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a b s t r a c t

The Erlang mixture model with common scale parameter is flexible and analytically
tractable. As such, it is a useful model to fit insurance loss data and to calculate quanti-
ties of interest for insurance risk management. In this paper, we propose a generalized
expectation–maximization (GEM) algorithm along with a clusterized method of moments
(CMM) to estimate the model parameters. The GEM algorithm not only estimates the
mixing weights and scale parameter of the model but also estimates the shape parameters
of the model using a local search method. The CMM method enables to produce quality
initial estimates for the GEM algorithm. As a result, the proposed approach provides an
efficient algorithm that can fit themodel to the body and the tail of truncated and censored
loss data well and converges fast. We examine the performance of the proposed approach
through several simulation studies and apply it to fit the Erlang mixture model to two real
loss data sets.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The class of Erlang mixtures with common scale parameter has been shown to have many desirable distributional
properties for insurance valuation and risk management. The class is dense in the space of positive continuous distributions
in the sense of weak convergence and hence any loss distribution can be approximated by an Erlangmixture to any accuracy.
The survival function and moments of an Erlang mixture can be expressed explicitly, which enables us to calculate risk
measures such as VaR and TVaR easily. As a result, Erlangmixtures have recently been found inmany insurance applications.
See [1–9], and references therein. A multivariate version of the Erlang mixture is proposed in [10] and further studied by
Verbelen et al. [11] in a truncated and censored data case.

Another advantage of the use of Erlang mixtures is the existence of a simple EM algorithm for parameter estimation. See
[2,12]. However, there are some drawbacks with the existing EM algorithm. First, as an iterative algorithm the EM algorithm
is sensitive to its initial estimates. The choice of initial estimates is critical for the fast convergence of the algorithm. Initial
estimates based on the Tijms approximation [13] in [2] might not be ideal. Second, if loss data have long right tail, the
algorithm might not be able to fit the tail effectively since the shape parameters are estimated using an ad-hoc procedure.
Some efforts have been made to improve the EM algorithm by introducing a penalized likelihood (see [9]).

In this paper, we propose a new method called GEM-CMM algorithm for parameter estimation to tackle both afore-
mentioned issues. Insurance losses are often censored and truncated due to policy modifications such as deductibles (left
truncation) and policy limits (right censoring). When fitting a statistical model to insurance loss data, it is necessary to take
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truncation and censoring into consideration. In this paper, we consider fitting the Erlang mixture model to truncated and
censored loss data. We propose the use of a generalized EM (GEM) algorithm along with a data-driven clusterized method
of moments (CMM) for initialization to estimate key parameters of the model including the shape parameters. Under this
approach, the model can fit both the body and the tail of the data well, which is confirmed by simulation studies and real
data applications in this paper.

This paper is organized as follows. In Section 2, we provide a brief overview of the Erlang mixture and the currently used
EM algorithm for the mixture. In Section 3, a GEM algorithm is proposed to improve the EM algorithm by maximizing the
likelihood function of the data and at themeantime by adopting a local searchmethod [14] to estimate the shape parameters
in the M-step of the EM algorithm. In Section 4, a CMM method is presented to obtain high quality initial estimates for
the GEM algorithm so that the algorithm converges rapidly. The initialization involves clustering data using the K -means
method and the application of the method of moments for each cluster. In Section 5, the parameters are adjusted to further
improve the fitting. In Section 6, we test the efficiency of our algorithm through several simulation studies. We then apply
the algorithm to fit the model to real data in Section 7. The results in both sections show that the model fits the data well.
We conclude in Section 8 with some remarks on future research.

2. Erlang mixtures and associated EM algorithm

In this section, we recall the definition of the univariate Erlang mixture model with common scale parameter and an EM
algorithm for parameter estimation.

An Erlang distribution has probability density function (pdf)

f (x|m, θ ) =
xm−1e−x/θ

θm(m− 1)!
, x > 0, (2.1)

wherem is a positive integer and θ > 0. Its survival function is given by

F (x|m, θ ) = e−x/θ
m−1∑
n=0

xn

θnn!
. (2.2)

AnM-component Erlang mixture with common scale parameter has pdf

h(x|Φ) =
M∑

u=1

αuf (x|mu, θ ) =
M∑

u=1

αu
xmu−1e−x/θ

θmu (mu − 1)!
, (2.3)

where the parameters areΦ = {αu,mu, θ, u = 1, . . . ,M}withweight constraintsαu > 0,
∑M

u=1αu = 1, and scale parameter
θ > 0. We denote its distribution function as H(x|Φ) and the survival function as H(x|Φ) = 1− H(x|Φ).

Lee and Lin [2] show that the class of univariate Erlangmixtures is dense in the space of positive continuous distributions
in the sense of weak convergence. There are explicit expressions for many distributional quantities such as the moments,
the distribution function and the characteristic function. Risk measures such as value-at-risk (VaR) and tail VaR (TVaR) can
be easily calculated as well.

Borrowing the notation in [12] for censoring and truncation, denote the common truncation range of the data as (t l, t r ). Let
X = (X1, . . . , Xn) be the underlying random sample under truncation and its realization with censoring be x = (x1, . . . , xn).
For each data point xv, v = 1, . . . , n, we denote its censoring interval as (lv, rv), i.e., the realization of Xv inside the interval
is censored. Thus, xv is determined as follows:

uncensored: t l ≤ lv = rv = xv ≤ t r ,

left censored: t l = lv < xv = rv < t r ,

right censored: t l < lv = xv < rv = t r .

