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a b s t r a c t

The class of multivariate Erlang mixtures with common scale parameter has many
desirable properties and has widely been used in insurance loss modeling. The param-
eters of a multivariate Erlang mixture are normally estimated using an expectation–
maximization (EM) algorithm as shown in Lee and Lin (2012) and Verbelen et al.
(2016). However, when fitting the mixture to data of high dimension, the fitted density
surface is often not smooth (with deep peaks and valleys) and the tail fitting may
also be rather unsatisfactory. In this paper, we propose a generalized expectation
conditional maximization (GECM) algorithm that maximizes a penalized likelihood with
a proposed roughness penalty. The roughness penalty is based on integrated squared
second derivative of the density function of aggregate data, which is used in functional
data analysis. We illustrate the performance of the proposed method through some
numerical experiments and real data applications.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Mixture distributions have been widely used in data classification and segmentation applications, and in modeling
ata that exhibit clustering behavior. The most common mixture model in statistics is the Gaussian mixture. See [1,2]
nd references therein. However, in many practical applications and in particular insurance and economic applications,
ata are mostly positive. See [3,4] and examples in these papers. In those situations a Gaussian mixture is often not a
uitable model to fit the data and we may want to consider positive mixtures. One class of positive mixtures that has
ecently attracted much attention in insurance modeling is the class of Erlang mixtures with common scale parameter.
ee [3,5]. Their applications can be found in [6–13] and references therein.
An M-component k-variate Erlang mixture with common scale parameter has pdf

g(x|Φ) =

M∑
u=1

αu

k∏
j=1

f (xj|muj, θ ), xj > 0, j = 1, . . . , k, (1.1)

where

f (x|m, θ ) =
xm−1e−x/θ

θm(m − 1)!
(1.2)
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is the Erlang density with scale parameter θ > 0 and integer shape parameter m. The parameters of the mixture are
Φ = {θ, αu,muj, u = 1, . . . ,M; j = 1, . . . , k}. Note that the distribution function of f (x|m, θ ) can be explicitly written as

F (x|m, θ ) = 1 − e−x/θ
m−1∑
n=0

xn

θnn!
. (1.3)

ee and Lin [5] showed that this class of multivariate Erlang mixtures is dense in the space of positive continuous
ultivariate distributions in the sense of weak convergence. Hence, theoretically any positive data can be fitted by such
n Erlang mixture to any accuracy. They also showed that the mixture has many desirable properties: there are explicit
xpressions for many distributional quantities such as the moments and marginal distributions; any dependent structure
an be modeled and dependence measures such as the Kendall’s tau and Spearman’s rho also have explicit expressions.
he availability of explicit expressions is due to the use of an integer shape parameter in the Erlang distribution instead
f a real shape parameter in a gamma distribution.
An expectation–maximization (EM) algorithm was presented in [5], to estimate the parameters of the multivariate

rlang mixture. Verbelen et al. [9] extended the EM algorithm to handle truncated and censored data. However, there
re two main issues especially when fitting the mixture to data of high dimension: the fitted density surface is often not
mooth (with deep peaks and valleys) and the tail fitting is rather unsatisfactory. The roughness is often due to the need
o capture the heaviness of the tail with a high number of Erlang components. In this paper, we propose a generalized
xpectation conditional maximization (GECM) algorithm that maximizes a penalized likelihood with a roughness penalty
hat is the integrated squared second derivative of the density function of aggregate data. This penalty function is widely
sed in univariate functional data analysis. See [14]. Due to the specific form of the Erlang density and its closeness in
onvolution, the penalty function is applicable and works well in our multivariate case, as shown in Section 2.2. In this
aper, we conduct several simulations studies and apply the algorithm to real data sets. Our simulation studies and real
ata applications show that the algorithm is able to accurately fit the multivariate Erlang mixture with a relatively small
umber of components to data very well and overcomes the aforementioned drawbacks of the existing algorithms.
This paper is organized as follows. In Section 2, we introduce the roughness penalty in the context of the multivariate

rlang mixture and present the GECM algorithm for truncated and censored data. The algorithm may be viewed as an
xtension of the GEM-CMM (generalized EM algorithm along with clusterized method of moments) algorithm in [11] that
stimates the parameters of the uni-variate Erlang mixture. In Section 3, a moment-matching based initialization strategy
or the GECM algorithm is provided. In Section 4, we test the efficiency of the GECM algorithm through several simulation
tudies with different data characteristics. In Section 5, we fit the multivariate Erlang mixture to several real data sets and
he results show that the model can fit data of different types well. Moreover, we compare the fitness of the fitted model
ith and without roughness penalty and show that the roughness penalty plays an important role in the improvement
f the fitting. We conclude in Section 6 with some closing remarks.

. A GECM algorithm for parameter estimation

In this section, we propose a GECM algorithm to fit the multivariate Erlang mixture to truncated and censored data.
any real data sets are of this type including left truncated and right censored insurance claims where left truncation

epresents policy deductible and right censoring is interpreted as policy limit/maximum covered loss. This proposed
lgorithm is different from the EM algorithms in [5,9] in the way that the algorithm enables us to estimate not only
he mixing weights and the scale parameter but also the shape parameters, which results in a smooth fitted density and
better fit to the tail of the data.

.1. Data type and notation

Using similar notation to that in [9], we assume that the truncation range of a data set, denoted as [tl, tr ] where
l
= (t l1, . . . , t

l
k) is the left truncation point and tr = (t r1, . . . , t

r
k ) is the right truncation point, is the same for all the data

oints. For each multivariate data point, let xv = (xv1, . . . , xvk), v = 1, . . . , n, be the true value, clv = (c lv1, . . . , c
l
vk) be the

eft censoring point and crv = (crv1, . . . , c
r
vk) the right censoring point. The censoring status for the jth dimension of the

th observation is determined as follows,

uncensored: t lj ≤ c lvj = xvj = crvj ≤ t rj ,
left censored: t lj < xvj < c lvj < crvj ≤ t rj ,
right censored: t lj ≤ c lvj < crvj < xvj < t rj ,
interval censored: t lj ≤ c lvj < xvj < crvj ≤ t rj .

