚|𝒙)
𝑢→∞
←←←←←←←←←←←←←←←←←←←→

𝑁
∏ ∑

( 𝐿
∏

1∗𝑤𝑖𝑙
(𝑙 ,𝑑𝑙 )

)

𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅)𝑑 𝛷(𝒘)
∫
𝑖=1 𝒅∈+ 𝑙=1
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𝜋(𝑡,𝑢)
𝑗 (𝒙𝑖,𝒘𝑖; 𝜶̃𝑄

𝒒 , 𝜷𝒅)

=
exp{log𝐻(𝑀

𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅) + 𝑡(𝛼̃𝑄𝒒,0 + 𝜶̃
𝑄𝑇
𝒒 𝒙𝑖) + 𝑢(𝛽𝒅,0 + 𝜷𝑇𝒅𝒘𝑖)}

∑

𝒎′∈
∑

𝒒′∈
∑

𝒅′∈+ exp{log𝐻(𝑀
𝒎′ |𝒙

∗𝑄
𝒒′ ,𝜽

∗
𝒅′ ) + 𝑡(𝛼̃𝑄𝒒′ ,0 + 𝜶̃

𝑄𝑇
𝒒′ 𝒙𝑖) + 𝑢(𝛽𝒅′ ,0 + 𝜷𝑇𝒅′𝒘𝑖)}

(30)

=
exp{𝑡(𝛼̃𝑄𝒒,0 + 𝜶̃

𝑄𝑇
𝒒 𝒙𝑖)}

∑

𝒒′∈ exp{𝑡(𝛼̃𝑄𝒒′ ,0 + 𝜶̃
𝑄𝑇
𝒒′ 𝒙𝑖)}

exp{𝑢(𝛽𝒅,0 + 𝜷𝑇𝒅𝒘𝑖)}
∑

𝒅′∈+ exp{𝑢(𝛽𝒅′ ,0 + 𝜷𝑇𝒅′𝒘𝑖)}
𝐻(𝑀

𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)

∶= 𝛾 (𝑡)𝒒 (𝒙𝑖) × 𝜉(𝑢)𝒅 (𝒘𝑖) ×𝐻(𝑀
𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅), (31)

Box I.
{
f

a
o

t
i
i
r

w

f

f

= ∫̄

𝑁
∏

𝑖=1

∑

𝒅∈+

( 𝐿
∏

𝑙=1
1∗𝑤𝑖𝑙

(𝑙 ,𝑑𝑙 )
)

𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅)𝑑 𝛷(𝒘) + 1(𝜖1)

=
∑

𝒅∈̃
∫𝒅

𝑁
∏

𝑖=1

∑

𝒅∈

( 𝐿
∏

𝑙=1
1∗𝑤𝑖𝑙

(𝑙 ,𝑑𝑙 )
)

𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅)𝑑 𝛷(𝒘) + 1(𝜖1)

=
∑

𝒅∈̃
∫𝒅

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅(𝑐(𝑖)) )𝑑 𝛷(𝒘) + 1(𝜖1)

=
∑

𝒅∈̃

𝑁
∏

𝑖=1
𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅(𝑐(𝑖)) )𝐺(𝜣̃𝒅) + 1(𝜖1) = 𝐻̃∗(𝒚|𝒙) + 1(𝜖1), (29)

where ̄ (𝑠)
𝑙 = ∪𝐷𝑙

𝑑𝑙=1
𝑙 ,𝑑𝑙 , ̄ =

∏𝐿
𝑙=1

∏𝑆𝑙
𝑠=1 ̄

(𝑠)
𝑙 and 𝒅 =

∏𝐿
𝑙=1

∏𝑆𝑙
𝑠=1

̄
𝑙 ,𝑑(𝑠)𝑙

. The convergence is resulted from the Dominated Convergence

heorem (DCT), which is obviously uniform on (𝒚,𝒙) as 𝜉(𝑢)𝒅 (𝒘𝑖) (the
nly term in 𝐹 ∗∗(𝑢)(𝒚|𝒙) which depends on 𝑢) does not depend on
𝒚,𝒙) and 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅) is bounded above at 1. The third last equality
olds as the events of the indicator functions only (jointly) hold if
= 𝒅(𝑐(𝑖)) when 𝒘 ∈ 𝒅 . The second last equality holds as the

integrand is constant on 𝒘 ∈ 𝒅 and 𝛷(𝒅) =
∏𝐿

𝑙=1
∏𝑆𝑙

𝑠=1 𝛷𝑙(𝑙 ,𝑑(𝑠)𝑙
) =

∏𝐿
𝑙=1

∏𝑆𝑙
𝑠=1 𝐺𝑙(𝜣𝑙 ,𝑑(𝑠)𝑙

) = 𝐺(𝜣̃𝒅).

