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In this article, we introduce Delta Boosting (DB) as a new member of the boosting family. Similar to the popular Gradient Boosting
(GB), this newmember is presented as a forward stagewise additivemodel that attempts to reduce the loss at each iteration by sequentially
fitting a simple base learner to complement the running predictions. Instead of relying on the negative gradient, as is the case for GB, DB
adopts a new measure called delta as the basis. Delta is defined as the loss minimizer at an observation level. We also show that DB is the
optimal boosting member for a wide range of loss functions. The optimality is a consequence of DB solving for the split and adjustment
simultaneously to maximize loss reduction at each iteration. In addition, we introduce an asymptotic version of DB that works well
for all twice-differentiable strictly convex loss functions. This asymptotic behavior does not depend on the number of observations, but
rather on a high number of iterations that can be augmented through common regularization techniques. We show that the basis in
the asymptotic extension differs from the basis in GB only by a multiple of the second derivative of the log-likelihood. The multiple
is considered to be a correction factor, one that corrects the bias toward the observations with high second derivatives in GB. When
negative log-likelihood is used as the loss function, this correction can be interpreted as a credibility adjustment for the process variance.
Simulation studies and real data application we conducted suggest that DB is a significant improvement over GB. The performance of
the asymptotic version is less dramatic, but the improvement is still compelling. Like GB, DB provides a high transparency to users,
and we can review the marginal influence of variables through relative importance charts and the partial dependence plots. We can also
assess the overall model performance through evaluating the losses, lifts, and double lifts on the holdout sample.

1. INTRODUCTION
Boosting methods are used to predict responses in supervised learning (Friedman 2001). Mathematically, a data set contains

entries with response variables, y, and corresponding predictive covariates, x = {x1, x2, . . . , xk}. The covariates and responses are
assumed to be linked by an unobserved mapping F and a user-specified strictly monotonic link function g(·). The goal is to find an
estimate function F∗ that minimizes a specified loss function �(y, g−1(F (x))):

F∗(x) = argmin
F (x)

Ex[Ey(�(y, g−1(F (x)))|x)]. (1)

The prediction of the response ŷ = g−1(F∗(x)).
Loss functions can be generic, or specific to various types of problems. For example, the original random forest (Breiman 2001a)

uses squared error for all types of problems, whereas gradient boosting allows for Huber loss, deviance, absolute error, and many
others as loss functions (Friedman 2001).

Boosting and random forest belong to a family called ensembling, in which function estimation problems are based on an idea
of combining many weak rules (Schapire 1990). A weak rule f ∗t (x) is a learning algorithm that performs only slightly better than
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a coinflip and aims to characterize “local rules” related to predictive variables:

F∗(x) =
T∑
t=1

f ∗t (x) =
T∑
t=1

βt,ath(x; at ). (2)

Although any weak rule alone would not be strong enough to make accurate predictions on all observations, it is possible to
combine many of those rules to produce a highly accurate model. This idea is known as the the strength of weak learnability
(Schapire 1990).

The introduction of AdaBoost (Freund and Schapire 1996, 1997) is considered by the machine learning community to be the
first major success of boosting algorithms. Breiman (1996, 1998) later explained the algorithm as a gradient descent approach with
numerical optimization and statistical estimation. Friedman et al. (2000) further extended the idea, introducing several variations.
Since its introduction, many variations of Adaboost have been created, each with a different focus. RealBoost allows real values to
be used as classifiers, compared to the requirement of binary responses in AdaBoost. GentleBoost builds on RealBoost by assign-
ing a weight to the classifiers, which reduces the speed of update of the weak rule (Friedman et al. 2000; Freund 1995, 2001).
This technique is considerably effective to stabilize the overall prediction (Friedman 2002). MadaBoost (Domingo and Watanabe
2000; Watanabe 2002) is another algorithm that improves upon AdaBoost by utilizing the filtering framework. This makes Mad-
aBoost more resistant to noise, a noted weakness for AdaBoost. BrownBoost, a reference to Brownnian motion, combines many
weak learners together to improve the performance of AdaBoost (Freund 2001). As an alternative to handle noisy datasets, Brown-
Boost gives less weight to training samples that are frequently misclassified. RankBoost modifies AdaBoost to solve problems in
estimating rankings (Freund 1995).

Linear Programming Boosting (LPBoost) (Leskovec and Shawe-Taylor 2003) and TotalBoost (Warmuth et al. 2006) are popular
boosting techniques that are not derived from Adaboost. LPBoost uses a weighted linear combination of classifiers. At every
iteration, a weak classifier is added and the weights of previous weak classifiers are adjusted. LPBoost requires less iterations than
AdaBoost but is more computationally costly. TotalBoost is a more robust form of LPBoost and requires even fewer iterations than
LPBoost.

Friedman (2001) proposed a boosting method called Gradient Boosting Machine (GB) that features solutions to both regression
and classification problems. The algorithmic method successfully includes statistical elements, such as additive modeling and the
maximum-likelihood estimation, which enables us to derive diagnostics assessing the quality of the predictions, assessing the
variable influence and marginal effect by variables. The features substantially blur the boundary between machine learning and
traditional statistical modeling. It is also shown in Friedman et al. (2001) and Lee and Antonio (2015), using empirical examples,
that GB is the top-tier predictive model among data mining techniques. Xgboost (Chen et al. 2016) introduces regularization
function, in additional to the loss function, to mitigate the overfitting potential.

In this article, we propose a new booting method named Delta Boosting (DB) as a new member of the boosting family. It is
similar to the popular Gradient Boosting (GB) but differs from GB in the way it derives the basis, partitions data, and adjusts
parameters at each iteration. Instead of finding the gradient suggested in GB, the new method attempts to solve for maximum loss
reduction, done through partitioning data and adjusting parameters simultaneously. As the process is more synchronized, it shows
an improvement of computing efficiency in each iteration. Further, since an optimal split is reached at each node, it takes fewer
iterations to reach the same loss, another aspect of efficiency improvement. Empirical examples also reflect a substantial overall
loss reduction for DB.