We remark that strictly speaking, for uncensored data points, the true values are not equal to the left and right censoring
points. We make such a modification to distinguish the uncensored data from interval censored data because the censoring

points for uncensored data will not be used in our derivations.
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2.2. Roughness penalty function

We now introduce a roughness penalty function that penalizes the log-likelihood of the data. As described in [14], one
ay to smooth a function’s roughness is to apply the integrated squared second derivative as a penalty on an objective

unction in an optimization scheme.
By adapting the idea, we introduce a roughness penalty function on the distribution of the aggregate S = X1 +· · ·+Xk

of random sample point (X1, . . . , Xk). Due to Property 5.1 in [5], if the joint distribution of (X1, . . . , Xk) has a multivariate
Erlang mixture with density (1.1), then the aggregate random variable S has a univariate Erlang mixture with density

fS(x) =

M∑
u=1

αuf (x|mu1 + · · · + muk, θ ). (2.1)

As a result, the integrated squared second derivative, as the roughness penalty function, of S is given by

PEN2 =

∫
∞

0
[f ′′

S (x)]
2dx =

∫
∞

0

{
M∑

u=1

αuf ′′(x|mu1 + · · · + muk, θ )

}2

dx. (2.2)

It is easy to check that the second derivative of Erlang density f (x|m, θ ) may be written as

f ′′(x|m, θ ) =
1
θ2 [f (x|m − 2, θ ) − 2f (x|m − 1, θ ) + f (x|m, θ )] (2.3)

ith f (x|m − i, θ ) = 0 if m ≤ i, i = 1, 2. Moreover, for any pair of integers m1 and m2,∫
∞

0
f (x|m1, θ )f (x|m2, θ )dx =

1
θ

(m1 + m2 − 2)!
(m1 − 1)!(m2 − 1)!

1
2m1+m2−1 . (2.4)

Hence, the roughness penalty function may be re-expressed as

PEN2 =
1
θ4

∫
∞

0

{
M∑

u=1

αu[f (x|m̃u − 2, θ ) − 2f (x|m̃u − 1, θ ) + f (x|m̃u, θ )]

}2

dx

=
1
θ5 α′Pα,

(2.5)

here m̃u = mu1 + · · · + muk, α = (α1, . . . , αM ), P is an M × M matrix with the (u, w)th entry:

puw =

2∑
i=0

2∑
j=0

(−1)i+j
(

2
i

)(
2
j

)
(m̃u + m̃w − i − j − 2)!

(m̃u − i − 1)!(m̃w − j − 1)!
1

2m̃u+m̃w−i−j−1 . (2.6)

aken truncation into consideration, it is easy to check that the roughness penalty is adjusted as

PEN∗

2 =
1
θ5 β′P∗β, (2.7)

here P∗ is an M × M matrix with the (u, w)th entry

p∗

uw = puw

⎡⎣ M∑
u=1

αu

k∏
j=1

F (t rj |muj, θ ) − F (t lj |muj, θ )

⎤⎦2

αuαw

k∏
j=1

[
F (t rj |muj, θ ) − F (t lj |muj, θ )

] k∏
j=1

[
F (t rj |mwj, θ ) − F (t lj |mwj, θ )

] ,

nd the mixing weights β are defined according to (2.14) below.
We may use the rth order derivative as the roughness penalty and in this case the roughness penalty without

onsidering truncation is given by

PENr =
1
2r+1 α′Pα, (2.8)
θ

3



W. Gui, R. Huang and X.S. Lin Journal of Computational and Applied Mathematics 386 (2021) 113216
where the (u, w)th entry of the matrix P is given by

puw =

r∑
i=0

r∑
j=0

(−1)i+j
(

r
i

)(
r
j

)
(m̃u + m̃w − i − j − 2)!

(m̃u − i − 1)!(m̃w − j − 1)!
1

2m̃u+m̃w−i−j−1 . (2.9)

We remark that the above explicit formulas uniquely hold for the multivariate Erlang mixture, which is one of the
main reasons that the integrated squared second derivative penalty is chosen.

2.3. The GECM algorithm

In this subsection, we propose a GECM algorithm to maximize the penalized log-likelihood with roughness penalty
(2.7).

The log-likelihood of a censored and truncated sample as in Section 2.1 is given by

l(Φ) =

n∑
v=1

ln

⎧⎨⎩
M∑

u=1

αu

k∏
j=1

f̃ (xvj|muj, θ )

⎫⎬⎭
−

n∑
i=1

ln

⎧⎨⎩
M∑

u=1

αu

k∏
j=1

(F (t rj |muj, θ ) − F (t lj |muj, θ ))

⎫⎬⎭ ,

(2.10)

where

f̃ (xvj|muj, θ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (xvj|muj, θ ), t lj ≤ c lvj = xvj = crvj ≤ t rj ,
F (c lvj|muj, θ ) − F (t lj |muj, θ ), t lj < xvj < c lvj < crvj ≤ t rj ,
F (t rj |muj, θ ) − F (crvj|muj, θ ), t lj ≤ c lvj < crvj < xvj < t rj ,
F (crvj|muj, θ ) − F (c lvj|muj, θ ), t lj ≤ c lvj < xvj < crvj ≤ t rj .

(2.11)

A random variable comes from the M-component Erlang mixture means that the variable is selected by chance from the
given M Erlang distributions (components) according to given probabilities (mixing weights). As usual, introduce latent
random vectors Z = (Z1, Z2, . . . , Zn), where Zv = (Zv1, . . . , ZvM ), v = 1, 2, . . . , n with

Zvu =

{
1, observation Xv comes from the uth component,
0, others. (2.12)

The log-likelihood of the (complete) sample is

l(Φ|z) =

n∑
v=1

M∑
u=1

zvu ln
(
βuf (xv|tl, tr ,mu, θ )

)
, (2.13)

where

βu =

αu

k∏
j=1

[
F (t rj |muj, θ ) − F (t lj |muj, θ )

]
M∑

w=1

αw

k∏
j=1

[
F (t rj |mwj, θ ) − F (t lj |mwj, θ )

] , (2.14)

and

f (xv|tl, tr ,mu, θ ) =

k∏
j=1

f (xvj|muj, θ )
F (t rj |muj, θ ) − F (t lj |muj, θ )

. (2.15)

The penalized log-likelihood is then given by

lp(Φ|z) = l(Φ|z) −
λ

θ5 β′P∗β, (2.16)

where λ is a tuning parameter.
4
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In the following, we present the E-Step and M-Step of the GECM algorithm.

-Step: Given that the estimated parameter values from the last iteration t are Φ(t)
= {β

(t)
u ,m(t)

u , θ (t), u = 1, . . . ,M}, the
expectation of the complete data log-likelihood is given by

Q (Φ|Φ (t)) =

n∑
v=1

M∑
u=1

k∑
j=1

zvu

[
(lnβu −

1
θ
E(Xvj|Zvu = 1, xvj,m

(t)
uj , θ

(t))

− muj ln θ + (muj − 1)E(ln(Xvj)|Zvu = 1, xvj,m
(t)
uj , θ

(t)) − ln(muj − 1)!)