A.3. Step 3: Approximating Eq. (22) by Eq. (23)

Partition the space of 𝑦𝑖𝑘 ∈ R into adjacent half open half closed in-
tervals {𝑀

𝑘,𝑚 = ((𝑚 − 1∕2)ℎ𝑦𝑀 , (𝑚 + 1∕2)ℎ𝑦𝑀 ]}𝑚=−𝑀 ,…,𝑀−1,𝑀 .
Define 𝑀 ∶=

∏𝐾
𝑘=1 ∪

𝑀
𝑚=−𝑀𝑀

𝑘,𝑚 ∶=
∏𝐾

𝑘=1 
𝑀
𝑘 =

(−(𝑀 + 1∕2)ℎ𝑦𝑀 (𝑀 + 1∕2)ℎ𝑦𝑀 ]𝐾 , 𝑀
𝑘,−(𝑀+1) = (−∞,−(𝑀 + 1∕2)ℎ𝑦𝑀 ] and

𝑀
𝑘,𝑀+1 = ((𝑀+ 1∕2)ℎ𝑦𝑀 ,∞). Choose ℎ𝑦𝑀 such that ℎ𝑦𝑀 ↓ 0 and 𝑀 ℎ𝑦𝑀 ↑ ∞

as 𝑀 → ∞. Also denote 𝑀
𝒎 = 𝑀

1,𝑚1
×⋯ × 𝑀

𝐾 ,𝑚𝐾
as a hypercube with

𝒎 ∶= (𝑚1,… , 𝑚𝐾 ) ∈  ∶= {−(𝑀 + 1),… , (𝑀 + 1)}𝐾 .
Similarly, partition the space of 𝑥𝑖𝑝 ∈ R into adjacent half open half

closed intervals {𝑄
𝑝,𝑞 = ((𝑞 − 1∕2)ℎ𝑥𝑄, (𝑞 + 1∕2)ℎ𝑥𝑄]}𝑞=−𝑄,…,𝑄−1,𝑄. Define

𝑄 ∶=
∏𝑃

𝑝=1 ∪
𝑄
𝑞=−𝑄

𝑄
𝑝,𝑞 ∶=

∏𝑃
𝑝=1 

𝑄
𝑝 = (−(𝑄 + 1∕2)ℎ𝑥𝑄, (𝑄 + 1∕2)ℎ𝑥𝑄]𝑃 ,

𝑄
𝑝,−(𝑄+1) = (−∞,−(𝑄 + 1∕2)ℎ𝑥𝑄] and 𝑄

𝑝,𝑄+1 = ((𝑄 + 1∕2)ℎ𝑥𝑄,∞). Choose
ℎ𝑥𝑄 such that ℎ𝑥𝑄 ↓ 0 and 𝑄ℎ𝑥𝑄 ↑ ∞ as 𝑄 → ∞. Also denote 𝑄

𝒒 =
𝑄
1,𝑞1

× ⋯ × 𝑄
𝑃 ,𝑞𝑃 as a hypercube with 𝒒 ∶= (𝑞1,… , 𝑞𝑃 ) ∈  ∶=

{−(𝑄 + 1),… , (𝑄 + 1)}𝑃 .
Denote 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚|𝒙) as the form of Eq. (23), where ⌊𝒚⌋𝑀𝒎 ∶=

(⌊𝑦⌋𝑀𝑚1
,… , ⌊𝑦⌋𝑀𝑚𝐾

) (inside the expression of 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖)) repre-
sents the leftmost vertex of the hypercube 𝑀