The density function of Xv is given by

g(xv|t l, t r , Ψ ) =
M∑

u=1

βup(xv|t l, t r ,mu, θ ), t l ≤ xv ≤ t r , (2.4)

where βu = αu
F (tr |mu,θ )−F (t l|mu,θ )

H(tr |Φ)−H(t l|Φ)
and p(xv|t l, t r ,mu, θ ) = f (xv |mu,θ )

F (tr |mu,θ )−F (t l|mu,θ )
. Thus, themodel parameters are re-parametrized

to be Ψ = {βu,mu, θ, u = 1, . . . ,M}.
An EM algorithm for parameter estimation for the Erlang mixture model is presented in [2] and extended in [12] whose

EM algorithm deals with truncated and censored data. In both papers, the set of parameters to be estimated are mixing
weights and the scale parameter: Φ−m = {θ, αu, u = 1, . . . ,M}, or Ψ−m = {θ, βu, u = 1, . . . ,M} in the truncation and
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censoring case with relationship

αu = c
βu

F (t r |mu, θ )− F (t l|mu, θ )
, u = 1, 2, . . . ,M, (2.5)

where c is a normalizing constant such that
∑M

u=1αu = 1.
An EM algorithm treats the data as an incomplete data set by introducing a set of latent variables Z = (Z1, Z2, . . . , Zn),

where Zv = (Zv1, . . . , ZvM ), v = 1, 2, . . . , n, with

Zvu =

{
1, if Xv comes from the uth component density f (xv|mu, θ ),
0, otherwise. (2.6)

In the following we present the standard EM algorithm for the Erlang mixture. Note that since the truncation points t l = 0
and t r = ∞ imply no truncation, the algorithm also works for non-truncated data.

E-Step: Assuming that in the kth iteration of the E-step, the current parameter values are Ψ
(k)
−m = {θ

(k), β
(k)
u , u = 1, . . . ,M},

the expectation of the complete log-likelihood given the data and the current parameters Ψ
(k)
−m is

Q (Ψ−m|Ψ
(k)
−m) =

n∑
v=1

M∑
u=1

z(k)vu (lnβu −
1
θ
E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ

(k)
−m]

−mu ln θ − ln(F (t r |mu, θ )− F (t l|mu, θ ))),

(2.7)

where

z(k)vu =
α
(k)
u f̃ (lv, rv|mu, θ

(k))∑M
w=1 α

(k)
w f̃ (lv, rv|mw, θ (k))

, v = 1, . . . , n, u = 1, . . . ,M, (2.8)

with

f̃ (lv, rv|mu, θ
(k)) =

{
f (xv|mu, θ

(k)), lv = rv = xv,

F (rv|mu, θ
(k))− F (lv|mu, θ

(k)), lv < rv.

The expectation E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ
(k)
−m] is equal to xv if it is uncensored. Here, we omit the terms that do not contain

mixing weights and the scale parameter.

M-step: The mixing weights and the common scale parameter are updated by

β (k+1)
u =

1
n

n∑
v=1

z(k)vu , u = 1, . . . ,M, (2.9)

θ (k+1)
=

∑n
v=1

∑M
u=1 z

(k)
vu E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ

(k)
−m] − T (k+1)

n
∑M

u=1 muβ
(k+1)
u

, (2.10)

where

T (k+1)
= n

M∑
u=1

β (k+1)
u

(t l)mue−t
l/θ
− (t r )mue−t

r /θ

θmu−1(mu − 1)!(F (t r |mu, θ )− F (t l|mu, θ ))

⏐⏐⏐⏐⏐
θ=θ (k)

. (2.11)

The detailed derivation and initialization can be found in [2,12]. However, some issues arise: first, the initial estimates play
an important role to the fast convergence of the EM algorithm. The initialization method based on the Tijms approximation
is, although justifiable, not computationally efficient. Second, the ad-hoc method for shape parameters adjustment requires
a large number of runs of the EM algorithm, which adds greatly the computation burden. To improve the fit, we propose
a generalized EM (GEM) algorithm with shape parameters being taken into consideration and a clusterized method of
moments (CMM) to obtain high quality initial values for Erlang mixtures in the next two sections.

3. A GEM algorithm for parameter estimation

In this section, we extend the standard EM algorithm such that it also estimates the shape parameters. The following
approach is motivated by Givens and Hoeting [14].

Recalling the definition of latent variables Zv, v = 1, . . . , n in Section 2, the corresponding complete random sample
(X1, Z1), (X2, Z2), . . . , (Xn, Zn) contains all uncensored observations and latent variables. Then we have:
(a) (X1, Z1), (X2, Z2), . . . , (Xn, Zn) are independent and identically distributed;
(b) Zv ∼ MultM (1, α), v = 1, . . . , n, that is, Zv are multinomially distributed with the number of trials being one and event
probabilities α1, . . . , αM ;
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(c) The conditional distribution of Xv given Zv = zv is

L(xv|zv, Φ) =
M∏

u=1

{f (xv|mu, θ )}zvu =
M∏

u=1

{
xmu−1
v e−xv/θ

θmu (mu − 1)!

}zvu

, v = 1, . . . , n.

We now present the GEM algorithm.

E-step: Suppose that in the kth iteration of the E-step, the current parameter values are Ψ (k)
= {β

(k)
u ,m(k)

u , θ (k), u =
1, . . . ,M}. The conditional expectation for the complete log-likelihood given the current parameter values and data is given
by

Q (Ψ |Ψ (k)) =
n∑

v=1

M∑
u=1

z(k)vu

[
lnβu + (mu − 1)E[ln(Xv)|Zvu = 1, lv, rv, t l, t r , Ψ (k)

]

−
1
θ
E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ (k)

] − ln(mu − 1)!