]

−

n∑
v=1

M∑
u=1

zvu
k∑

j=1

ln(F (t rj |muj, θ ) − F (t lj |muj, θ )) −
λ

θ5 β′P∗β.

(2.17)

Here, the posterior probability zvu of the latent variable Zvu as shown in (2.12) is given by

zvu =
α
(t)
u p(xv|m

(t)
u , θ (t))∑M

w=1 α
(t)
w p(xv|m

(t)
w , θ (t))

, v = 1, . . . , n, u = 1, . . . ,M, (2.18)

where p(xv|mu, θ ) =

k∏
j=1

f̃ (xvj|muj, θ ).

In (2.17), the expected values of Xvj and ln(Xvj) equal to xvj and ln xvj for uncensored data points but we need to compute
he expected values of Xvj and ln(Xvj) conditioning on the censoring and truncation points and the current parameters.
or a left censored data point, we have

E(Xvj|Zvu = 1, xvj,m
(t)
uj , θ

(t)) =
θ (t)m(t)

uj (F (c
l
vj|m

(t)
uj + 1, θ (t)) − F (t lj |m

(t)
uj + 1, θ (t)))

F (c lvj|m
(t)
uj , θ

(t)) − F (t lj |m
(t)
uj , θ

(t))
, (2.19)

nd

E(ln(Xvj)|Zvu = 1, xvj,m
(t)
uj , θ

(t))

=

(ln t ljF (t
l
j |m

(t)
uj , θ

(t)) − ln c lvjF (c
l
vj|,m

(t)
uj , θ

(t))) +

m(t)
uj −1∑
n=0

1
n
[F (c lvj|n, θ

(t)) − F (t lj |n, θ
(t))]

F (c lvj|m
(t)
uj , θ

(t)) − F (t lj |m
(t)
uj , θ

(t))
,

(2.20)

and similarly, the expectations for right and interval censored data points can be obtained as well.

M-Step: Update the parameters by maximization:

Φ (t+1)
= argmaxQ (Φ|Φ(t)). (2.21)

Instead of using the M-step in traditional EM algorithm it is computationally simpler to implement the following
conditional maximization steps, i.e., the CM-steps and a local search method for estimating shape parameters in each
step.

CM-step 1: The mixing weights are obtained by the following formula:

β (t+1)
u =

1
N

⎧⎨⎩
n∑

v=1

zvu −
2θ5

λ
β (t)
u

M∑
j=1

β
(t)
j p∗

uj

⎫⎬⎭ , u = 1, . . . ,M, (2.22)

here N = n −
2θ5
λ

βTP∗β|β=β(t) and the entries in matrix P∗ are calculated with previous shape parameters.
CM-step 2: The scale parameter is updated by solving the equation:

nθ5
M∑

u=1

k∑
j=1

m(t)
uj β

(t+1)
u − θ4

n∑
v=1

M∑
u=1

k∑
j=1

zvuE(Xvj|Zvu = 1, xvj,m
(t)
uj , θ

(t))

+ nθT − 5λβ′P∗β = 0,

(2.23)

where

T =

n∑ k∑ M∑
zvu

(t lj )
m(t)

uj e−t lj/θ − (t rj )
m(t)

uj e−trj /θ

m(t)
uj −1 (t) r (t) l (t)

⏐⏐⏐⏐
θ=θ (t)

. (2.24)

v=1 j=1 m=1 θ (muj − 1)!(F (tj |muj , θ ) − F (tj |muj , θ ))

5
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CM-step 3: Noting that the shape parameters are constrained to positive numbers, we adopt a local search method
(see [11,15]) to find optimal shape parameters to maximize Q (Φ|Φ (t)). We first replace the mixing weights and the
common scale parameter in (2.17) with the new ones from the above steps and now the objective function Q is treated
as a function of shape parameters only:

Q ∗(m) =

n∑
v=1

M∑
u=1

k∑
j=1

zvu

[
(lnβ (t+1)

u −
1

θ (t+1) E(Xvj|Zvu = 1, xvj,muj, θ
(t+1))

− muj ln θ (t+1)
+ (muj − 1)E(ln(Xvj)|Zvu = 1, xvj,muj, θ

(t+1)) − ln(muj − 1)!)

]

−

n∑
v=1

M∑
u=1

zvu
k∑

j=1

ln(F (t rj |muj, θ
(t+1)) − F (t lj |muj, θ

(t+1))) − λ
[β(t+1)

]
′P∗β(t+1)

[θ (t+1)]5
,

(2.25)

here m = (m11, . . . ,m1k, . . . ,mM1, . . . ,mMk).
To maximize Q ∗(m), we adopt a 3-optimal method, a common algorithm in the local search methodology. Denote

δ+

uj = Q ∗(m + euj) − Q ∗(m)

nd

δ−

uj = Q ∗(m − euj) − Q ∗(m),

here euj is an M × k-length vector with the ((u − 1) × k + j)th entry equal to 1 and others 0. The shape parameters are
djusted by m[l]

= m[l−1]
+ ∆m, where m[0]

= m(t), ∆m = (∆m11, . . . , ∆m1k, . . . , ∆mM1, . . . , ∆mMk) with

∆muj =

⎧⎪⎨⎪⎩
1, max{δ+

uj , δ
−

uj} > 0, δ+

uj > δ−

uj ,

−1, max{δ+

uj , δ
−

uj} > 0, δ−

uj > δ+

uj , muj > 1,
0, others,

u = 1, . . . ,M, j = 1, . . . , k. (2.26)

This process for searching new shape parameters repeats until the value of the parameters do not change anymore.
Finally, suppose the final estimates to be Φ̂ = {̂βu, m̂uj, θ̂ , u = 1, 2, . . . ,M, j = 1, . . . , k}. Then the estimates of the

original mixing weights are

α̂u = c
β̂u∏k

j=1[F (t
r
j |m̂uj, θ̂ ) − F (t lj |m̂uj, θ̂ )]

, u = 1, 2, . . . ,M, (2.27)

where c is a normalizing constant such that
∑M

u=1 α̂u = 1.

2.4. Estimation of tuning parameter

Two quantities l(Φ|z) and
1
θ5 β′P∗β in (2.16) may be very different in scale. If l(Φ|z) is too large to dominate

λ

θ5 β′P∗β,
the effect of the roughness penalty is not significant. Reversely, the fitted model may be too smooth to produce a good fit

to data. To estimate, we first calculate the values of l(Φ|z) and
1
θ5 β′P∗β using the non-penalized GECM algorithm and use

hem to obtain the initial range for the tuning parameter. As suggested in [14], the value of |l(Φ|z)| should not be more

than 100 times of the value of
λ

θ5 β′P∗β, which we will use to set a lower bound for the tuning parameter. Similarly, we

set an upper bound for the tuning parameter so that
λ

θ5 β′P∗β is at most 100 times of the value of |l(Φ|z)|. We then adopt
the golden section search as described below (also see [16]) to find the optimal tuning parameter within the bounds. To
make the range of the tuning parameter more manageable, we define a new tuning parameter ν using the transformation
ν = log10 λ.