𝒎 . Also, the function
𝜋(𝑡,𝑢)
𝑗 (𝒙𝑖,𝒘𝑖; 𝜶̃

𝑄
𝒒 , 𝜷𝒅) is a logit linear gating function given by Eq. (31)

see Box I), where 𝒙∗𝑄𝒒 = (𝑥∗𝑄1,𝑞1 ,… , 𝑥∗𝑄𝑃 ,𝑞𝑃 ) is the mid-point of the hyper-
cube 𝑄

𝒒 . Here, ‘‘mid-points’’ for 𝑝,−(𝑄+1) and 𝑝,(𝑄+1) are respectively
defined as −(𝑄 + 1)ℎ𝑥𝑄 and (𝑄 + 1)ℎ𝑥𝑄.

Further denote 𝑅𝑄(𝒙𝑖) = {𝒒 ∶ ∀𝑝 we have |𝑝𝑗𝑄(𝑥𝑖𝑝) −𝑥∗𝑄𝑝,𝑞𝑝 | ≤ ℎ𝑥𝑄} and
′𝑄(𝒙𝑖) = {𝒒 ∶ ∃𝑝 such that |𝑝𝑗𝑄(𝑥𝑖𝑝) − 𝑥∗𝑄𝑝,𝑞𝑝 | > ℎ𝑥𝑄}, where 𝑝𝑗𝑄(𝑥𝑖𝑝) is

the projection of 𝑥𝑖𝑝 on the interval 𝑄
𝑝 (i.e. 𝑝𝑗𝑄(𝑥𝑖𝑝) is the point in 𝑄

𝑝
where 𝑥𝑖𝑝 is closest to). To derive the approximation results, we first
ntroduce the following two technical lemmas.
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Lemma 3. Given any fixed 𝑄 and ℎ𝑥𝑄, there exists parameters
𝛼̃𝑄𝒒,0, 𝜶̃

𝑄𝑇
𝒒 }𝒒∈, such that for any 𝜖3 > 0, we have ∑𝒒∈𝑅′𝑄(𝒙𝑖)

𝛾 (𝑡)𝒒 (𝒙𝑖) ≤ 𝜖3
or all 𝒙𝑖 ∈  with sufficiently large 𝑡.

Proof. This follows directly from the proof of Theorem 3.2 of Fung
et al. [30]. □

Lemma 4. The probability distributions {𝐻(𝒚𝑖|𝒙𝑖,𝜽𝑖)}𝒙𝑖∈̄ ;𝜽𝑖∈𝜣̄ are tight
for any compact spaces ̄ and 𝜣̄.

Proof. Divide the compact space ̄ ∶= 𝑿̄ × 𝜣̄ into 𝐷 subspaces
{𝑑}𝑑=1,…,𝐷, where each subspace 𝑑 is small enough to be covered by
 ball with radius 𝛿. Define 𝒛∗𝑑 ∶= (𝒙∗𝑑 ,𝜽∗𝑑 ) as an arbitrary interior point
f 𝑑 for 𝑑 = 1,… , 𝐷. For each 𝑑 = 1,… , 𝐷, we choose a response

space ̃𝑑 ∈  such that 𝐻(̃𝑑 |𝒙∗𝑑 ,𝜽
∗
𝑑 ) ≥ 1 − 𝜖∕2. Select a compact space

̃∗ which covers all {̃𝑑}𝑑=1,…,𝐷, and we have 𝐻(̃∗
|𝒙∗𝑑 ,𝜽

∗
𝑑 ) ≥ 1 − 𝜖∕2

rue for all 𝑑 = 1,… , 𝐷. Uniform continuity of 𝐻 on any compact space
mplies that |𝐻(̃∗

|𝒙∗𝑑 ,𝜽
∗
𝑑 ) − 𝐻(̃∗

|𝒙𝑖,𝜽𝑖)| ≤ 𝜖∕2 for sufficient small 𝛿
f (𝒙𝑖,𝜽𝑖) ∈ 𝑑 . Overall, we have 𝐻(̃∗

|𝒙𝑖,𝜽𝑖) ≥ 1 − 𝜖, and hence the
esult follows. □

As a result, for any compact covariates space of ̄ and any 𝜖4 > 0,
e can use Lemma 4 to select a rectangular output space ̄ such that