−mu ln θ − ln(F (t r |mu, θ )− F (t l|mu, θ ))
]
,

(3.1)

where the posterior probability z(k)vu has the same form as (2.8) but withmu being replaced bym(k)
u . The expectations in (3.1)

are given in the following:
(i) for a censored data point (lv, rv),

E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ (k)
] =

θ (k)m(k)
u (F (rv|m

(k)
u + 1, θ (k))− F (lv|m

(k)
u + 1, θ (k)))

F (rv|m
(k)
u , θ (k))− F (lv|m

(k)
u , θ (k))

,

and

E(ln(Xv)|Zvu = 1, lv, rv, t l, t r , Ψ (k))

=
(ln lvF (lv|m

(k)
u , θ (t))− ln rvF (rv|,m

(k)
u , θ (k)))+

∑m(k)
u −1

n=0
1
n [F (rv|n, θ

(k))− F (lv|n, θ (k))]

F (rv|m
(k)
u , θ (k))− F (lv|m

(k)
u , θ (k))

;

(ii) for an uncensored data point xv ,

E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ (k)
] = xv,

and

E[ln(Xv)|Zvu = 1, lv, rv, t l, t r , Ψ (k)
] = ln xv.

M-step: We update the parameters by maximizing

Ψ (k+1)
= argmax

Ψ
Q (Ψ |Ψ (k)). (3.2)

The updates for mixing weights β
(k+1)
u , u = 1, . . . ,M and common scale parameter θ (k+1) have the same forms as those in

Section 2 withmu being replaced bym(k+1)
u .

Noting that the scale parameter depends on the shape parameters, we propose a local search method to find optimal
shape parameters to maximize Q (Ψ |Ψ (k)) and then update the scale parameter. First, we replace the mixing weights and
the common scale parameter in expression (3.1) with the new values and consider the expression as a function of shape
parameters only. In this case, we may rewrite the formula (3.1) as

Q ∗(m) =
n∑

v=1

M∑
u=1

z(k)vu

[
lnβ (k+1)

u + (mu − 1)E[ln(Xv)|Zvu = 1, lv, rv, t l, t r , Ψ (k)
]

−
1
θ̃
E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ (k)

] − ln(mu − 1)!

−mu ln θ̃ − ln(F (t r |mu, θ̃ )− F (t l|mu, θ̃ ))
]
,

(3.3)

wherem = (m1,m2, . . . ,mM ) and

θ̃ = (
n∑

v=1

M∑
u=1

z(k)vu E[Xv|Zvu = 1, lv, rv, t l, t r , Ψ (k)
] − T (k+1))/(n

M∑
u=1

muβ
(k+1)
u ),

where T (k+1) is given in (2.11).
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To maximize Q ∗(m), we apply an iterative method called the 3-optimal method, similar to that in [14]. Denote

δ+u = Q ∗(m+ eu)− Q ∗(m)

and

δ−u = Q ∗(m− eu)− Q ∗(m),

where eu is an M−length vector with the uth entry equal to 1 and others 0. Then the shape parameters are adjusted by
m[t] = m[t−1] +∆mwith m[0] = m(k). Here,

∆m = (0, . . . , 0, ∆mu, 0, . . . , 0)  
uth entry is ∆mu

, t = Ms+ u, (3.4)

where s is an integer satisfying t = Ms+ u for 1 ≤ u ≤ M , and ∆mu is calculated by

∆mu =

⎧⎨⎩
1, max{δ+u , δ−u } > ε, δ+u > δ−u ,

−1, max{δ+u , δ−u } > ε, δ−u > δ+u , mu > 1,
0, others,

u = 1, . . . ,M, (3.5)

where ε ≥ 0 is a predefined threshold. This process for searching the shape parameters repeats until the parameters do not
change any more. Afterwards, the common scale parameter is updated according to (2.10).

Finally, given the final estimates Ψ̂ = {̂θ, β̂u, m̂u, u = 1, 2, . . . ,M}, the estimates of the original mixing weights are

α̂u = c
β̂u

F (t r |m̂u, θ̂ )− F (t l|m̂u, θ̂ )
, u = 1, 2, . . . ,M, (3.6)

where c is a normalizing constant such that
∑M

u=1α̂u = 1.
The above GEM algorithm optimizes the parameters for the Erlang mixtures with the fixed number of componentsM . In

order to reach a satisfactory fitting result, one often needs to start with a large number of components, which may lead to
overfitting. Hence, we further apply a forward selection approach to select the least possible number of components using
the cross-validation or the CV method. We split the data set into a training set denoted by ST and a validation set denoted
by SV . Assume the fitted density function depending on the training set ST is ĥ(·|Φ̂), where Φ̂ are the estimated parameters.
For a data point represented by (lv, rv) with truncation (t l, t r ), we introduce the score function

CV (lv, rv) =

{
ln ĥ(xv|Φ̂)− ln(Ĥ(t r |Φ̂)− Ĥ(t l|Φ̂)), lv = rv = xv,

ln(Ĥ(rv|Φ̂)− Ĥ(lv|Φ̂))− ln(Ĥ(t r |Φ̂)− Ĥ(t l|Φ̂)), lv < rv,

where Ĥ(·|Φ̂) is the distribution function of the fitted model, and define the score function on the validation set SV as

CV (SV ) =
∑

(lv ,rv )∈SV

CV (lv, rv). (3.7)

The rationale for such a score function to judge the adequacy of fit of a statistical model can be found in [15]. We adopt
the 10-fold cross-validation for this purpose. The detailed procedure is given as follows.
(1) Randomly partition the data set into 10 equal sized groups;
(2) Of the 10 groups, a single group is retained as the validation data for testing the model, and the remaining 9 groups are
used as training data. Estimate the score function using the fitted model;
(3) Repeat the cross-validation process 10 times (the folds), with each of the 10 groups being used exactly once as the
validation data and calculate the score function;
(4) The 10 results from the folds can then be averaged to produce a single estimation for the score function.