The key elements of boosting and a walk through the algorithm of GB are explained in Section 2. The motivation of DB is then
explained in Section 3, where, we derive formulas and explain the fundamental concepts of the proposed method. A proof of the
optimality of DB and the required condition are given. Optimality in this article is defined to be maximum loss reduction at each
iteration. In the situation where the requirement for DB to be optimal is not satisfied, Section 4 introduces an extension of DB that
is asymptotically optimal for all twice differentiable loss functions. The asymptotic version is identical to GB with a correction
multiplier applied to the basis. In Section 5 we conduct simulation studies to illustrate the magnitude of improvement of DB over
GB in a controlled environment. We further compare the boosting candidates in a real life data set capturing the claim frequency
activity in an insurer in Section 6 .

2. GRADIENT BOOSTING
Gradient boosting is one of many predictive modeling techniques. Other popular choices include, but are not limited to, gener-

alized linear models (GLMs) , generalized additive models (GAMs), classification and regression trees (CARTs), bagging, random
forests, boosting, support vector machines (SVMs), and artificial neural networks (ANNs). Each choice differs somewhat from
others in how the modeling problem is framed and how the prediction is derived. Kernel support vector machines, for example,
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transform the original data space into a higher dimensional space so that the data are linearly decomposable. Classification and
regression trees construct decisions through simple branch type flow charts. Bagging, boosting, and random forests ensemble base
learners into predictive models. Artificial neural networks attempt to mimic how a neural system would process the information.
The flexible use of loss functions and base learners are two key features that differentiate GB from aforementioned other predictive
modeling techniques.

2.1. Loss Functions
GB allows the freedom to choose loss functions. Squared error is a plausible, and the most popular, loss function used for

regression and classification problems. However, there may be situations in which other loss functions are more appropriate. For
instance, binomial likelihood is far more robust than exponential loss in noisy settings where the Bayes error rate is not close to zero
or in situations where the target classes are mislabeled (Guelman 2012). Similarly, the performance of squared-error significantly
degrades in long-tailed error distributions or in data with the presence of outliers. In such situations, other functions such as absolute
error or Huber loss are more appropriate. If losses are bimodal or multimodal, users may consider the likelihood of mixtures of
Erlangs (Lee and Lin 2010, 2012) as the loss function. To summarize, loss functions can be defined uniquely to reflect the specific
purpose of the modeling.

The following definition characterizes loss functions.

Definition 1. A function, �(y, g−1(F (x))), is a loss function if it satisfies all the following conditions:

(1) Identifiable: if �(y, g−1(F1(x))) = �(y, g−1(F2(x))) ∀y, F1(x) = F2(x).
(2) F-convex: �(y, g−1(F (x))) is convex on F (x) and is strictly convex at Fmin(x) where Fmin(x) = argminF (x)�(y, g−1(F (x))).

In the problem of function estimation, Fmin(x) = g(y).
(3) Closed: The set where �(y, ·) is defined is closed.

Condition 1 ensures identifiability, which is a property that a model must satisfy for precise inferences to be possible. Condition
2 guarantees that the loss function�(y, y+ a) is increasing of |a| and ensures the reasonableness of the optimal solution. Condition
3 is necessary to guarantee that the end points are included in the parameter space.

2.2. Base Learners
As mentioned in Section 1, GB models the mapping F : x→ y through combining predictions from base learners. A great

variety of base learners are available in boosting algorithms. For reference, in Table 1 we show a sample of commonly used base
learners, including the formula and a description of at .

Bühlmann and Hothorn (2007) adopted penalty splines, linear regressors, and trees in various scenarios. Ridgeway (2007)
uses only trees as the base learners. Although strengths and weaknesses exist in all base learners, trees are the most commonly
accepted base learner in ensembling techniques like boosting. Trees have a very simple representation and can be extended to
high dimensions without significant modification of the mathematics and computation. Rigorous studies (Breiman et al. (1984);
Breiman (1996); Friedman (2002); Friedman et al. (2001) and references therein) on improving statistical significance and reducing

TABLE 1
A Subset of Popular Base Learners

Base Learner Formula Description

Triangular wavelets ht (x, at) = |at,1|−1/2|x− at,2| at,1 is a scaling multiple, and at,2 is the
center of a wavelet

Normal wavelets ht (x, at) = e−(x−at,2 )
2/at,1 at,1 is a scaling multiple, and at,2 is the

center of a wavelet
Multivariate adaptive regression
splines

ht (x, at) = max(0, x− at,2)− at,1 max(0, at,2 − x) at,1 is a scaling constant, and at,2 is the
knot of a hinge

Classification tree ht (x, at) = 1x∈at at is classification rule, e.g., Age ≥ 30
Regression ht (x, at) = at at is a covariate, e.g. Age
Smoothing splines ht (x, at) = x1x∈at at is the knot of a covariate, e.g., Age

∈ [0, 10), [10, 30), [30, 130)
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TABLE 2
Key Notation and Definitions

Notation Description

�(yi, g−1(Ft (xi))) Loss function of observation i
ri Negative gradient of loss function for observation i
δi Loss minimizer(delta) for observation i: δi = argmins �(yi, g−1(Ft−1(xi)+ s))
N j Index set of observation in node j induced by at
Mj Number of observations in N j

R j Average of ri in node j:
∑

i∈N j
ri/Mj

δ j Average of δi in node j:
∑

i∈N j
δi/Mj

� j Loss minimizer for observations in node j: � j = argmins
∑

i∈N j
�(yi, g−1(Ft−1(xi)+ s))

Aj Selected adjustment for observations in N j

NL Partition that has a smaller Aj in the case of a two-node partition (stunt)
NR Partition that has a larger Aj in the case of a two-node partition (stunt)
�L � for observations in NL

�R � for observations in NR

over-fitting are abundant. The nature of trees also fits well to the concept of weak learnability from boosting techniques: In each
iteration, we only need a rule that is slightly better than a coin flip. GB using trees as the base learner is called Gradient Boosting
Trees. In the rest of the article, we will assume the use of trees as the base learners.

2.3. Notation
To facilitate the discussion, all the key notations used in this article are explained in Table 2.

2.4. Algorithms
The estimation of the parameters, βt,at and at , in (2) is equivalent to solving the optimization problem:

argmin
βt,at ,at

M∑
i=1

�

(
yi , g

−1
(

T∑
t=1

βt,ath(xi; at )
))

. (3)

Boosting adopts the forward stagewise method (Friedman 2001) that solves (3) by sequentially fitting a single weak learner and
adding it to the previously fitted terms. The previously fitted terms are not readjusted as new terms are added into the model. This
characteristic is commonly called adaptive and is outlined in Algorithm 1 (Friedman et al. 2000).