𝐻(̄|𝒙𝑖,𝜽𝑖) ≥ 1 − 𝜖4 for any 𝒙𝑖 ∈ ̄ and 𝜽𝑖 ∈ 𝜣̄, where 𝜣̄ =
∏𝐿

𝑙=1 𝜣̄𝑙
and note that 𝜣̄𝑙 is defined in Appendix A.1. Then we have for all
𝒙𝑖,𝒙

∗𝑄
𝒒 ∈ ̄ and 𝜽∗𝒅 ∈ 𝜣̄:

|𝐻(⌈𝒚⌉𝑀𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅) −𝐻(𝑝𝑗𝑀 (⌈𝒚⌉𝑀𝒎 )|𝒙∗𝑄𝑞 ,𝜽∗𝒅)| ≤ 𝜖4, (32)

and

|𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅) −𝐻(𝑝𝑗𝑀 (𝒚𝑖)|𝒙𝑖,𝜽∗𝒅)| ≤ 𝜖4, (33)

where 𝑝𝑗𝑀 (𝒚𝑖) is the projection of 𝒚𝑖 on ̄ , and ⌈𝒚⌉𝑀𝒎 ∶= (⌈𝑦⌉𝑀𝑚1
,… ,

⌈𝑦⌉𝑀𝑚𝐾
) is the rightmost vertex of hypercube 𝑀

𝒎 . Further, because of the
uniform continuity of 𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅) on (𝒙𝑖,𝜽∗𝒅) within a compact support,
or any 𝜖5 > 0, we can choose sufficient large 𝑄 (to make ℎ𝑥𝑄 small while
𝑄 covers ̄) and 𝑀 (to make ℎ𝑦𝑀 small while 𝑀 covers ̄) such that

or any 𝒚𝑖 ∈ 𝑀
𝒎 and 𝒒 ∈ 𝑅𝑄(𝒙𝑖), we have:

|𝐻(𝑝𝑗𝑀 (𝒚𝑖)|𝒙𝑖,𝜽∗𝒅) −𝐻(𝑝𝑗𝑀 (⌈𝒚⌉𝑀𝒎 )|𝒙∗𝑄𝒒 ,𝜽∗𝒅)| ≤ 𝜖5. (34)

Summarizing the above three equations, we have:

|𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅) −𝐻(⌈𝒚⌉𝑀𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)| ≤ 2𝜖4 + 𝜖5. (35)

Note that 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) can be re-written as

𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) =
∑

𝒎∈

∑

𝒒∈

∑

𝒅∈+

𝛾 (𝑡)𝒒 (𝒙𝑖)𝜉
(𝑢)
𝒅 (𝒘𝑖)𝐻(⌈𝒚⌉𝑀𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)1{𝒚𝑖 ∈ 𝑀

𝒎 }

=
∑

𝒎∈

∑

𝒒∈𝑅𝑄(𝒙𝑖)

∑

𝒅∈+

𝛾 (𝑡)𝒒 (𝒙𝑖)𝜉
(𝑢)
𝒅 (𝒘𝑖)𝐻(⌈𝒚⌉𝑀𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)1{𝒚𝑖 ∈ 𝑀

𝒎 } + 1(𝜖3),

(36)

where 0 ≤ 1(𝜖3) ≤ 𝜖3. The last equality is resulted from Lemma 3. The
approximation result is:
|𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚|𝒙) − 𝐹 ∗∗(𝑢)(𝒚|𝒙)|
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≤ ∫

|

|

|

|

|

|

𝑁
∏

𝑖=1
𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) −

𝑁
∏

𝑖=1
𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖)

|

|

|

|

|

|

𝑑 𝛷(𝒘)

≤ 𝑁 ∫
|

|

|

𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖) − 𝐹 ∗∗(𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖)
|

|

|

𝑑 𝛷(𝒘)

≤ 𝑁 ∫
∑

𝒎∈

∑

𝒒∈𝑅𝑄(𝒙𝑖)

∑

𝒅∈+
𝛾 (𝑡)𝒒 (𝒙𝑖)𝜉

(𝑢)
𝒅 (𝒘𝑖)

× |

|

|

𝐻(𝒚𝑖|𝒙𝑖,𝜽∗𝒅) −𝐻(⌈𝒚⌉𝑀𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)
|

|

|

1{𝒚𝑖 ∈ 𝑀
𝒎 }𝑑 𝛷(𝒘) + 2𝜖3

≤ 𝑁(2𝜖4 + 𝜖5 + 2𝜖3), (37)

where the second inequality is resulted from Lemma 1, the third and
ast inequalities are respectively resulted from Eqs. (35) and (36).