This procedure is repeated with different numbers of components such that the number of components is determined to
maximize the average of the score function.

4. A CMM algorithm for parameter initialization

The EM algorithm as an iterative algorithm highly depends on initial estimates. In this section we propose a newmethod
which combines the method of moments and K -means clustering to obtain high quality initial estimates for the GEM
algorithm. We call this method the clusterized method of moments, or CMM for short. We measure the quality of an
algorithm according to the run time of the algorithm.

For the random sample (X1, Z1), . . . , (Xn, Zn), we have the following properties: for v = 1, . . . , n, u = 1, . . . ,M ,

E[Zvu] = P(Zvu = 1) = αu, (4.1)

E[Xv|Zvu = 1] = θmu ≜ µu,
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E[XvZvu] = αuµu, (4.2)

E[Xv] = θ

M∑
u=1

αumu =

M∑
u=1

αuµu, (4.3)

E[X2
v ] = θ2

M∑
u=1

αu(mu +m2
u) = θE[Xv] +

M∑
u=1

αuµ
2
u. (4.4)

For convenience, we re-parametrize Φ as Φ ′ = {θ, αu, µu, u = 1, . . . ,M}. In this case, the shape parameters are then
estimated bymu = ⌈µu/θ⌉, where ⌈x⌉ is the ceiling function of x.

Properties (4.1)–(4.4) are used as a basis to estimate the initial parameters as follows.
(1) We apply the following K -means clustering method to group the data into M groups so that Group u, u = 1, . . . ,M,

represents data from the uth component distribution of the mixture. The goal of this K -means clustering method is to find
the values of z1, . . . , zn and centers ν1, . . . , νM , by minimizing the expression

J =
n∑

v=1

M∑
u=1

zvu(xv − νu)2. (4.5)

Assuming the centers and the values of z1, . . . , zn in the previous step are ν
(k−1)
1 , . . . , ν

(k−1)
M and z(k−1)1 , . . . , z(k−1)n , the new

values are determined using the following procedure [16]:
(a) new centers νu, . . . , νM are obtained by

νu =

∑n
v=1 z

(k−1)
vu xv∑n

v=1 z
(k−1)
vu

. (4.6)

(b) with the new centers ν1, . . . , νM in (a), the values of z1, . . . , zn are given by

zvu =

{
1, u = argmin

v
(xv − νu)2,

0, otherwise,
v = 1, . . . , n, u = 1, . . . ,M. (4.7)

The data points are then re-assigned to the clusters by minimizing J in (4.5). The procedure is repeated until there are no
further changes in the assignments.
(2) According to (4.1), the mixing weights are estimated by

α̂u =

∑n
v=1 zvu
n

=
nu

n
, u = 1, 2, . . . ,M, (4.8)

where nu =
∑n

v=1zvu is the number of the data points clustered into the uth group.
(3) According to (4.2), the mean parameters are estimated by

µ̂u =

∑n
v=1 xvzvu

n
/̂αu =

∑n
v=1 xvzvu
nu

, u = 1, 2, . . . ,M. (4.9)

(4) According to (4.4), the common scale parameter is estimated by

θ̂ =

(
x2 −

M∑
u=1

α̂uµ̂
2
u

)
/x, (4.10)

where x = 1
n

∑n
v=1xv , x2 = 1

n

∑n
v=1x

2
v .

From the above initial estimates, we have the following equation
n∑

v=1

(xv − x)2 =
M∑

u=1

α̂u(µ̂u − x)2 + θ̂x. (4.11)

This is the decomposition formula of the sum of squared errors. The term on the left hand side represents the sum of
squared errors which will not be influenced by the parameters. The first term on the right hand side represents the sum
of squared errors among groups while the second term represents the sum of squared errors within each of the groups.
When fitting an Erlang mixture to a positive continuous distribution, a smaller θ is desirable (see [2]), as long as overfitting
is avoided. It implies that we should try to make the sum of squares within each of the groups as small as possible. The
K -means clustering is exactly such a method aiming to classify data to minimize the within-cluster sum of squared errors,
and hence is a reasonable method to solve the clustering issue.
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Sometimes a large θ̂ might lead to the situation that many shape parameters may be equal to 1, which often appears
when data have a long tail. In this situation we may modify the estimate by

θ̂∗ = min{θ̂ ,min{µ̂u; u = 1, . . .,M}}. (4.12)

At last, the initial shape parameters are estimated by

m̂u = ⌈µ̂u/θ̂
∗
⌉, u = 1, 2, . . . ,M. (4.13)

By taking truncation into account, we transform the initial values for the mixing weights by

β̂u = α̂u
F (t r |m̂u, θ̂

∗)− F (t l|m̂u, θ̂
∗)

H(t r |Φ̂)− (t l|Φ̂)
, u = 1, 2, . . . ,M. (4.14)

5. Further parameter adjustments

In order to further improve the model fitting, we may adjust the parameters by matching the first two moments of the
fitted model with the corresponding empirical moments.

5.1. Data with no truncation and censoring

As shown in [2], if X has an Erlang mixture of form (2.3), then it can be rewritten as a random sum with a compound
exponential distribution, i.e.,

X =
N∑
i=1

Ei, (5.1)

where N is the primary counting random variable with probability function P(N = mu) = αu, u = 1, . . . ,M, and
Ei, i = 1, 2, . . . , are iid exponential random variables with mean θ .