From the definition of � j in Table 2, we have βt,at = � j for i ∈ Nj. The solution to line 2a in Algorithm 1 is dependent on the
loss function. As stated in Friedman (2001), simultaneous estimation of both βt,at and at is generally difficult, and therefore the
GB algorithm solves for the parameters separately. Specifically, at is first derived and βt,at is then solved given the estimated at . To

TABLE 3
Members in Tweedie Family

p Distribution

p = 0 Gaussian
p = 1 Poisson
2 > p > 1 Compound Poisson-Gamma distribution or simply called Tweedie
p = 2 Gamma
3 > p > 2 Positive stable distributions
p = 3 Inverse Gaussian
p > 3 Positive stable distributions
p = ∞ Extreme stable distributions
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Algorithm 1 Forward Stagewise Additive Modeling
(1) Initialize F0(x)
(2) For t = 1 to T Do

(a) Estimate βt,at and at by minimizing
∑M

i=1�(yi, g−1(Ft−1(xi)+ βt,ath(xi; at )))
(b) Update Ft (xi) = Ft−1(xi)+ βt,ath(xi; at )

(3) End For
(4) Output F̂ (xi) = FT (xi)

facilitate the comparison between DB and GB in the later sections, we here describe the iterative approach of GB in three steps,
and the approach can be applied to any differentiable loss functions. The first step (Basis) involves calculation of the negative
gradient of the loss function for each observation as a basis for the next steps. The second step (Regression) involves regressing
the basis derived in the first step with the explanatory variables. For GBT, it is equivalent to finding the optimal split at by adopting
the standard least-square approach. A J-node partitions induced by at will result. In the third step (Adjust), given the partitions at ,
the optimal βt,at is determined by minimizing the loss function. The approach can be described by the key action elements Basis,
Regression, and Adjust. The procedure is shown in Algorithm 2.

For the squared-error loss, the negative gradient in line 2a (Basis) reduces to the usual residuals yi − Ft−1(xi). With the absolute

Algorithm 2 Gradient Boosting

(1) Initialize F0(x) to be a constant, F0(x) = argmin
β

∑M
i=1�(yi, g−1(β ))

(2) For t = 1 to T Do
(a) Basis: Compute the negative gradient as the working response

ri = −
[
∂�(yi, g−1(F (xi)))

∂F (xi)

]
F (x)=Ft−1(x)

, i = {1, . . . ,M}

(b) Regression: Fit a regression model to ri by least squares using the input xi and get the estimate at of βt,ath(xi; at )
(c) Adjust: Derive βt,at by minimizing

∑M
i=1�(yi, g−1(Ft−1(xi)+ βt,at h(xi; at )))

(d) Update Ft (xi) = Ft−1(xi)+ βt,ath(xi; at )
(3) End For
(4) Output F̂ (xi) = FT (xi)

error loss, the negative gradient is the sign of the residuals. The algorithm then performs standard classification and regression tree
split searching in line 2b. After obtaining at from line 2b (Regression), estimation of βt,at is then performed in line 2c (Adjust).
Separating the estimation of parameters substantially reduce the complexity of the modeling.

In theRegression step, observations are partitioned into J-nodes. Trivially, group averageRj is the best estimate of ri within node
j under the least-square approach. Thus, the overall square of error would be

∑J
j=1
∑

i∈N j
{ri − Rj}2 =

∑J
j=1
∑

i∈N j
{r2i − 2riRi +

Ri j2} = −
∑J

j=1MjR2
j +C, whereC =

∑M
i=1 r

2
i . The goal of this step is to find at such that the square of error is minimized. Note

that Rj is not used in the Adjust step when deriving βt,at .
The gradient ri plays an important role in GB. Although it is not explicitly represented in Ft (x), it indirectly impacts the estima-

tion of βt,at through at . There are multiple theoretical and practical advantages in adopting a gradient descent; when the prediction
and the response are close, the gradient is usually a good approximation of the loss minimizer. The average of the gradients is equal
to gradients of the average becouse of the linearity of gradients. Thus, the partition at also optimizes the group gradient. Practi-
cally, the gradient can be calculated quite conveniently on a differentiable loss function. Gradient descent is also a standard practice
in most function estimation or optimization procedures (Breiman 1996, 1998). Since a gradient generally provides considerable
accuracy in adjusting Ft (x), Bühlmann and Hothorn (2007) propose to adopt the group mean as the adjustment. Mathematically,
β̂t,at = Rj for i ∈ Nj. Since the group mean Rj is calculated during the derivation of at , Regression and Adjust are essentially
integrated and run time can be saved.
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3. DELTA BOOSTING MODELING
From Section 2.4, there is a strong motivation for using the gradient descent approach in GB. Friedman (2001) describes that

the three-step approach permits the replacement of the difficult function minimization in Equation (3) by least-square function
minimization (Regression), followed by only a single-parameter optimization. This article finds the way to solve for the diffi-
cult function in Equation (3) simultaneously. Compared to GB using both simulated and empirical examples, the new algorithm
demonstrates a significant improvement of both computing efficiency and predictive accuracy. We first present the proposed DB
boosting method in Algorithm 3 and walk through the mechanism of DB by explaining the difference between the algorithm and
Algorithm 2.

Algorithm 3 Delta Boosting

(1) Initialize F0(x) to be a constant, F0(x) = argmin
β

∑M
i=1�(yi, g−1(β ))

(2) For t = 1 to T Do
(a) Basis: Compute the individual loss minimizer as the working response

δi = argmin
s

�(yi, g
−1(Ft−1(xi)+ s)), i = {1, . . . ,M}

Apply strictly monotonic transformation h(·) on y if neccessary.
(b) Regression: Obtain at = argmin

a

∑M
i=1
∑

i∈N j
�(yi, g−1(Ft−1(xi)+� jh(xi; a))) with � j defined in Table 2

(c) Adjust: It is integrated with Regression step with βt,at = � j for i ∈ N j.
(d) Update Ft (xi) = Ft−1(xi)+ βt,ath(xi; at )

(3) End For
(4) Output F̂ (xi) = FT (xi)

3.1. Optimality of Gradient as the Basis
The basis is used in the Regression step to estimate h(x; at ), which produces h(xi; at ) most parallel to the basis. h(xi; at ) in

turns dictates the estimation of βt,at . Thus, the choice of basis significantly impact the predictive quality h(xi; at ) and βt,at .
ri in Algorithm 2 gives the best steepest-descent step direction in the N-dimensional data space at Ft−1(x). Steepest descent

is one of the simplest of the frequently used numerical minimization methods and results in satisfactory results. However, the
direction of ri can be far from the direction of adjustment needed when g−1(Ft−1(x)) is far from yi.