The cross-validation or CV method is used as a criterion to determine the tuning parameter. The basic idea behind
cross-validation is to split the data into two groups: a training set to be fitted to the model and the remaining of the data
the validation set, in order to see how well the model fits to the data that are not used to estimate the model. We adopt
the 10-fold cross-validation approach. For a given data set D, we randomly partition it into 10 equally sized groups. Of
the 10 groups, a single group is retained as the validation data for testing the model and the remaining 9 groups are used
as training data.

Let the training set be denoted by DT and the validation set by DV . Assume the estimated parameters obtained from
the training set D with a pre-estimated tuning parameter are Φ̂ = {̂α , m̂ , θ̂ , u = 1, . . . ,M, j = 1, . . . , k}. For any data
T u uj

6
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point xv in the validation set, we introduce the score function

CV (xv; ν) = ln

⎧⎨⎩
M∑

u=1

α̂u

k∏
j=1

f̃ (xvj|m̂uj, θ̂ )

⎫⎬⎭
− ln

⎧⎨⎩
M∑

u=1

α̂u

k∏
j=1

(F (t rj |m̂uj, θ̂ ) − F (t lj |m̂uj, θ̂ ))

⎫⎬⎭ ,

(2.28)

where f̃ (xvj|m̂uj, θ̂ ) has the same form as in (2.11). The score function on the validation set DV is now defined as

CV (DV ; ν) =

∑
xv∈DV

CV (xv; ν). (2.29)

The rationale for using such a score function to measure the adequacy of the fitness of a statistical model can be found
in [17].

Next, repeat the cross-validation process 10 times (the folds), with each of the 10 groups being used exactly once
as the validation data and calculate the score function. The 10 results from the folds are averaged to produce a single
estimation for the score function that we denote it by CV (D; ν).

The procedure of the golden section search is then used to find the optimal tuning parameter as follows.
(i) Suppose that (a, b) is the current range for the tuning parameter and the scores at the endpoints are CV (D; a) and

CV (D; b). Let c = a + (1 − ϕ)(b − a), d = a + ϕ(b − a), ϕ =

√
5−1
2 . Calculate CV (D; c) and CV (D; d).

(ii) If CV (D; c) > CV (D; d), then the range for the tuning parameter is changed to (a, d); otherwise, the range for the
uning parameter is changed to (c, b).

(iii) Repeat Steps (i)–(ii) until the length of the range is less than a predefined threshold δ > 0.
(iv) The tuning parameter is estimated as the midpoint of the final range.
The above penalized GECM algorithm optimizes the parameters for the Erlang mixtures with fixed M. In order to reach

a satisfactory fitting result and to avoid overfitting, we apply a forward selection approach to select the least possible
number of components. That is, the penalized GECM algorithm is carried out for a 2-component Erlang mixture first and
is then increased by one each time. The search stops when the average of the score function does not increase anymore.

3. Parameter initialization

As an iterative algorithm an EM algorithm highly depends on initial values. In this section we extend the method of
clusterized method of moments (CMM) along with K-means algorithm proposed in [11] to multivariate case.

For the corresponding random complete data (X1, Z1), (X2, Z2), . . . , (Xn, Zn), under the assumptions presented in
Section 2, we have the following results, for v = 1, . . . , n, j = 1, . . . , k, u = 1, . . . ,M ,

E[Zvu] = P(Zvu = 1) = αu, (3.1)

E[Xvj|Zvu = 1] = θmuj
△
= µuj, (3.2)

E[XvjZvu] = αuµuj, (3.3)

E[Xvj] = θ

M∑
u=1

αumuj =

M∑
u=1

αuµuj, (3.4)

E[X2
vj] = θ2

M∑
u=1

αu(muj + m2
uj) = θE[Xvj] +

M∑
u=1

αuµ
2
uj, (3.5)

where the formula θmuj
△
= µuj in (3.2) means θmuj is denoted by µuj.

For convenience, we re-parametrize Φ as Φ ′
= {αu, µuj, θ, u = 1, . . . ,M, j = 1, . . . , k}, where µuj = θmuj, u =

1, . . . ,M, j = 1, . . . , k. In this case, the shape parameters are estimated by muj = ⌈µuj/θ⌉, where ⌈x⌉ is the ceiling
function of x. The initialization of the parameters is now summarized as follows.

(1) Apply the K-means clustering method to group the data into M groups so that Group u, u = 1, . . . ,M , represents
data from the uth component distribution of the mixture. The K-means algorithm works especially well for multivariate
data clustering. The detailed procedure can be seen in [18] and [11] and we omit it here.

(2) According to (3.1), the mixing weights are estimated by

α̂u =

∑n
v=1 zvu
n

=
nu

n
, u = 1, 2, . . . ,M, (3.6)

here n =
∑n z represents the number of the points clustered into the uth group.
u v=1 vu

7
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Table 1
The parameters of the 5-component trivariate Erlang mixture.
u αu mu θ

1 0.2 (5, 20, 4) 0.01
2 0.2 (10, 30, 5)
3 0.3 (30, 40, 5)
4 0.1 (30, 70, 6)
5 0.2 (80, 70, 6)

(3) According to (3.3), the mean parameters are estimated by

µ̂uj =

∑n
v=1 xvjzvu
nu

, u = 1, 2, . . . ,M, j = 1, . . . , k. (3.7)

4) We adopt the weighted least square estimation to estimate the common scale parameter as

θ̂w
= argmin

{∑k
j=1 wj

(
x2j − θxj −

∑M
u=1 α̂uµ̂

2
uj

)2}
=
∑k

j=1 wj

(
x2j −

∑M
u=1 α̂uµ̂

2
uj

)
xj/
∑k

j=1 wjxj2,
(3.8)

here xj =
1
n

∑n
v=1 xvj, x2j =

1
n

∑n
v=1 x

2
vj, j = 1, . . . , k, wj is the weight corresponding to jth dimension. Here we choose

wj =
1
xj

(the reason we choose this weight will be explained later) and the scale parameter is estimated by

θ̂ =

k∑
j=1

(
x2j −

M∑
u=1

α̂uµ̂
2
uj

)
/

k∑
j=1

xj. (3.9)

If θ̂ is too large, many shape parameters may be initialized to be 1. Therefore, we further adjust the estimate with

θ̂∗
= min{θ̂ ,min{µ̂uj}, u = 1, . . . ,M, j = 1, . . . , k}. (3.10)

(5) The initial shape parameters are estimated by

m̂uj = ⌈µ̂uj/θ̂
∗
⌉, u = 1, 2, . . . ,M, j = 1, 2, . . . , k. (3.11)

iven the initial estimates above, we have the following equation
k∑

j=1

n∑
v=1

(xvj − xj)2 =

k∑
j=1

M∑
u=1

α̂u(µ̂uj − xj)2 + θ̂

k∑
j=1

xj, (3.12)

hich explains why we choose the K-means algorithm to deal with this clustering issue. This equation holds if and only
f the weight wj =

1
xj
, j = 1, . . . , k and hence such choice of weights is rational.