It is easy to see

E[X] = θE[N], E[X2
] = θ2(E[N] + E[N2

]), (5.2)

where E[N] =
∑M

u=1αumu, and E[N2
] =

∑M
u=1αum2

u.
We now introduce an additional tuning parameter s to adjust the parameters. For notational convenience, we suppose

that the estimated parameters via the GEM algorithm are Φ = {θ, αu,mu, u = 1, . . . ,M}. The common scale parameter is
to be adjusted by θ∗ = sθ and the shape parameters bym∗u = ⌈mu/s⌉ so that the first moment remains the same. The Erlang
mixture is then fitted to the data with new parameters Φ∗ = {θ∗, αu,m∗u, u = 1, . . . ,M} such that the first two moments
of the model with corresponding sample moments are matched with a properly chosen tuning parameter s.

The corresponding random variable X∗ again has an Erlang mixture of form (2.3) with parameters Φ∗, and may be
rewritten as X∗ =

∑N∗
i=1E

∗

i , where N∗ has probability function P(N∗ = m∗u) = αu, u = 1, . . . ,M, and E∗i , i = 1, 2, . . . ,
are iid exponential random variables with mean θ∗. Thus, we have

E[X∗] = θ∗E[N∗] ≈ θE[N], E[X∗2] ≈ θ2(sE[N] + E[N2
]). (5.3)

Here, an approximation instead of an equation is used because the new parameters m∗u = ⌈mu/s⌉ ≈ mu/s, u = 1, . . . ,M .
Now, the squared coefficient of variation of X∗, denoted by c2X∗ , is given by

c2X∗ =
Var(X∗)
E[X∗]2

≈
s

E[N]
+

E[N2
]

E[N]2
− 1. (5.4)

Similarly, for the observed data, the squared sample coefficient of variation denoted by c2x is

c2x =
x2

x2
− 1, (5.5)

where x2 = 1
n

∑n
v=1x

2
v , x =

1
n

∑n
v=1xv .

We match the squared coefficients of variation, i.e. c2X∗ = c2x , which results in

x2

x2
=

s
E[N]

+
E[N2
]

E[N]2
. (5.6)

The tuning parameter s thus is estimated by

ŝ = E[N]

(
x2

x2
−

E[N2
]

E[N]2

)
. (5.7)
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Wemay modify the tuning parameter by

s∗ = min{̂s,min{mu}, u = 1, 2, . . .,M}, (5.8)

for the same reason as that to (4.12).
With the estimated value s∗, we finally adjust the scale parameter and the shape parameters can be adjusted by

θ∗ = s∗θ, m∗u = ⌈mu/s∗⌉, u = 1, 2, . . . ,M. (5.9)

5.2. Truncated and censored data

Unlike data with no truncation and no censoring, the problem becomes slightly more complex.
Again consider new parameters Φ∗ = {θ∗, αu,m∗u, u = 1, . . . ,M}, where θ∗ = sθ and m∗u = ⌈mu/s⌉. For an uncensored

random variable X∗ that comes from an Erlang mixture with the new parameters, we have

E[X∗|t l < X∗ < t r ] =
θ

H(t r |Φ∗)− H(t l|Φ∗)

M∑
u=1

αum∗u[F (t
r
|m∗u + 1, θ∗)− F (t l|m∗u + 1, θ∗)], (5.10)

and

E[X∗2|t l < X∗ < t r ] =
(θ∗)2

H(t r |Φ∗)− H(t l|Φ∗)

M∑
u=1

αum∗u(m
∗

u + 1)[F (t r |m∗u + 2, θ∗)− F (t l|m∗u + 2, θ∗)]. (5.11)

We then compute the tuning parameter s by minimizing the following objective function:

O(s) =

⎧⎨⎩ ∑
v;xv uncensored

(xv − E[X∗|t l < X∗ < t r ])

⎫⎬⎭
2

+

⎧⎨⎩ ∑
v;xv uncensored

(x2v − E[X∗2|t l < X∗ < t r ])

⎫⎬⎭
2

. (5.12)

The optimization problem can be solved easily by a numerical procedure. The remaining procedure is the same as data with
no truncation and no censoring.

After adjusting the parameters, we set the new parameters as initial values and then apply the GEM algorithm again. In
otherwords, we repeat the aforementioned adjusting procedure and the GEMalgorithmuntil the increment of the likelihood
function (the decrement of the corresponding BIC is twice the increment) is less than a pre-specified threshold.

6. Simulation studies

This section provides simulation studies to illustrate the efficiency of the proposed method in the previous sections.
The simulated and real data sets used in this and next sections and the R code of the proposed algorithm are available
at http://www.utstat.utoronto.ca/~sheldon/DataandCodes.html for interested readers to download, test and implement for
other positive data.

The first simulation study involves fitting the Erlangmixture to simulated data fromamixture of two gammadistributions
with different scale and shape parameters. Themain purpose of this study is to see how the Erlangmixture fits amulti-modal
distribution outside its class. The second study involves fitting the model to simulated data from a Pareto distribution. Since
the Pareto distribution has a long right tail, the main purpose of this study is to examine whether the algorithm can capture
the long tail. In our simulation studies, we also compare the run time of our method with those in [2,12]. The run time of
an algorithm is used to measure the ‘‘quality’’ of initial values. The results show that our initial values can lead to a faster
convergence, which indicates that we obtain quality initial values.

6.1. Mixture of two gamma distributions

2000 data points are generated from a mixture of two gamma distributions with shape parameters 10 and 15. The
corresponding scale parameters are 0.5 and 1, having weights of 0.4 and 0.6, respectively. Hence, this distribution is not in
the class of the Erlang mixture with common scale parameter. We consider left truncation with different truncation points
t l in this example. The data points are removed if they are less than t l and the remaining data are used to fit the model. To
illustrate the effect of different truncation points, we let t l = 0, t l = 3 and t l = 5, respectively. The estimated parameter
values are given in Table 1.

From Table 1, we can see, as expected, that the model has different parameter values for different truncation points. But
even with a high truncation point, the estimated parameter values remain fairly close to the ones without truncation. Fig. 1

http://www.utstat.utoronto.ca/%7Esheldon/DataandCodes.html
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Table 1
Estimated parameter values of fitted Erlang mixtures.