In DB, an individual loss minimizer is chosen as the basis. The choice should be intuitive because the aggregate loss is the sum of
individual losses. Proposition 1 gives insight into why the individual loss minimizer serves as a competitive basis. In fact, we show
that the individual loss minimizer is the optimal candidate in boosting application for many popular distributions to minimize the
loss at any iteration. Since the loss minimizer is commonly addressed as delta, we call the proposed approach as the Delta Boosting
(DB). We illustrate the formula in the case of trees as the base learner.

Individual delta, satisfies the following:

δi = argmin
δ

�(yi, g
−1(Ft−1(xi)+ δ))

= g(yi)− Ft−1(xi). (4)

Equation 4 is due to the definition of link function and loss function. Intuitively, the loss should be at minimumwhen the prediction
is equal to the response.

at (Partitions in the case of a tree) are dependent on the choice of basis. Using trees as the base learners for GB, the overall
square of error

∑J
j=1
∑

i∈N j
{ri − Rj}2 is evaluated at each split point at . The split points that result in a minimal square error are

selected for theAdjust step. To prove that delta is the optimal basis in a given loss function, we prove that the loss can be improved
by modifying, according to the suggestion by delta, the partition induced by any basis when the decision of the basis and delta
does not agree. In the case of a two-node stunt, for any given basis that induce NL and NR and ∃i ∈ NL, k ∈ NR but δi > δk, a loss
improvement will result through an element switch.
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Proposition 1. For all loss functions with given AL and AR with AR > AL (refer to Table 2 for definitions), there exists a threshold
Ti such that the loss for observation i being assigned into NR will be smaller than that being assigned into NL if and only if δi > Ti.
The threshold is unique if �(yi, g−1(F (xi))) is continuous on yi.

Proof. The loss function �(yi, g−1(Ft−1(xi)+ δ)) can be rewritten as �(g−1(Ft−1(xi)+ δi), g−1(Ft−1(xi)+ δ)). It can then be
transformed into�(Ft−1(xi)+ δi,Ft−1(xi)+ δ) where�(x, y) = �(g−1(x), g−1(y)). The new representation provides more clarity
in interpreting the relation between the two parameters in the function. The loss function minimization procedure is attempting to
get our prediction as close as the optimal prediction.

We first prove the existence of Ti. Define ψ (s) = �(Ft−1(xi)+ s,Ft−1(xi)+ AL)−�(Ft−1(xi)+ s,Ft−1(xi)+ AR). Using the
convexity characteristic in Definition 1, ψ (s) < 0 if s ≤ AL. Similarly, ψ (s) > 0 if s ≥ AR. Further utilizing the convexity charac-
teristic, ψ (s) is increasing when s ∈ [AL,AR]. Thus, there exists a Ti ∈ [AL,AR] such that ψ (s) < 0 if and only if s > Ti. Hence,
the first part of the theorem is proved.

The proof of uniqueness is trivial by using the mean value theorem on the strictly monotonic ψ (s). �

Proposition 1 demonstrates the intuition of using delta as a basis. As long as δi is large enough, loss will improvewith observation
i moving to NR. On the other hand a, gradient descent approach does not guarantee the same characteristic. To prove that this
mechanism is optimal, we first need to understand the impact of the grouping in loss reduction at each iteration.

In the following three theorems, we give an optimality result on three major categories of loss functions.

Theorem 1. Delta is the optimal basis for square deviation, absolute deviation, Huber loss, and t-distribution function.

Proof. The first three loss functions can be found in Sections 4.1, 4.2, and 4.4, respectively, in Friedman (2001). From Friedman
(2001) and Huber (1964), the Huber loss function attempts resistance to long-tailed distribution and outliers while maintaining
high efficiency for normally distributed errors. The representation of the Huber loss function is

�(y, g−1(F )) =
{

1
2 (y− F )2 if |y− F| ≤ d

d(|y− F| − d/2) otherwise

�(y, g−1(F )) can also be represented as m(|y− F|) for some strictly increasing function m(·) for all four loss functions. Thus,
δi = yi − Ft−1(xi). Assume there exists i ∈ NL and j ∈ NR such that δi > δk, then at least one of the two following cases is true and
�(y, g−1(x)) can be improved by an element switch.

Case 1: δi > (�L +�R)/2
By switching element i to NR, we create a new partition and new β accordingly. Let the resulting loss function be �∗:

�∗ ≤ �(y, g−1(Ft (x)))−�(yi, g
−1(Ft−1(xi)+�L))+�(yi, g

−1(Ft−1(xi)+�R)) (5)

= �(y, g−1(Ft (x)))− m(|δi −�L|) + m(|δi −�R|)
< �(y, g−1(Ft (x))).

The inequality (5) is due to the right hand side and does not reflect the loss reduction after adjusting the β to minimize
the aggregate loss function given the new partition.

Case 2: δk < (�L +�R)/2
Using the same logic in case 1, it is trivial that switching element j to NL will result in a better loss. Cases 1 and 2 cover
all the sets in the parameter space in which δi > δk. �

Theorem 2. Delta is the optimal basis for Bernoulli and K-class logistic regression and classification.

Proof. The two loss functions can be found in Sections 4.5 and 4.6 respectively in Friedman (2001). Bernoulli is considered the
most commonly used benchmark in comparing model performance. K-class logistic can be thought of as an extension to the
Bernoulli. Interested readers can refer to Friedman (2001) for more details.

Since δ = ∞ when y = 1 and δ = −∞ when y = 0, δi > δk thus implies δi = ∞ and δk = −∞. The loss function will be
improved if i ∈ NR and j ∈ NL. �
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The above two theorems cover all listed distributions in Friedman (2001). The proposed basis works perfectly in another major
family as well, as shown in the following theorem.

Theorem 3. Delta is the optimal basis for a Tweedie family using negative loglikelihood as the loss function with log-link.

Proof. Introduced in Tweedie (1984) and elaborated in Jorgensen (1987), the Tweedie family is an important subset of exponential
family. Table 3 gives a list of the members of the family.