A.4. Step 4: Approximating Eq. (23) by Eq. (24)

Write 𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚|𝒙) as in Eq. (24), where 𝐹0(𝒚𝑖;𝝍
𝑀(𝑣)
𝒎 ) in 𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)

𝒚𝑖|𝒙𝑖,𝒘𝑖) is chosen in the way that 𝐹0(𝒚𝑖;𝝍
𝑀(𝑣)
𝒎 )


←←←←←←←←→ 1{𝒚𝑖 ≥ ⌊𝒚⌋𝑀𝒎 } as

𝑣 → ∞. Due to the distributional convergence as well as  is a finite
set, for any 𝜖6 > 0 we can find a sufficient large 𝑣 such that for every
𝒎 ∈ , we have:

|𝐹0(𝒚𝑖;𝝍
𝑀(𝑣)
𝒎 ) − 1{𝒚𝑖 ≥ ⌊𝒚⌋𝑀𝒎 }| ≤ 𝜖6 +

𝐾
∑

𝑘=1
1{𝑦𝑖𝑘 ∈ 𝛿∗

𝑘 (⌊𝑦⌋𝑀𝑚𝑘
)}, (38)

where 𝛿∗ is chosen to be 0 < 𝛿∗ < ℎ𝑦𝑀∕2, and 𝛿∗
𝑘 (⌊𝑦⌋𝑀𝑚𝑘

) represents
on-overlapping intervals for 𝑚𝑘 = −(𝑀 + 1),… , (𝑀 + 1) with

𝛿∗
𝑘 (⌊𝑦⌋𝑀𝑚𝑘

) =
{

[⌊𝑦⌋𝑀𝑚𝑘
− 𝛿∗, ⌊𝑦⌋𝑀𝑚𝑘

+ 𝛿∗], if 𝑚𝑘 > −(𝑀 + 1)
(−∞, ⌊𝑦⌋𝑀𝑚𝑘

− 2𝛿∗], 𝑚𝑘 = −(𝑀 + 1) (39)

Note that the rightmost term in Eq. (38) is to control for the fact that
the weak convergence of 𝐹0 to the indicator is not uniform when 𝑦𝑖𝑘 is
close to ⌊𝑦⌋𝑀𝑚𝑘

. Consider the bound

|𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚𝑖|𝒙𝑖,𝒘𝑖) − 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝑖|𝒙𝑖,𝒘𝑖)|

≤
∑

𝒎∈

∑

𝒒∈

∑

𝒅∈+

𝛾 (𝑡)𝒒 (𝒙𝑖)𝜉
(𝑢)
𝒅 (𝒘𝑖)𝐻(𝑀

𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)|𝐹0(𝒚𝑖;𝝍𝑀(𝑣)
𝒎 ) − 1{𝒚𝑖 ≥ ⌊𝒚⌋𝑀𝒎 }|

≤

{

max
𝒒∈;𝒅∈+

∑

𝒎∈

𝐾
∑

𝑘=1
𝐻(𝑀

𝒎 |𝒙∗𝑄𝒒 ,𝜽∗𝒅)1{𝑦𝑖𝑘 ∈ 𝛿∗
𝑘 (⌊𝑦⌋𝑀𝑚𝑘

)}

}

+ 𝜖6

=
𝐾
∑

𝑘=1

{

max
𝒒∈;𝒅∈+

∑

𝑚𝑘=−(𝑀+1),…,(𝑀+1)
𝐻𝑘(𝑘,𝑚𝑘

|𝒙∗𝑄𝒒 ,𝜽∗𝒅)1{𝑦𝑖𝑘 ∈ 𝛿∗
𝑘 (⌊𝑦⌋𝑀𝑚𝑘

)}

}

+ 𝜖6.