Truncation point u αu mu θ

t l = 0 1 0.4361 7 0.7621
2 0.5639 20

t l = 3 1 0.4422 8 0.6882
2 0.5578 22

t l = 5 1 0.4525 8 0.6707
2 0.5475 23

Fig. 1. Densities of fitted Erlang mixtures.

Fig. 2. PP-plot and QQ-plot of fitted mixture at t l = 3.

shows the efficiency of the models for different truncation points in which we compare the true density, the density of the
fitted Erlang mixtures with truncated points t l = 0, 3, 5, respectively, and the histogram of all 2000 points. From Fig. 1, one
may observe that all the fitted Erlangmixtures fit the data reasonably well: the curves almost overlap the true density curve.
Fig. 2 shows the PP-plot and QQ-plot for t l = 3, the plots indicate that the fitted model can fit data well in body and in tail.
However in practice, as the left truncation point increases we caution that the model may not fit the original data well due
to the loss of information. The greater the truncation point is, the more information is lost.

Another aspect of the proposed algorithm is to reduce the computing time. In Table 2, we compare the run time of our
approach (denoted by Method I) with the run time of the original modified EM algorithm in [12] (denoted by Method II) for
fitting the mixture of two gammas with t l = 3. It shows, in addition to the improvement of BIC, that the current approach
reduces the run time significantly.
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Table 2
Comparison of two methods.

Methods Method I Method II

Components 2 2
Log-likelihood −5697.725 −5826.801
BIC 11433.309 11691.61
Run time 0.2502379 s 5.047358 s

Table 3
Parameter estimates of fitted 7-component Erlang mixture.

u αu mu θ

1 0.7517 1 5.2309
2 0.1707 5
3 0.0513 13
4 0.0158 25
5 0.0046 44
6 0.0035 83
7 0.0025 170

Table 4
Goodness-of-fit tests for fitted Erlang mixture to Pareto data.

Test Statistic p-value Accepted at 5% significant level

K-S 0.0196 0.4287 Yes
A-D 0.4917 0.7553 Yes
Cv-M 0.1044 0.5639 Yes

Table 5
Comparison of BICs and run times.

Methods Method I Method II Kernel

Components 7 7 2000
Log-likelihood −7186.021 −7222.83 −7389.431
BIC 14486.167 14559.67 14778.86
run time 3.31312 s 182.61384 s –

6.2. Fitting data from Pareto distributions

The Pareto distribution has a long (right) tail. In this study we use an Erlang mixture to fit data generated from the Type
II Pareto distribution with shape parameter α and scale parameter λ:

p(x|α, λ) =
αλα

(x+ λ)α+1
, x ≥ 0. (6.1)

First, 2000 data points are generated from a Type II Pareto with shape parameter 1.5 and scale parameter 10. Denote the
data as (x1, . . . , x2000). We then fit the data using an Erlang mixture. A 7-component Erlang mixture is obtained to fit the
data and its parameter estimates are given in Table 3.

We compare our results with those from the kernel estimation, a common universal statistical method, and then with
those from the EM algorithm in [2]. Fig. 3 shows the PP-plots and QQ-plots, from which we observe that the Erlang mixture
is able to fit the body and the tail of the Pareto, even though the Erlang mixture and the Pareto have completely different
tails. This is because the impact of large values will be capturedwhenwe adopt the K-meansmethod to cluster the data. Also
the PP-plot of the kernel estimation indicates the fitness is unsatisfactory at the left tail, a drawback of the kernel estimation
method.

We also perform several common statistical tests on the fitness. The tests we use in this section are the Kolmogorov–
Smirnov test, the Anderson Darling test and the Cramer–von Mises test. Table 4 summarizes the results of three common
goodness-of-fit tests. All the tests indicate a good fit to the simulated data.

To test the efficiency of the proposed algorithm, finally we run both EM algorithms. The results show that the run time
of our method is significantly shorter (Table 5).

Next, we generate 2000 right random censoring points denoted as (y1, . . . , y2000), from another Type II Pareto distribution
with shape parameter 0.1 and scale parameter 15. For v = 1, . . . , 2000, data point xv is censored if xv > yv and in this case
lv = yv . The resulting data set now contains 1875 uncensored data points and 125 right censored data points. We use an
Erlang mixture to fit the censored data. The estimated parameters are given in Table 6.

From Table 6, we observe that the parameters of the fitted model are closed to the results for the uncensored data.
Furthermore, Fig. 4 shows the PP-plot and QQ-plot of the fitted model. As expected, although the model cannot fit the tail of
the data as well as the complete data, the results in Table 7 still indicate good fitness to the original generated data.
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Fig. 3. PP-plots and QQ-plots for fitted model vs. kernel estimation/standard EM.

Fig. 4. PP-plot and QQ-plot for fitted model.

Table 7 summarizes the results of three common goodness-of-fit tests. All the tests do not reject the results at the 5%
significant level.

7. Real data applications

In this section, we consider applications to two real insurance loss data sets.

7.1. Danish fire data

We consider a Danish data set that contains 2167 fire losses from 1980 to 1990. Only losses exceeding 1 million Danish
Krone were recorded. The data have been adjusted for inflation to reflect the 1985 values and are expressed in millions of
Danish Krone. This data set has been widely studied (e.g. [17–19]).

Using 1 million Danish Krone as the monetary unit, the data are left truncated with truncation point t l = 1. The fitting
procedure with the 10-fold cross-validation leads to a 5-component Erlang mixture with the estimated parameters given in
Table 8.
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Table 6
Parameter estimates of fitted 7-component Erlang mixture.

u αu mu θ

1 0.7848 1 5.6715
2 0.1503 5
3 0.0409 12
4 0.0142 22
5 0.0050 41
6 0.0027 72
7 0.0020 141

Table 7
Tests for fitness of Erlang mixture to censored data.