No known distribution is found for 0 < p < 1. The negative loglikelihood of a Tweedie family with log-link is in the following
form:

�(y, g−1(F )) =
⎧⎨
⎩

e(2−p)F
2−p − e(1−p)F

1−p y if p /∈ {1, 2}
eF − yF if p = 1
F + ye−F if p = 2

.

In all cases, δi = ln(yi/eFt−1(xi ) ).
Assume ∃i ∈ NL and j ∈ NR such that δi > δk, then at least one of the two following cases is true and �(y, g−1(x)) can be

improved by an element switch.

Case 1:

eδi >

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(e(2−p)�R−e(2−p)�L )(1−p)
(e(1−p)�R−e(1−p)�L )(2−p) if p /∈ {1, 2}
e�R−e�L
�R−�L

if p = 1
− �R−�L

e−�R−e−�L if p = 2
.

If δi satisfies the above inequality, then �(yi, g−1(Ft−1(xi)+�R)) < �(yi, g−1(Ft−1(xi)+�L)). The case where
p /∈ {1, 2} is used for illustration.
Switching element i to NR and letting the resulting loss function be �∗,

�(yi, g
−1(Ft−1(xi)+�L)) = e(2−p)(Ft−1(xi )+�L )

2− p
− e(1−p)(Ft−1(xi )+�L )

1− p
yi

= e(2−p)(Ft−1(xi )+�L )

2− p
− e(1−p)(Ft−1(xi )+�L )

1− p
eFt−1(xi )+δi

> �(yi, g
−1(Ft−1(xi)+�R))

⇒ �∗<�(y, g−1(Ft (x))).

Case 2:

eδk <

⎧⎪⎨
⎪⎩

(e(2−p)�R−e(2−p)�L )(1−p)
(e(1−p)�R−e(1−p)�L )(2−p) if p /∈ {1, 2}
e�R−e�L
�R−�L

if p = 1
− �R−�L

e−�R−e−�L if p = 2

.

Using the same logic, it is trivial that switching element j to NL will result in a better loss. Cases 1 and 2 cover all the
elements in the parameter space in which δi > δk. �

From the above illustrations, we show that using δ as the basis yields optimal results in many popular distributions.

3.2. Regression and Adjust
Section 3.1 shows that delta acts as an excellent basis and, as shown in the Basis step of Algorithm 3, is the first key difference

between GB. However, challenges must be overcome in adopting delta as the basis if the Regression and Adjust steps are not
properly adjusted.
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� Non linearity of delta: Recall from the Regression step in, Algorithm 2 that at is derived to solve the regression problem
of J-node trees; that is to minimize −∑J

j=1MjR2
j . Thus, both the order and the magnitude of ri of ri impact the selec-

tion of at in the Regression step. Unfortunately, except for the square-error loss function, no loss function has the linearity
property. It means δ j is not necessarily in proximity to � j. Thus, using regression methods to obtain at is not likely to be
desirable.

� Undefined values of delta: Also, in the case of δi = ±∞, the average of the group will be undefined, and the occurrence of
such situation is not uncommon. All δi in Bernoulli and K-class classification are infinite and δi = −∞when yi = 0 in Poisson
with log-link. Considering that Bernoulli and Poisson are the most popular choices for counting distributions, the proposed
approach cannot be used without the problem being attended to.

To overcome the difficulty, we propose to transform δ into well-defined values. A strictly monotonic function with the image
space in a finite real number and preserving the order of δ’s is sufficient for the transformation. Consequently, the transformation
is loss function specific. For example, in Poisson, δi = ln(yi/Ft−1(xi)). The transformation δ̂i = yi/Ft−1(xi) is suggested because it
serves the same purpose as δi as a basis shown in the previous subsection (only ordering matters) without encountering a computing
issue when yi = 0.

We also recognize that the goal is to minimize the aggregate loss function. Instead of solving the regression problem for the
gradients and inducing the at , we directly seek at to minimize the aggregate loss function. Along with the search for optimal at ,
we calculate the aggregate loss minimizer � j instead of group average δ j. Since � j is an immediate outcome, it implies that the
Regression and Adjust steps are integrated as stated in the Regression and Adjust steps in Algorithm 3.

It immediately leads to the most critical conclusion of this article: The novel approach simultaneously solves for the optimal
at and βt,at . This conclusion has three significant results. First, we provide an answer to a difficult simultaneous estimation
problem (Friedman 2001). Second, the estimation is optimal. Not only is the individual delta is the best basis, the estimation of
at and βt,at results in obtaining the global minimum loss based on the given base learner. Thus, DB is the best boosting method
in the boosting family for most of the popular distributions in the criteria of loss reduction as stated in Theorems 2, 3, and 4.
Third, since at and βt,at are optimally integrated, the boosting algorithm becomes less computationally demanding and thus more
efficient.

For interested readers, the explicit algorithms of Poisson, Normal, Tweedie, and Bernoulli are shown in Appendix A.

4. ASYMPTOTIC EXTENSION OF DB
Section 3 shows that DB is the optimal boosting mechanism for a wide variety of distributions. Readers can easily infer from

Proposition 1 that the sufficient condition for delta to be optimal is the distribution and link function of interest generating inde-
pendence between Ti and F (xi). This ensures that in the case where i ∈ NL and j ∈ NR but δi > δk, an element switch will also
result in a loss improvement.

However, not every combination of distribution and link function offers the independence feature mentioned above. In partic-
ular, when � for some loss functions cannot be explicitly solved for, cases exist where δi > δk but �(yi, g−1(Ft−1(xi)+ δR)) >
�(yi, g−1(Ft−1(xi)+ δL)) and �(yk, g−1(Ft−1(xk )+ δR)) < �(yk, g−1(Ft−1(xk )+ δL)). Hence, an element switch does not nec-
essarily result in a loss reduction. The distributions in Section 3 are immune to the above situations because the threshold Ti in
Proposition 1 is independent of Ft (xi) and thus the same for all observations. In this section, we propose an asymptotic modification
of DB to overcome the above-mentioned situation.