(40)

Since 𝛿∗
𝑘 (⌊𝑦⌋𝑀𝑚𝑘

) is non-overlapping for 𝑚𝑘 = −(𝑀 + 1),… , (𝑀 + 1),
only one term in the summation of Eq. (40) is non-zero. Since 𝐻𝑘 is a
continuous distribution, for any 𝜖7 > 0, we have 𝐻𝑘(𝑘,𝑚𝑘

|𝒙∗𝑄𝒒 ,𝜽∗𝒅) ≤ 𝜖7
for any 𝒒 ∈ , 𝒅 ∈ + and 𝑚𝑘 = −(𝑀 + 1),… , (𝑀 + 1) given that 𝑀
is sufficiently large. Finally, using the same proof idea as Eq. (37), we
have

|𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚|𝒙) − 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚|𝒙)| ≤ 𝑁(𝐾 𝜖7 + 𝜖6). (41)

In summary, based on Eqs. (27), (29) (37) and (41), Theorem 1
holds because for sufficiently large 𝑀 , 𝑄, 𝑡 and 𝑣, the following
inequality holds uniformly for each 𝒙𝑖 falling into a compact covariates
space:

|𝐹 (𝑀 ,𝑄,𝑡,𝑢→∞,𝑣)(𝒚|𝒙) −𝐻̃(𝒚|𝒙)| ≤ (𝑁 𝜖2+𝜖1) +1(𝜖1) +𝑁(2𝜖4+𝜖5+ 2𝜖3) +𝑁(𝐾 𝜖7+𝜖6),
(42)

where 𝜖1 to 𝜖7 can be chosen to be arbitrarily small, and any parameters
chosen in Steps 1 to 4 are independent of 𝑁 , 𝑺 = (𝑆1,… , 𝑆𝐿) and 𝒄(⋅).

Appendix B. Proof of Theorem 2

Other than the notational differences, the proof ideas of Theorems 1
and 2 are substantially similar. Precisely, the 4-step framework used
o prove Theorem 1 also applies to prove Theorem 2. As a result, we
13 
only present a sketch proof of Theorem 2, with an emphasis on the
ey differences of proof techniques between the two theorems. Unless
pecified otherwise, the notations adopted in this proof section is the

same as those defined in Appendix A. Analogous to Eqs. (20) and (21),
n Step 1 we examine an approximation bound between the following
wo equations:

𝐻̃(𝒚|𝒙) = ∫𝜣̃

[

∏

𝒊∈
𝐻(𝒚𝒊|𝒙𝒊,𝜽𝒊)

]

𝑑 𝐺(𝜽̃), (43)

and

𝐻̃∗(𝒚|𝒙) =
∑

𝒅∈̃

∏

𝒊∈
𝐻(𝒚𝒊|𝒙𝒊,𝜽∗𝒅(𝒊𝐿) )𝐺(𝜣̃𝒅). (44)

Similar to Appendix A.1, we choose compact spaces {𝜣̄𝑙 ∈ 𝜣}𝑙=1,…,𝐿
such that P(∩𝐿

𝑙=1 ∩𝒊𝑙∈𝑙 {𝜽𝒊𝑙 ∈ 𝜣̄𝑙}) ≥ 1 − 𝑁 𝐿𝜖1, where 𝑙 = {𝒊𝑙 ∶
𝑖1 = 1,… , 𝑁0; … ; 𝑖𝑙 = 1,… , 𝑁𝒊𝑙−1}. Also, partition granular subspaces
{𝜣𝑙 ,𝑑𝑙}𝑑𝑙=1,…,𝐷𝑙

of 𝜣̄𝑙 and define the interior points {𝜽∗𝑙 ,𝑑𝑙}𝑑𝑙=1,…,𝐷𝑙
anal-

ogous to Appendix A.1. Define ̃ =
∏𝐿

𝑙=1
∏

𝒊𝑙∈𝑙 
(𝒊𝑙 )
𝑙 with (𝒊𝑙 )