. Simulation studies

This section provides simulation studies to illustrate the versatility of the multivariate Erlang mixture and efficiency
f the proposed algorithm. In the first study, we generate data from a multivariate Erlang mixture and compare the
stimated parameters with the true values. In Study 2, we generate data from a bivariate log-normal distribution and use
ome statistical tools to test the goodness-of-fit of the fitted model.

.1. Fitting data from a multivariate Erlang mixture

We generate data from a multivariate Erlang mixture and use the algorithm to fit the data to check whether we can
ecover the original model. For simulation data, we consider a 5-component trivariate Erlang mixture with the parameters
iven in Table 1.
2000 points are generated from the mixture. The GECM algorithm with the 10-fold cross-validation and the golden

ection search selects a 5-component Erlang mixture to fit the data. Table 2 shows the steps of golden section search for
he tuning parameter. The initial range for the tuning parameter is (−2.57, 1.43) and the scores at the two endpoints are
787.24 and 594.44, respectively. The search stops when the length of the interval is less than 0.1. According to the results
in Table 2, the tuning parameter is ν = −2.22.

To test the efficiency of the roughness penalty, we compare the results obtained by both the penalized GECM method
and the one without penalty. Table 3 shows the estimated parameters with tuning parameter ν = −2.22 and those
without penalty which corresponds to ν = −∞. One can see that the ultimate estimates for the parameters (especially
for the shape parameters and the scale parameter) are much closer to the true values when the penalty is applied.
8
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Table 2
Golden section search for the tuning parameter.
Step c d CV (D; c) CV (D; d) Range

1 −1.04 −0.10 793.63 749.62 (−2.57, −0.10)
2 −1.63 −1.04 804.35 793.63 (−2.57, −1.04)
3 −1.99 −1.63 811.60 804.35 (−2.57, −1.63)
4 −2.21 −1.99 813.14 811.60 (−2.57, −1.99)
5 −2.35 −2.21 811.53 813.14 (−2.35, −1.99)
6 −2.21 −2.12 813.14 812.85 (−2.35, −2.13)
7 −2.26 −2.21 813.05 813.14 (−2.26, −2.13)
8 −2.21 −2.18 813.14 813.03 (−2.26, −2.18)

Table 3
Comparison of the parameters of the fitted trivariate Erlang mixtures.
ν = −2.22 ν = −∞

u αu mu θ u αu mu θ

1 0.1951 (5, 20, 4) 0.0010 1 0.1926 (6, 22, 4) 0.0093
2 0.2043 (10, 30, 5) 2 0.1999 (11, 33, 5)
3 0.3026 (30, 40, 5) 3 0.3149 (32, 43, 5)
4 0.1041 (30, 69, 6) 4 0.1026 (33, 75, 6)
5 0.1939 (79, 69, 6) 5 0.1900 (87, 75, 7)

Table 4
The parameters of the fitted trivariate Erlang mixture for truncated data.
u αu mu θ

1 0.1975 (6, 23, 5) 0.0091
2 0.1720 (11, 35, 5)
3 0.3148 (33, 44, 6)
4 0.1171 (33, 77, 7)
5 0.1986 (87, 77, 7)

Table 5
The parameters of the fitted Erlang mixture for the log-normal data.
u αu mu θ

1 0.3752 (136, 266) 0.0077
2 0.0894 (164, 343)
3 0.5354 (149, 301)

We now take truncation into consideration and assume that tl = (0.02, 0.02, 0.02) and tr = (1, 1, 1). After removing
the points outside the truncation range, 1852 data points remain. The tuning parameter in this case is ν = −2.04. Table 4
presents the estimated parameters. One may see that the estimated parameters are still close to the true values.

4.2. Fitting data from a multivariate log-normal distribution

In this subsection, we use a bivariate Erlang mixture to fit data generate from a bivariate lognormal distribution.
Suppose that a random vector X = (X1, X2) comes from a bivariate normal distribution with mean vector µ = (0.1, 0.8)

and covariance matrix Σ =

(
0.01 0.005
0.005 0.01

)
. Let Y = eX, then the joint distribution of Y is a bivariate lognormal

distribution. We generate 2000 points from the distribution and use a bivariate Erlang mixture to fit the simulated data.
The estimated parameters are given in Table 5. The estimated tuning parameter in this case is ν = 0.046. Fig. 1 shows
he surface of the fitted joint density function.

Again, to illustrate the performance of the roughness penalty, we compare the fitted model with and the fitted model
ithout penalty. In Fig. 2, the true density, fitted density of the marginals with and without penalty are presented. The
esults clearly show that the proposed algorithm is better.

To further study the efficiency of the GECM algorithm, we may also use the L2 distance between the true density f
nd the fitted density f̂ as a closeness measure:

D2(f , f̂ ) =

∫
∞

0
· · ·

∫
∞

0  [f (x) − f̂ (x)]2dx. (4.1)
k

9
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Fig. 1. Surface of the fitted density function.

Fig. 2. Densities of the marginals (left panel: the first marginal; right panel: the second marginal).

Table 6
Distance between the true density and the fitted density.
Methods Penalized GECM Non-penalized GECM

Components 3 3
Cross-validation value 203.63 186.36
Distance 11.01 11.18
Covariance 0.0119 0.0103

We now calculate the distances between the true density and the fitted densities obtained by the non-penalized GECM
algorithm and the penalized GECM algorithm, respectively. Table 6 compares the results from penalized algorithm and
non-penalized algorithm that indicate that both the fitted models have the same number of components, but the fitted
density obtained by the penalized GECM algorithm is closer to the true density. A closer covariance value to the true
value 0.0125 and a larger cross-validation value also indicate that the penalized GECM algorithm can fit the validation
data better.