We first recognize that

∑
i∈N j

�
′
(yi, g

−1(Ft−1(xi +� j ))) = 0, (6)

� j
asymp= −

∑
i∈N j

�
′
(yi, g−1(Ft−1(xi)))∑

i∈N j
�
′′ (yi, g−1(Ft−1(xi)))

, (7)

where =asymp means both sides are asymptotically equal when � j → 0, implying the adequacy of the first degree Taylor approx-
imation in Equation (7). The error of the approximation becomes negligible when � j is small. In most data mining proce-
dures, � j has a diminishing pattern after enough iterations. The pattern is not significantly impacted by the size of the data;
rather, it is dependent on the number of iterations. Lemma 1 proves that the convergence is guaranteed to result for large
iterations.
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We now define the asymptotic basis δ∗ and adjustment factor �∗ to be as follows:

δ∗i = −
�
′
(yi, g−1(Ft−1(xi)))

�
′′ (yi, g−1(Ft−1(xi)))

,

�∗j = −
∑

i∈N j
�
′
(yi, g−1(Ft−1(xi)))∑

i∈N j
�
′′ (yi, g−1(Ft−1(xi)))

.

We can also establish a relation between �∗ and δ∗ through

�∗j =
∑

i∈N j
�
′′
(yi, g−1(Ft−1(xi)))δ∗i∑

i∈N j
�
′′ (yi, g−1(Ft−1(xi)))

. (8)

From Equation (8), we can view�∗ as a weighted average of δ∗ with the convexity of the loss function. Note that δ∗i and ri can
be related by the following equation:

δ∗i =
ri

�
′′ (yi, g−1(Ft−1(xi)))

. (9)

From this perspective, we can interpret ri as capturing the direction of adjustment and δ∗i as correcting for the magnitude needed
to arrive at the optimal loss. Without the correction, the negative gradient approach will assign too much weight to observations
with high second derivatives. In the case where the negative loglikelihood of any distribution is used as the loss function, the above
formula suggests that δ∗ is corrected for the corresponding variance.

In the rest of this section, we will show the asymptotic behavior of this extension of DB.

Lemma 1. In DB, Ft (x) converges.

Proof. Since�(y, g−1(Ft−1(x))) ≥ �(y, g−1(Ft (x))) ∀t and�(y, g−1(Ft (x))) ≥
∑M

i=1�(yi, δi) where δi is the individual loss min-
imizer of observation i. limt→∞�(y, g−1(Ft (x))) exists according to the monotonic convergence theorem. Using the identifiability
characteristic of �(y), Ft (x) converges to F(x). �

Lemma 2. In DB, the loss improvement �(y, g−1(Ft−1(x)))−�(y, g−1(Ft (x)))=asymp∑J
j=1
∑

i∈N j
�
′′
(yi, g−1(Ft−1(xi)))(δ∗i −

�∗j )
2/2+C

where C = −∑i�
′′
(yi, g−1(Ft−1(xi)))δ2i /2.

Proof. From Lemma 1, Ft (x)→ F(x) for some F(x). Thus,�∗j will converge to 0. Using Taylor’s expansion on�(y, g−1(Ft−1(x)))
for sufficiently large t, we have

�(y, g−1(Ft−1(x))) =asymp �(y, g−1(Ft (x)))+
J∑
j=1

∑
i∈N j

�
′
(yi, g

−1(Ft (xi)))�∗j +
J∑
j=1

∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))�∗2j /2

⇒ �(y, g−1(Ft−1(x)))
asymp= �(y, g−1(Ft (x)))+

J∑
j=1

∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))�∗2j /2.

The second asymptotic equation is a consequence of Equation (6). Also,

∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))(δ∗i −� j )
2/2 =

∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))(δ∗2i − 2δ∗i �
∗
j +�∗2j )/2

=
∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))(δ∗2i −�∗2j )/2

=
∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))δ2i /2−
∑
i∈N j

�
′′
(yi, g

−1(Ft (xi)))�∗2j /2.
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Combining, we have

�(y, g−1(Ft−1(x)))−�(y, g−1(Ft (x))) =asymp −
J∑
j=1

∑
i∈N j

�
′′
(yi, g

−1(Ft−1(xi)))�∗2j /2

=
J∑
j=1

∑
i∈N j

�
′′
(yi, g

−1(Ft−1(xi)))(δ∗i −�∗j )2/2.

�

The representation offers a simple interpretation of the loss improvement in each iteration as a weighted square error between
the δ∗ and �∗.

Theorem 4. Asymptotically, �∗ and δ∗ are the optimal boosting candidates.

Proof.
Assume there exists i ∈ NL and j ∈ NR such that δ∗i > δ∗j , and when t is sufficiently large, at least one of the two following

cases is true and �(y, g−1(Ft (x))) can be improved by an element switch.

Case 1: δ∗i > (�∗L +�∗R)/2
Let �∗ be the loss after an element switch. From Lemma 2,

�(y, g−1(Ft (xi)))−�(y, g−1(Ft−1(xi))) =asymp
∑
k∈NL

�
′′
(yk, g

−1(Ft−1(xi)))(δ∗k −�∗L)2/2

+
∑
k∈NR

�
′′
(yk, g

−1(Ft−1(xi)))(δ∗k −�∗R)2/2+C

=
⎛
⎝∑
k∈NL

�
′′
(yk, g

−1(Ft−1(xi)))(δ∗k −�∗L)2/2

− �
′′
(yi, g

−1(Ft−1(xi)))(δ∗i −�∗L)2/2
)

+
⎛
⎝∑
k∈NR

�
′′
(yi, g

−1(Ft−1(xi)))(δ∗k −�∗R)2/2
⎞
⎠

+�′′ (yi, g−1(Ft−1(xi)))(δ∗i −�∗L)2/2)+C
⇒ �(y, g−1(Ft (xi))) > �∗ +�′′ (yi, g−1(Ft−1(xi)))(δ∗i −�∗L)2/2

−�′′ (yi, g−1(Ft−1(xi)))(δ∗i −�∗R)2/2
> �∗.

Case 2: δ∗j < (�∗L +�∗R)/2.
Using the same logic, it is trivial that switching element j to NL will result in a better loss. Cases 1 and 2 cover all the
elements in the parameter space in which δ∗i > δ∗j . �

5. SIMULATION STUDIES
In this section we conduct several simulation studies to compare the performance of DB and GB. We first generate simulated

data using the procedures in Algorithm 4 for three distributions: Normal, Bernoulli, and Poisson.
We set the number of data trialsM = 100. In each trial, the performance of GB and DB are compared. With a large number of

trials, we eliminate the potential concern regarding the manipulation of the random seeds.
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Algorithm 4 Data Simulation and Modeling Procedures

(1) The formula of the covariates: Z = α1X̃1 + α2X̃2 + α3X̃3 + α4X̃4 with X̃i defined below.
(2) For s = 1 to S Do

(a) Initialize the random seeds (100,000 + s)
(b) Generate α1, α2, α3, α4 from N(0, 1)
(c) For i = 1 to N Do

(i) Generate Xi,1,Xi,2,Xi,3 from N(0, 1) and create Xi,4 =
√|Xi,1 sin(Xi,2) tan(Xi,3)|.