𝑙 =
1,… , 𝐷𝑙}, 𝒅 = {𝑑(𝒊𝑙 )𝑙 }𝑙=1,…,𝐿;𝒊𝑙∈𝑙 with 𝑑(𝒊𝑙 )𝑙 ∈ (𝒊𝑙 )

𝑙 , 𝒅(𝒊𝐿) = {𝑑(𝒊𝑙)𝑙 }𝑙=1,…,𝐿,
and 𝜣̃𝒅 =

∏𝐿
𝑙=1

∏

𝒊𝑙∈𝑙 𝜣𝑙 ,𝑑(𝒊𝑙 )𝑙
. Then, using the same idea as Eqs. (25)

to (27), we obtain an arbitrarily small approximation error bound
between Eqs. (43) and (44).

In Step 2, we define the following function analogous to Eq. (22)
and derive its error bound for approximating Eq. (44):

𝐹 ∗∗(𝑢)(𝒚|𝒙) = ∫
∏

𝒊∈
𝐹 ∗∗(𝑢)(𝒚𝒊|𝒙𝒊,𝒘𝒊)𝑑 𝛷(𝒘) (45)

with 𝐹 ∗∗(𝑢)(𝒚𝒊|𝒙𝒊,𝒘𝒊) =
∑

𝒅∈+ 𝜉(𝑢)𝒅 (𝒘𝒊)𝐻(𝒚𝒊|𝒙𝒊,𝜽∗𝒅). Here, we choose
(𝑢)
𝒅 (𝒘𝒊) in a different way as Eq. (28), which is crucial to cater for the
ependencies of random effects across levels, as follows:

𝜉(𝑢)𝒅 (𝒘𝒊) = exp{
𝐿
∑

𝑙=1
𝑢1∕𝑙(𝛽𝒅𝑙 ,0 + 𝛽𝒅𝑙 ,1𝑤𝑖𝑙)}∕

∑

𝒅′∈+

exp{
𝐿
∑

𝑙=1
𝑢1∕𝑙(𝛽𝒅′

𝑙 ,0
+ 𝛽𝒅′

𝑙 ,1
𝑤𝑖𝑙)}, (46)

where  =
∏𝐿

𝑙=1{1,… , 𝐷𝑙} and + =
∏𝐿

𝑙=1{0, 1,… , 𝐷𝑙 + 1} are exactly
the same as those defined in Appendix A.2, and 𝒅𝑙 = (𝑑1,… , 𝑑𝑙) and
′
𝑙 = (𝑑′1,… , 𝑑′𝑙 ) with 𝒅 = 𝒅𝐿 (and 𝒅′ = 𝒅′𝐿).

In contrast to Appendix A.2, we construct intervals 𝑙 ,𝒅𝑙 such that
∪𝐷𝑙+1
𝑑𝑙=0

𝑙 ,𝒅𝑙 = R for any 𝒅𝑙−1 ∈
∏𝑙−1

𝑙′=1{1,… , 𝐷𝑙′} and 𝛷𝑙(𝑙 ,𝒅𝑙 ) =
𝐺𝑙(𝜣𝑙 ,𝑑𝑙 |𝜣1,𝑑1 ,… ,𝜣𝑙−1,𝑑𝑙−1 ), which represents the probability of level-𝑙
random effect belongs to 𝜣𝑙 ,𝑑𝑙 conditioned on the corresponding upper
level random effects fall into (𝜣1,𝑑1 ,… ,𝜣𝑙−1,𝑑𝑙−1 ). The following lemma
is analogous to Lemma 2:

Lemma 5. There exists parameters {(𝛽𝒅𝑙 ,0, 𝛽𝒅𝑙 ,1)}𝒅∈+;𝑙=1,…,𝐿 of 𝜉
(𝑢)
𝒅 (𝒘𝒊)

uch that 𝜉(𝑢)𝒅 (𝒘𝒊)
𝑢→∞
←←←←←←←←←←←←←←←←←←←←←→

∏𝐿
𝑙=1 1

∗
𝑤𝑖𝑙

(𝑙 ,𝒅𝑙 ) for every 𝒅 ∈ +.