The GECM algorithm is also applicable for randomly censored data as illustrated below. Along with the above 2000
uncensored data points (xvj), v = 1, . . . , 2000, j = 1, 2 we now generate 2000 points from a univariate log-normal
distribution with parameters µ = 0.005 and σ = 0.01 and denote them as y1, . . . , y2000. For v = 1, . . . , 2000, the
data point xv1 is set to be left censored if xv1 < yv with censoring point c lv1 = yv . Similarly, we generate 2000 points,
z1, . . . , z2000, from another log-normal distribution with parameters µ = 1 and σ = 0.01. For v = 1, . . . , 2000, the data
oint xv2 is set to be right censored if xv2 > zv with censoring point crv2 = zv . Thus, we have 2000 points with 360
eft censored data points and 166 right censored data points. We fit the multivariate Erlang mixture with the roughness
enalty to the simulated data. The tuning parameter is ν = 0.15 in this case. A 3-component multivariate Erlang mixture
s obtained and the estimated parameters are given in Table 7.

We may also consider the fitness to the distribution of aggregated data: S2 = X1 + X2 for the reason that a good fit
ften indicates that the fitted model may well capture the dependence structure of the data. It follows from Section 2
hat S2 has a univariate Erlang mixture with the same mixing weights and scale parameter and the shape parameters
eing the sum of shape parameters of the corresponding components. Fig. 3 presents the fitting results for the aggregate
10
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Table 7
Parameter values of the fitted Erlang mixture for censored lognormal data.
u αu mu θ

1 0.0927 (154, 319) 0.0081
2 0.5553 (141, 286)
3 0.3520 (129, 253)

Table 8
Goodness-of-fit tests for the Erlang mixture.
Test Statistic p-value Not rejected at 5% significant value

K-S 0.0217 0.3054 Yes
A-D 1.5422 0.1667 Yes
Cv-M 0.2777 0.2564 Yes

Fig. 3. Histograms of the aggregate data (left panel: with roughness penalty with tuning parameter ν = 0.15; right panel: without roughness
penalty).

data. The plot in the left panel is the fitted density by using the roughness penalty and the right panel the fitted density
without the penalty. It is easy to see that the density becomes much smoother when the penalty is applied.

We may further examine the fitness quantitatively by performing several statistical tests such as the Kolmogorov–
Smirnov (K–S) test, the Anderson–Darling (A–D) test and the Cramer–von Mises (Cv–M) test. Table 8 summarizes the
results of these three common goodness-of-fit tests. All the tests indicate a good fit to the simulated data.

5. Applications

In this section, we apply the proposed algorithm to fit the multivariate Erlang mixture to several real data sets.

5.1. Old faithful geyser data

The data represent the waiting time between two consecutive eruptions and the duration of the eruption for the Old
Faithful geyser in Yellowstone National Park of the United States. The dataset contains 299 observations. It is also studied
in [9,17].

Using the 10-fold cross-validation, we set the tuning parameter to be ν = 3.92 for this data set. A 7-component
bivariate Erlang mixture is selected with the parameters given in Table 9.

As mentioned earlier, one advantage of this proposed algorithm is to avoid overfitting. We compare the number
of components of fitted models by 3 different methods: (a) the penalized GECM algorithm in this paper; (b) the non-
penalized GECM algorithm with the number of component determined by the leave-one-out cross-validation method; (c)
the EM algorithm presented in [9] with BIC being used to determine the number of components. The results in Table 10
show that the proposed algorithm leads to the smallest number of components.

Fig. 4 displays the contour plots from the fitted models. Clearly, there are fewer peaks when the roughness penalty is
applied, which indicates a smoother density surface.

If we are interested in the distribution of the duration time of a complete cycle, i.e., the time from the ending of one
eruption to the ending of the next eruption, it is exactly the sum of the waiting time and the duration of the eruption. The
11
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Table 9
Parameter estimates of the fitted 7-components Erlang mixture.
u αu mu θ

1 0.0444 (28, 528) 0.1301
2 0.1574 (16, 414)
3 0.0883 (35, 684)
4 0.1037 (17, 469)
5 0.3061 (34, 628)
6 0.0925 (16, 368)
7 0.2076 (33, 586)

Table 10
The number of components using 3 different methods.
Method Penalized one-out CV BIC

Number 7 15 11

Fig. 4. Contour plots of the fitted models (left panel: without roughness penalty; right panel: with roughness penalty).

Fig. 5. Histograms and fitted densities of the duration time of a complete cycle (left panel: without roughness penalty; right panel: with roughness
penalty).

distribution can explicitly be obtained from the fitted multivariate Erlang mixture. Fig. 5 shows the densities of the fitted
aggregate distribution. It is obvious that the curve becomes much smoother when applying the penalty. Fig. 6 shows the
PP-plot and QQ-plot of the fitted aggregate distribution when considering the roughness penalty.

The three goodness-of-fit tests are again used to examine the performance. The results are given in Table 11, which
reconfirms good fitness.
12
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Fig. 6. QQ and PP Plots for the total duration time with the roughness penalty.

Table 11
Goodness-of-fit tests for the Erlang mixture with the roughness penalty.
Test Statistic p-value Not rejected at 5% significant value

K-S 0.0269 0.9892 Yes
A-D 0.1386 0.9993 Yes
Cv-M 0.0187 0.9981 Yes

Table 12
Parameter estimates with the 4-components mixture fitted to the mastitis data.
u αu mu θ

1 0.5794 (2, 2, 2, 2) 34.60
2 0.1651 (4, 6, 5, 5)
3 0.1618 (10, 12, 13, 10)
4 0.0937 (12, 10, 5, 5)

5.2. Mastitis data

Mastitis is economically one of the most important diseases in the dairy sector since it leads to reduced milk yield
nd milk quality. In this application, we consider infectious disease data from a mastitis study. This dataset contains 100
ecords and it has also been used in [19,20] and [9]. The objective of this application is to study the infection times of
ndividual cow udder quarters with a bacterium. The infection status is assessed from the time of parturition until the
nd of the lactation period. A cow was assumed to be infection-free at the parturition time. Two types of covariates are
ften considered. That is, the infection times at the udder quarter level and at the cow level. In this study, we consider the
nfection times at the udder quarter level. One quarter might be infected while the other three quarters remain infection-
ree, hence it generates a 4-dimensional dataset and the dependence among the infection times of the four udder quarters
f a cow must be modeled. The infection times are not known exactly since a daily checkup would not be feasible and
his generates interval-censored data with lower bound the last time at which it was infection-free and upper bound the
irst time at which it was infected. The infection observations are right censored if no infection occurred before the end
f the lactation period or if the cow is lost to follow-up during the study, for example due to culling. Borrow the notation
n [9], the udder quarters are denoted as RL (rear left), FL (front left), RR (rear right) and FR (front right).