(ii) Standardize Xi, j’s by the formula ˜Xi, j = Xi, j/(maxi(Xi, j )−mini Xi, j ) ∗ 4− 2.
(iii) Zi = α1 ˜Xi,1 + α2 ˜Xi,2 + α3 ˜Xi,3 + α4 ˜Xi,4

(d) End For
(e) Standardize Zi by the formula Zi← Zi/(max(Zi)−minZi) ∗ 4− 2.
(f) Transform Zi to the mean through the link functions of the corresponding distributions. E.g., for Bernoulli, Zi← (1+

e−Zi )−1

(g) Simulate observations yi from the corresponding distribution and Zi. E.g., for Bernoulli, yi ∼ B(Zi).
(h) Model the simulated data by GB and restart the random seed at (100,000 + m)
(i) Model the simulated data by DB and restart the random seed at (100,000 + m)

(3) End For

The data are partitioned into three datasets: training, testing and holdout. The training dataset is used to estimate the underly-
ing parameters, whereas the testing dataset is used to decide the optimal stopping time. The holdout dataset is used to perform
model diagnostics. In each trial, we generate 80,000, 20,000, and 25,000 observations for training, testing, and holdout dataset,
respectively.

Over fitting is known to be an unwanted consequence of data mining. If left unattended, most models can fit the train dataset with
high precision but provide poor predictive strength to independent data. Gradient boosting is not an exception, although Friedman
(2002) stated that it is affected to a lesser extent. Friedman describe this phenomenon as slow overfitting.

Nevertheless, Friedman (2001, 2002) further improve the performance of GB by injecting two regularization techniques, namely
shrinkage and stochastic bagging (Breiman (1996, 1999, 2001b); Friedman (2002) and references therein) to temper the over fitting
issue. Noise suppression techniques are in general compatible with each other and generate satisfactory results. In this paper, both
regularization approaches are adopted to enhance the model performance.

To compare the performance of predictive modeling techniques, generally accepted diagnostics such as overall losses, lifts,
and double lifts are adopted. Each diagnostic compares the performance given certain assumptions. The conclusion can thus be
misleading if the assumptions made are not valid. If a model outperforms in all diagnostics, then the conclusion is robust to those
assumptions and thus is more reliable. We describe the diagnostics used and the corresponding results in the rest of this section.

5.1. Loss
When a loss function is specified, the aggregate loss is the most relevant statistic to assess whether a predictive model performs

in a desirable fashion. A high value of loss indicates poor performance of the model. For the distributions used, we used the negative
loglikelihood as the measure of loss.

For a normal distribution, the loss is (yi − g−1(F(xi)))2 +CNi for some constantCNi . The loss is dependent only on the difference
but not the value of F(xi)). On the other hand, the loss for Poisson is λi − yi log(g−1(F(xi)))+ log(yi!). The same amount of
difference yi − g−1(F(xi)) will translate into a smaller loss for larger g−1(F(xi)), meaning that we have higher tolerance on a large
difference if the predicted response is high. The tolerance is even higher for a Gamma distribution.

Table 4 captures the summary of statistics regarding the loss on the holdout dataset. Unlike comparing train negative loglikeli-
hood, requiring a penalty for potential overfitting, the raw holdout negative loglikelihood is the measure of assessing fitness. For
ease of comparison, all the statistics are based on loss function of GB-loss function of DB.

DB for Poisson clearly outperforms the corresponding GB version. The loss of DB is smaller than GB’s in 98 of 100 trials. The
mean difference of losses is also large. Using the likelihood ratio test approach, GB needs to lose more than 99 degrees of freedom
to have the deviance of 62.81 deemed not significant at the significance level of 0.05. However, both models are using the same
set of variables. Thus, DB is a better candidate in Poisson modeling.

The difference is less dramatic in the case of Bernoulli, because there are more similarities in the algorithms. In Section 4, we
also show that δ∗ is a close proxy, to r than δ. Both versions adopt the asymptotic �∗ for adjustment. The simulation results for
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TABLE 4
(Loss of GB-Loss of DB) in Test Dataset

Statistics Poisson Bernoulli Normal

Number of times the difference is positive 98 68 0
Mean 62.81 3.82 0
25th percentile 40.19 −0.77 0
Median 65.71 4.17 0
75th percentile 80.07 7.65 0

FIGURE 1. Lift Plot of GB and DB for Poisson Negative Loglikelihood.

Normal are for illustration only, as the algorithms for DB and GB are identical for Normal negative loglikelihood. With the same
seed, the results should be identical as shown. Statistics for Normal are dropped in the remaining exhibits for the same reason.

5.2. Lift
We can also assess the performance of the candidates by utilizing the lift plot. Lift is a popular diagnostic tool in predictive

modeling due to its intuition. To derive the measure, we sort the prediction and group the observations into 10 deciles. Lift is
defined to be the ratio of the weighted mean of the response in the top decile and the weighted mean of the bottom decile. A high
lift ratio implies a wider spread of prediction and hence the model’s ability to spot extreme observations. Readers should note that
the lift rewards models that offer higher differentiating power but does not reveal the model’s accuracy.

The fitness of the lift curve is an aspect that is usually overlooked. We can assess the fitness through R2 of the plot of average
responses over average predictions for the deciles, or sum of squared difference between deciles’ average response and average
predictions. If the points are aligned with the line y = x, the model has a high predictive performance. A R2 close to 1 indicates a
high overall fit. Alternatively, one can use the sum square difference between the prediction and response as a measure of accuracy.

TABLE 5
Lift of DB/Lift of GB

Statistics Poisson Bernoulli

Mean 1.002 0.995
Number of times the ratio is greater than 1 54 45
25th percentile 0.990 0.972
Median 1.001 0.995
75th percentile 1.013 1.023
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FIGURE 2. Double Lift Plot DB over GB for Poisson Negative Loglikelihood.

From Figure 1, we see both DB and GB perform extremely well. The prediction and response are almost the same. The R2 is 1
at four significant figures. The lifts of GB and DB are 4.79 and 4.78 respectively. Table 5 summarizes the statistics regarding the
lift plot in 100 trials.