Proof. Similar to the proof of Lemma 2, we choose suitable parameters
uch that 𝛽𝒅𝑙 ,0 + 𝛽𝒅𝑙 ,1𝑤𝑖𝑙 > max𝑑′𝑙≠𝑑𝑙 𝛽𝒅∗𝑙 ,0 + 𝛽𝒅∗𝑙 ,1𝑤𝑖𝑙 if and only if 𝑤𝑖𝑙 ∈
∗
𝑙 ,𝒅𝑙 for every 𝒅 ∈ + and 𝑙 = 1,… , 𝐿, where ∗

𝑙 ,𝒅𝑙 is the interior of

𝑙 ,𝒅𝑙 and 𝒅∗𝑙 = (𝑑1,… , 𝑑𝑙−1, 𝑑′𝑙 ). Observe the expression ∑𝐿
𝑙=1 𝑢

1∕𝑙(𝛽𝒅𝑙 ,0 +
𝒅̃𝑙 ,1𝑤𝑖𝑙) in Eq. (46) where the term corresponding to a higher level

factor dominates when 𝑢 is large. Therefore, for sufficient large 𝑢, we
have ∑𝐿

𝑙=1 𝑢
1∕𝑙(𝛽𝒅𝑙 ,0 + 𝛽𝒅𝑙 ,1𝑤𝑖𝑙) > max𝒅≠𝒅′

∑𝐿
𝑙=1 𝑢

1∕𝑙(𝛽𝒅′𝑙 ,0 + 𝛽𝒅′𝑙 ,1𝑤𝑖𝑙) for 𝒘𝑖
satisfying 𝑤𝑖𝑙 ∈ ∗

𝑙 ,𝒅𝑙 for every 𝑙 = 1,… , 𝐿. Following the same logic as
Lemma 2, the result follows. □

The approximation bound between Eqs. (44) and (45) can be
obtained using the same logic as that outlined by Eq. (29), where
we further note that 𝛷(𝒅) =

∏𝐿
𝑙=1

∏

𝒊𝑙∈𝑙 𝛷𝑙(𝑙 ,𝒅(𝒊𝑙 )𝑙
) = ∏𝐿

𝑙=1
∏

𝒊𝑙∈𝑙

𝑙(𝜣𝑙 ,𝑑(𝒊𝑙 )𝑙
|𝜣

1,𝑑(𝒊1)1
,… ,𝜣

𝑙−1,𝑑(𝒊𝑙−1)𝑙−1
) = 𝐺(𝜣̃𝒅) with 𝒅 =

∏𝐿
𝑙=1

∏

𝒊𝑙∈𝑙 𝑙 ,𝒅(𝒊𝑙 )𝑙
.

Step 3 and 4 involve evaluations of the following expressions in
analogous to Eqs. (23) and (24):

𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚|𝒙) =
∏

𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝒊|𝒙𝒊,𝒘𝒊)𝑑 𝛷(𝒘) (47)
∫
𝒊∈
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with 𝐹 ∗(𝑀 ,𝑄,𝑡,𝑢)(𝒚𝒊|𝒙𝒊,𝒘𝒊) =
∑

𝒎∈
∑

𝒒∈
∑

𝒅∈+ 𝜋(𝑡,𝑢)
𝑗 (𝒙𝒊,𝒘𝒊; 𝜶̃

𝑄
𝒒 , 𝜷𝒅)1

{𝒚𝒊 ≥ ⌊𝒚⌋𝑀𝒎 },

𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚|𝒙) = ∫
∏

𝒊∈
𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚𝒊|𝒙𝒊,𝒘𝒊)𝑑 𝛷(𝒘) (48)

with 𝐹 (𝑀 ,𝑄,𝑡,𝑢,𝑣)(𝒚𝒊|𝒙𝒊,𝒘𝒊) =
∑

𝒎∈
∑

𝒒∈
∑

𝒅∈+ 𝜋(𝑡,𝑢)
𝑗 (𝒙𝒊,𝒘𝒊; 𝜶̃

𝑄
𝒒 , 𝜷𝒅)𝐹0

(𝒚𝒊;𝝍
𝑀(𝑣)
𝒎 ). The derivation techniques here are exactly the same as

those presented in Appendices A.3 and A.4, so this part of the proof
is omitted.

Data availability

No data was used for the research described in the article.
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