We use a 4-variate Erlang mixture to fit the data and a 4-component Erlang mixture is obtained. The tuning parameter
s ν = 12.54 for this dataset and the parameters are given in Table 12. Fig. 7 shows the empirical and fitted survival curves
f each udder quarter. The green curves in Fig. 7 are the Kaplan–Meier survival curves with interval censoring and right
ensoring taken into account, along with 95% confidence intervals. Fig. 8 shows the contour plots of the fitted model
mong the udder quarters. The interval censored data points are depicted by the midpoints and the right censored points
re depicted by the corresponding right censoring points in the scatter plots.
As a measure of the infectivity of the agent causing the disease, we are interested in the correlation between udder

nfection times. Due to the fact that the bivariate marginals again belong to the Erlang mixture class, we have closed-form
xpressions for Kendall’s τ and Spearman’s ρ.
13
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Fig. 7. Empirical and fitted survival curves of each quarter.

Fig. 8. Contour plots of the fitted model.
14
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Table 13
Estimates of correlation measures and standard error.

FL FR RL RR

FL τ 1
ρ 1

FR τ 0.4339(0.0103) 1
ρ 0.6383(0.0138) 1

RL τ 0.4134(0.0125) 0.3752(0.0143) 1
ρ 0.5578(0.0170) 0.6012(0.0195) 1

RR τ 0.3980(0.0108) 0.4285(0.0103) 0.3979(0.0139) 1
ρ 0.5266(0.0145) 0.6247(0.0139) 0.5770(0.0188) 1

Table 14
Parameter estimates with 8-component Erlang mixture fitted to travel reviews data.
u αu mu θ

1 0.0772 (14, 30, 23, 8, 18, 34, 45, 40, 23, 36) 0.0711
2 0.1601 (13, 17, 16, 6, 9, 21, 45, 40, 20, 42)
3 0.2247 (11, 19, 5, 7, 15, 27, 44, 41, 23, 41)
4 0.1608 (11, 18, 32, 8, 15, 29, 44, 40, 22, 36)
5 0.0264 (22, 6, 7, 7, 8, 18, 45, 41, 20, 39)
6 0.1943 (12, 19, 4, 7, 7, 19, 46, 40, 22, 42)
7 0.1396 (13, 16, 18, 8, 18, 33, 45, 41, 22, 38)
8 0.0171 (14, 28, 5, 30, 15, 28, 47, 39, 21, 35)

The bootstrap method is used to estimate the uncertainty of the estimated relationship measures. Based on re-sample
the observed data for B times, we generate a collection of Kendall’s τ : τ (Φ1), . . . , τ (ΦB), the standard error for τ (Φ) is

SE(τ (Φ)) =

√
1

B−1

∑B
b=1 τ (Φb)2 − τ 2(Φ)

B
, (5.1)

here τ (Φ) =
1
B

∑B
b=1 τ (Φb). The estimation and standard error for Spearman’s ρ can be obtained as well.

We generate B = 1000 bootstrap samples by re-sampling from the original dataset. The estimates and standard errors
or Kendall’s τ and Spearman’s ρ are showed in Table 13. The standard errors are less than the results in [9] indicate that
ore accurate estimates have been obtained.

.3. Travel reviews data

In this subsection, we considered a social media dataset from tourism domain for the analysis and captured the results.
he dataset corresponds to user interest information accrued from reviews, feedbacks on different types of point of
nterests and ratings on attractions. This data set is populated by crawling TripAdvisor.com. Reviews on destinations
n 10 categories mentioned across East Asia are considered. Each traveler rating is mapped as Excellent (4), Very Good
3), Average (2), Poor (1), and Terrible (0) and average rating is used against each category per user. This dataset is also
tudied in [21].
The dataset contains 980 user records with 10 feedback attributes inferred from numerous reviews. The 10 mentioned

ategories across East Asia are art galleries, dance clubs, juice bars, restaurants, museums, resorts, parks/picnics spots,
eaches, theaters and religious institutions. First we consider only the 978 records for which the rating to each component
as a non-zero value (the average rating on dance clubs is zero for User 309 and User 517). We fit a 10-variate Erlang
ixture to the data and an 8-component multivariate mixture is selected. The tuning parameter is ν = 0.052 for this
ataset. In Table 14, parameter estimates of the fitted distribution are given.
Again we consider the correlation between the category ratings and Table 15 shows the Kendall’s τ values, where the

pper triangular entries are empirical estimates and the lower triangular entries are estimates from the fitted model. From
he results, we can see that some ratings between the categories show positive dependence. For example, the Kendall’s τ
etween Category 5 and Category 6 based on the fitted model is 0.4936, which means one who gives a high evaluation on
useums is more likely to give a high evaluation on resorts. While the ratings on some pairs show negative dependence,

or example the ratings on resorts and religious institutions. Some other pairs may show weak dependence.
We now consider the conditional distribution of rating on one category given the value of the rating on another

ategory. Denote the ratings by (X1, . . . , X10), we look at the conditional distribution FXi (xi|Xj = xj), 1 ≤ i, j ≤ 10, i ̸= j. It is
asy to see that the conditional distributions again belong to Erlang mixtures and the parameters are easily obtained from
he fitted model. Hence, we can estimate some interesting quantities such as the conditional expectation EXi (Xi|Xj = xj) and
he conditional quantiles for a given rating on category j. Some visual results are presented in Fig. 9. In Fig. 9(a) we present
he curves of expected ratings on the resorts and the 25, 75 and 95 quantiles given the ratings on the museums. From the
esults in Table 15, we can see that the ratings between the resorts and the museums show positive dependence which
15
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Table 15
Kendall’s τ between the categories.
CATG 1 2 3 4 5 6 7 8 9 10

1 1 −0.1296 0.0526 0.0101 −0.0441 0.1097 0.0040 0.0022 −0.0043 0.0179
2 −0.1172 1 0.0011 0.0334 0.0792 0.0642 0.0564 −0.1059 0.0530 −0.0181
3 0.0384 0.0096 1 0.1430 0.2205 0.2501 0.5751 −0.1014 −0.0417 −0.2977
4 0.0156 0.0278 0.1635 1 0.1350 0.2881 0.3646 −0.3760 0.0769 −0.4131
5 −0.0374 0.0993 0.2081 0.0674 1 0.4301 0.2006 −0.0080 0.0191 −0.1771
6 0.1129 0.0963 0.2412 0.2686 0.4936 1 0.3495 −0.0060 0.0843 −0.3091
7 0.0017 0.0375 0.2490 0.3140 0.2906 0.2898 1 −0.0708 0.0837 −0.6113
8 0.0079 −0.1069 −0.1075 −0.3070 −0.0032 −0.0066 −0.0321 1 0.1161 0.0100
9 −0.0038 0.0316 −0.0727 0.0143 0.0228 0.0114 0.4889 0.0519 1 0.0989
10 0.0225 −0.0298 −0.1727 −0.5082 −0.1267 −0.1296 −0.5060 0.0959 0.0163 1

Fig. 9. Expectation and quantile curves: (a) resorts vs museum; (b) juice bars vs religious institutions.

s consistent with the visualization in Fig. 9(a). Similarly, the corresponding curves between the juice bars and religious
nstitutions are presented in Fig. 9(b).