Test Statistic p-value Accepted at 5% significant level

K-S 0.0200 0.4052 Yes
A-D 1.1571 0.2845 Yes
Cv-M 0.1998 0.2679 Yes

Table 8
Estimated parameters of fitted 5-component Erlang mixture.

u αu mu θ

1 0.9467 1 1.03693
2 0.0369 6
3 0.0138 17
4 0.0020 44
5 0.0006 174

Fig. 5. Left panel: histogram and fitted density on logarithmic scale; Right panel: empirical and fitted survival curves.

In the left panel of Fig. 5, we compare the truncated data with the fitted truncated density on the logarithmic scale. In the
right panel of Fig. 5 the fitted truncated survival curve and the Kaplan–Meier curve are given. It is clear that both curves are
very close to each other.

We remark that [17] used the generalized Pareto distribution (GPD) to fit the same data set and tested the tail fitness
by considering policy payouts with lower attachment (r = 50) and upper attachment (R = 200) that will be described in
(7.1). The parameter estimates of the GPD model for this data set are ξ = 0.61, µ = 1, σ = 0.93 (see [17]). They showed
that the GPD is superior to some traditional parametric models such as the truncated log-normal and the ordinary Pareto
distribution in terms of tail fitting by examining the expected payouts with high attachment points and low attachment
ratios. Their approach also indicates indirectly that the GPD fits the data well in the tail. However, the GPD does not fit the
body of the data well as evidenced by poor approximation for low attachment ratios, as shown in Table 11. In following,
we will show that the Erlang mixture model can fit both the body and the tail of the data well when comparing with the
GPD by (a) calculating VaR and TVaR for the empirical distribution, the fitted Erlang mixture and the GPD at a wide range of
confidence levels; and (b) calculating the expected payouts, given different lower and upper attachment points.

7.1.1. VaR and TVaR
Wecalculate VaR and TVaR using the threemodels and the corresponding nonparametric results are used as a benchmark.

We show in Tables 9 and 10 that both the Erlang mixture and the GPD can fit the data well for high confidence levels. As
expected, the Erlang mixture produces more accurate estimates at relatively low confidence levels while the GPD more
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Table 9
Comparison of VaRs from different models.

Confidence level Empirical Erlang GPD

80.0% 3.4782 3.4329 3.5448
85.0% 4.3254 4.3241 4.2595
90.0% 5.5415 5.4249 5.6863
95.0% 9.9726 9.7347 8.9548
97.5% 16.268 16.644 13.943
99.0% 26.043 22.852 24.777
99.5% 36.824 40.607 38.093
99.95% 151.77 164.98 156.79

Table 10
Comparison of TVaRs from different models.

Confidence level Empirical Erlang GPD

80.0% 9.9613 9.7456 8.7008
85.0% 12.001 11.734 10.645
90.0% 15.565 15.214 14.065
95.0% 24.082 23.445 22.351
97.5% 35.472 34.176 35.076
99.0% 58.586 56.502 62.796
99.5% 87.591 84.866 96.910
99.95% 207.83 194.62 201.23

accurate at high confidence levels. The real advantage of the use of an Erlang mixture is that it can capture not only the body
but also the tail of the data as shown in Section 7.1.2, while the GPD model fails to do so.

7.1.2. Expected payouts
Let X be an insurance loss and a policy on X has a loss layer with lower and upper attachment points r and R, respectively.

The payout Z on X is then given by

Z =

{0, 0 < X < r,
X − r, r ≤ X < R,
R− r, X ≥ R.

(7.1)

For this policy modification, we may calculate the expected payout E[Z |X > t l]. Denote the distribution function of the left
truncated losses as FX l (x) = P(X ≤ x|X > t l) and the corresponding density function fX l (x). Then, for payout layer (r, R) we
have

E[Z |X > t l] =
∫ R

r
(x− r)fX l (x)dx+ (R− r)(1− FX l (R)). (7.2)

The results from these three differentmodels are presented in Table 11. Using the non-parametric estimates of E[Z |X > t l]
as a benchmark, it is shown that the Erlang mixture provides better approximations, which indicates the Erlang mixture fits
both the body and the tail of the data. Again as expected, the GPD model provides good approximations when the lower
attachment point r is much larger than the truncation point t l, but it is not the case for small values of r .

7.2. Loss and ALAE insurance data

In this subsection, we consider an insurance data set from the US Insurance Services Office (ISO) that comprises of 1500
non-life insurance claims of which both the indemnity payment or loss as well as the allocated loss adjustment expense
(ALAE) are recorded. For each claim, the policy limit, i.e., the maximal claim amount, of the contract is also recorded. This
data set has been studied in [11,20,21].

We first consider fitting to the loss part of the data. Certain features of the data indicate that it is long tailed. For example
the maximum value of the data is 59 times the mean; 20.7% of the data points are categorized as outliers if the 1.5 IQR rule
is used. See the box-plot in Fig. 6.

Also note that the loss data are right censored. Although only 34 of the 1500 losses are right censored, censoring should
not be ignored when fitting the model to the data. Using our algorithm, a 7-component Erlang mixture is selected with the
parameter values given in Table 12.

To check the fitness of the fitted model to data, we compare the fitted survival curve with the Kaplan–Meier survival
curve, as shown in the left panel of Fig. 7. It is clear that the two curves are very close to each other, which indicates a good
fit.

We now use another Erlang mixture to fit the ALAE part of the data. The ALAE data are complete. A 4-component Erlang
mixture is selected to fit the data and Table 13 shows the estimated parameters.
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Table 11
Expected policy payout from different models.