. Conclusion

In this paper, we propose a GECM algorithm to estimate the parameters of multivariate Erlang mixtures by extending
he GEM-CMM algorithm in [11]. The objective is to overcome the non-smoothness problem: the fitted curve is not smooth
hen a traditional EM algorithm is used. We propose a roughness penalty based on the integral of second derivative to
eal with this issue. A common cross-validation is used to estimate the tuning parameter and we adopt a golden section
earch to find the optimal tuning parameter. The algorithm proposed in this paper also results in fewer components in
rlang mixtures so that we can further minimize the overfitting issue when compared with the use of the AIC or BIC
riterion. The simulation studies and real data applications demonstrate the efficiency and effectiveness of the algorithm
hen fitting the multivariate Erlang mixture model to data.

cknowledgments

This research was partly supported by grants from the Natural Sciences and Engineering Research Council of Canada
NSERC) and the Natural Science Foundation of China (No. 11471272).

eferences

[1] J. Chen, P. Li, Y. Fu, Inference on the order of a normal mixture, J. Amer. Statist. Assoc. 107 (499) (2012) 1096–1105.
[2] H. Kasahara, K. Shimotsu, Testing the number of components in normal mixture regression models, J. Amer. Statist. Assoc. 110 (512) (2015)

1632–1645.
[3] S.C. Lee, X.S. Lin, Modeling and evaluating insurance losses via mixtures of Erlang distributions, N. Am. Actuar. J. 14 (1) (2010) 107–130.
[4] A. Mazza, A. Punzo, Mixtures of multivariate contaminated normal regression models, Statist. Papers (2017) 1–36.
[5] S.C. Lee, X.S. Lin, Modeling dependent risks with multivariate Erlang mixtures, Astin Bull. 42 (1) (2012) 153–180.
[6] H. Cossette, .M.P. Côté, E. Marceau, K. Moutanabbir, Multivariate distribution defined with Farlie–Gumbel–Morgenstern copula and mixed Erlang
marginals: aggregation and capital allocation, Insurance Math. Econom. 52 (3) (2013) 560–572.

16

http://refhub.elsevier.com/S0377-0427(20)30507-0/sb1
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb2
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb2
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb2
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb3
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb4
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb5
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb6
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb6
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb6


W. Gui, R. Huang and X.S. Lin Journal of Computational and Applied Mathematics 386 (2021) 113216
[7] G.E. Willmot, J.K. Woo, On some properties of a class of multivariate Erlang mixtures with insurance applications, Astin Bull. 45 (1) (2015)
151–173.

[8] E. Hashorva, G. Ratovomirija, On Sarmanov mixed Erlang risks in insurance applications, Astin Bull. 45 (1) (2015) 175–205.
[9] R. Verbelen, K. Antonio, G. Claeskens, Multivariate mixtures of Erlangs for density estimation under censoring, Lifetime Data Anal. 22 (3) (2016)

429–455.
[10] C. Yin, X.S. Lin, Efficient estimation of Erlang mixtures using iSCAD penalty with insurance application, Astin Bull. 46 (3) (2016) 779–799.
[11] W. Gui, R. Huang, X.S. Lin, Fitting the Erlang mixture model to data via a GEM-CMM algorithm, J. Comput. Appl. Math. 343 (2018) 189–205.
[12] C. Yin, X.S. Lin, R. Huang, H. Yuan, On the consistency of penalized MLEs for Erlang mixtures, Statist. Probab. Lett. 145 (2019) 12–20.
[13] S. Fung, A. Badescu, X.S. Lin, A Class of Mixture of Experts Models for General Insurance: Theoretical Developments, 2019, Available at SSRN

3315741.
[14] J.O. Ramsay, Functional data analysis, Encycl. Statist. Sci. (2004).
[15] G.H. Givens, J.A. Hoeting, Computational Statistics, Wiley, Hoboken, NJ, 2013.
[16] M. Avriel, D.J. Wilde, Optimally proof for the symmetric fibonacci search technique, Fibonacci Q. J. (1966).
[17] B.W. Silverman, Density Estimation for Statistics and Data Analysis, CRC Press, 1986.
[18] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[19] K. Goethals, B. Ampe, D. Berkvens, H. Laevens, P. Janssen, L. Duchateau, Modeling interval-censored, clustered cow udder quarter infection

times through the shared gamma frailty model, J. Agricul. Biol. Environ. Statist. 14 (1) (2009) 1–14.
[20] B. Ampe, K. Goethals, H. Laevens, L. Duchateau, Investigating clustering in interval-censored udder quarter infection times in dairy cows using

a gamma frailty model, Prevent. Veter. Med. 106 (3–4) (2012) 251–257.
[21] S. Renjith, A. Sreekumar, M. Jathavedan, Evaluation of partitioning clustering algorithms for processing social media data in tourism domain,

EEE Recent Adv. Intell. Comput. Syst. (RAICS) 12 (2018) 7–131.
17

http://refhub.elsevier.com/S0377-0427(20)30507-0/sb7
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb7
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb7
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb8
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb9
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb9
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb9
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb10
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb11
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb12
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb13
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb13
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb13
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb14
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb15
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb16
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb17
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb18
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb19
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb19
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb19
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb20
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb20
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb20
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb21
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb21
http://refhub.elsevier.com/S0377-0427(20)30507-0/sb21

	Fitting multivariate Erlang mixtures to data: A roughness penalty approach
	Introduction
	A GECM algorithm for parameter estimation
	Data type and notation
	Roughness penalty function
	The GECM algorithm
	Estimation of tuning parameter

	Parameter initialization
	Simulation studies
	Fitting data from a multivariate Erlang mixture
	Fitting data from a multivariate log-normal distribution

	Applications
	Old faithful geyser data
	Mastitis data
	Travel reviews data

	Conclusion
	Acknowledgments
	References