R r/R Empirical Erlang mixture GPD

0.00 1.976 2.104 1.288
0.25 0.654 0.658 0.502

20 0.50 0.299 0.342 0.215
0.75 0.112 0.129 0.081
0.95 0.017 0.018 0.018

0.00 2.088 2.175 1.383
0.25 0.552 0.544 0.421

30 0.50 0.224 0.200 0.176
0.75 0.076 0.067 0.065
0.95 0.011 0.012 0.010

0.00 2.182 2.205 1.476
0.25 0.398 0.329 0.325

50 0.50 0.139 0.129 0.133
0.75 0.051 0.047 0.049
0.95 0.008 0.006 0.009

0.00 2.265 2.274 1.565
0.25 0.221 0.218 0.221

100 0.50 0.083 0.089 0.088
0.75 0.035 0.034 0.032
0.95 0.007 0.007 0.007

0.00 2.356 2.384 1.622
0.25 0.174 0.190 0.146

200 0.50 0.091 0.079 0.058
0.75 0.024 0.019 0.021
0.95 0.005 0.002 0.003

Table 12
Estimated parameters of fitted 7-component Erlang mixture.

u αu mu θ

1 0.7036 1 9463.258
2 0.1755 5
3 0.0725 12
4 0.0308 27
5 0.0136 49
6 0.0033 96
7 0.0007 230

Fig. 6. Box-plot of loss data.

The right panel in Fig. 7 shows the fitted survival curve and the empirical survival curve, which visually confirms that the
model fits the ALAE data well. The three common goodness-of-fit tests presented in Table 14 show that the fitted model is
not rejected at the 5% significant level.
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Fig. 7. Empirical and fitted survival curves.

Table 13
Estimated parameters of fitted 4-component Erlang mixture.

u αu mu θ

1 0.9064 1 7177.032
2 0.0793 6
3 0.0117 20
4 0.00003 53

Table 14
Goodness-of-fit tests for ALAE data.

Test Statistic p-value Accepted at 5% significant level

K-S 0.014 0.932 Yes
A-D 0.3303 0.9138 Yes
Cv-M 0.0222 0.9945 Yes

Table 15
VaRs and TVaRs for Loss data and ALAE data.

Confidence level Loss data ALAE data

VaR TVaR VaR TVaR

80.0% 48294 158691 15259 42438
85.0% 67431 192464 19377 50869
90.0% 94375 248753 27101 64919
95.0% 186029 372979 43978 95399
97.5% 280790 513761 62638 138926
99.0% 532897 723280 130817 218914
99.5% 612838 874711 169001 289372
99.95% 2056012 2245767 425133 457493

Again we can easily calculate the VaR and TVaR using the fitted Erlang mixture. The VaR and TVaR for both loss data and
ALAE data at different confidence levels are given in Table 15.

8. Concluding remarks

In this paper, we develop a GEM-CMM algorithm to fit the Erlang mixture model to truncated and censored loss data.
The purpose of this paper is to address two critical issues when using an EM algorithm to fit the Erlang mixture model
to loss data: obtaining the optimal or suboptimal values for the model shape parameters and seeking quality initial
estimates. A GEM algorithm is developed for the former and a CMM method is proposed to obtain quality initial estimates.
Further improvement is achieved by adjusting the estimated parameters to match first two moments of the model with
corresponding sample moments. We test the efficiency through several simulation studies and two real data applications.
The results show that indeed our approach is capable to obtain quality initial values, which leads to fewer iterations to find
the estimates. The run time is greatly reduced when comparing with the methods proposed in other papers such as Lee and
Lin [2] and Verbelen et al. [12].

We intend to extend the approach proposed in this paper tomultivariatemixturemodels. Quality initial estimates would
be evenmore critical in a high dimensional setting due to the sparseness of multivariate data. Further, the shape parameters
of the component distributions in a multivariate mixture model are often scarcely located and the local search method in
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this papermight have advantage to locate their optimal or suboptimal values.With the efficiency of the proposed algorithm,
we also expect the run time would be more significantly reduced.
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Appendix. Summary of the GEM-CMM Algorithm

Algorithm GEM-CMM algorithm

1. LetM = 2 and CV=−∞
2. do

{Initial step}
(a) Apply the K -means algorithm to cluster the data into M groups and assign values to the latent variables z1, · · · , zn

according to (2.6).

(b) Compute mixing weights, α̂u =

n∑
v=1

zvu/n = nu/n, u = 1, 2, · · · ,M

(c) Compute the mean parameters, µ̂u =

n∑
v=1

xvzvu/nu, u = 1, 2, · · · ,M

(d) Compute the common scale parameter, θ̂∗ = min{(x2 −
M∑

u=1

α̂uµ̂
2
u)/x, µ̂1, · · · , µ̂M}

(e) Compute the shape parameters, m̂u = ⌈µ̂u/θ̂
∗
⌉, u = 1, 2, · · · ,M

(f) Transform the initial mixing weights according to (4.14)

{EM algorithm}
while log-likelihood improves do
{E-Step}
Compute the conditional expectation as in (3.1) and the posterior probability as in (2.7)

{M-step}
(a) Update the mixing weights as in (2.9)
(b) Compute the conditional expectation Q ∗(m) as in (3.3)
do

(b1) Derive the increment of shape parameters ∆m as in (3.5)
(b2) Update the shape parameters bym← m+∆m

until no shape parameters change any more
(c) Update the scale parameter as in (2.10)
end while
Transform weights β to α using (3.6)
Compute log-likelihood and CV for Φ

M ← M + 1
until the CV does not improve any more
3. Output the number of componentsM and Φ = {αu,mu, θ}, u = 1, · · · ,M
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