The results suggests that GB and DB perform similarly, with much less contrast compared to the inference from loss analysis.
The difference comes from the lift focusing on the extremes and thus favors the squared loss, instead of models that penalize tail
behavior. In Poisson, variance is proportional to the expectation. Thus, DB gives observations less weight at the right tail. In GB,
the negative gradients are ri = yi − E(Yi|xi) for all three distributions, resembling the behavior of squared loss. It makes GB a
more favorable candidate for good lifts. R2 for both modeling techniques is generally high with an average of 98.5%.

5.3. Double Lift
Double lift on holdout data provides a direct comparison between the performance of two models, DB and GB in this case.

Observations are sorted in the ratios of DB prediction over GB prediction and are grouped by the intervals that they belong (ratio
of 0.99 ∈ (0.95, 1]). For each bucket, we calculate the ratio of total response over total GB prediction and ratio of total DB
prediction over total GB prediction. Blue and red lines describe the trend for the ratios respectively. A positive correlated trend
indicates a portion of the residual from GB can be explained by DB. If both lines overlap, it indicates that boosting explains a high
portion of residual power and thus outperforms GB. If no trend is observed, it indicates the ratio distributes randomly, and thus the
performance of both models is similar. On the other hand, double lift plot with a negatively trend would indicate DB is inferior to
GB.

A rephrasing of the above in actuarial context may help. Consider DB as a new costing algorithm, GB as the current one and
the response as claims amount. The ratio of the prediction by the new algorithm over the current prediction is called dislocation.
Correspondingly, the ratio of the third over the second is the loss ratio. For a bucket with high dislocation, say, (1.11, 1000], we
should expect the loss ratio should be high to justify the rate change and accept the strength of the new algorithm over the current
one. If the loss ratio is constant (no trend), it indicates the new algorithm is not better. The case for a reversing trend can be easily
deduced. A dislocation exercise is an essential exercise for pricing actuaries because a rate increase will likely drive lapse rate
whereas rate decrease will indicate a conceiving of profits. Thus, the rate change of both sides has to be a throughtly studied,
and normally a rate capping is applied to temper extremel rate changes. A double lift can be considered a more comprehensive
dislocation review exercise. With the double lift plot, actuaries have a robust tool to assess the accuracy of the new algorithm.
Using (1.11, 1000] again as the example, the average dislocation (rate change) for this bucket is 1.14 (from the red line) and the
average loss ratio is 1.16, indicating that the proposed increase reflects the risks inherited from the policyholders.

From Figure 2, we see a significant positive relationship between the Response/(GB prediction) and the dislocation from the
red line. We can also deduce from the x axis that the difference between DB and GB prediction is not significant. Most of the
observations have a deviation of 2%. For readers’ reference, the loss of DB and GB in this trial for training dataset is−2, 052, 687
and −2, 052, 684, respectively.

Table 6 captures the summary of statistics regarding the double lift plot in 100 trials. The conclusion from double lift analysis
favors the adoption of DB because it is capable of picking up the residual of GB rather than the reverse in the case of Poisson.
Again, the difference between the asymptotic DB and GB in the case of Bernoulli is less significant.
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TABLE 6
Double Lift

Poisson Bernoulli
Statistics
(Slope) D/G G/D D/G G/D

Mean 0.770 0.406 0.185 0.088
Number of times D/G ≥ G/D 93 59
25th percentile 0.709 0.205 0.091 0.003
Median 0.807 0.350 0.169 0.108
75th percentile 0.864 0.542 0.268 0.171

6. APPLICATION TO INSURANCE DATA
In this section, we test Delta boosting with an insurance claim data from a Canadian insurer. It consists of policy and claim

information at the vehicle level for collision coverage in a particular province. Collision coverage protects the insured from
the cost of repairing or replacing their vehicle in the event that the covered vehicle collide with another vehicle or any other
object.

The data set includes the experience for accident years 2001 to 2005. The response to be predicted is the claim frequency, the
number of claims per vehicle year. Severity (average payment to a claim) and loss cost (the average payment per vehicle year) are
also popular responses in actuarial pricing. However, generally accepted actuarial distributions (gamma and Tweedie respectively)
for those responses are not readily available in computing packages for some of the modeling techniques, so we will focus on claim
frequency modeling. More than 1000 variables are available in the datamart in which the data are stored, including policyholders’,
drivers’, and vehicles’ characteristics. The data include 290,147 vehicle years, commonly called exposures and an overall claim
frequency of 4.414%. Although the frequency falls into the typical industry range of 4% to 8%, this represents an imbalanced or
skewed distribution, which commonly hinders the detection of claim predictors and eventually decreases the predictive accuracy of
the model (Sun et al. 2007). Thus, a proper selection of modeling technique and loss function is required to guarantee an accurate
estimation.

Lee and Antonio (2015) used the same data, with the deletion of an insignificant portion of observations with missing values,
to compare performance of a few competing predictive modeling techniques. We randomly select 85% of the data for training and
testing purposes. Model results are derived based on those data only. The rest is used as an independent holdout.

We apply the same treatment using DBwith identical parameters to the GB suggested, with the exception of applying a different
shrinkage factor to get comparable selected iterations. Interested readers can find a comprehensive treatment of data processing
and modeling in the paper by Lee and Antonio (2015).

6.1. Variable Importance
Models are different because they are suggesting different function forms of prediction F (x). Consequently, the same feature

may not have the same influence in the models. For example, a variable with a strong exponential relationship with the response
may not be considered a predictive variable in GLM. Studying the difference between the importance of each variable usually can
offer actuaries insight into which variables should be selected and transformed to capture the missed predictive power.

In boosting, the importance is derived based on the accumulated reduction of losses by the variables (Friedman 2001) and is
normalized such that the sum of the importance equals 100. Any individual number can be interpreted as the percentage contribution
to the overall model.

Figure 3 shows the 10 most influential variables. It is obvious that the ranking is not preserved between models. In fact, the
magnitude of importance for some variables vary significantly. For example, the importance of years with insurer (customer loyalty)
are 2.9% and 6.5% for GB and DB, respectively.

If we extend the the comparison to other modeling techniques, the difference is more significant. We list the results of DBM
against GBM, GLM, GAM, and elastic net as a comparison. In elastic net, a regularized GLM, we find the coefficients in the
following:

β̂ = argmin
β

(‖y− Xβ‖2 + λ((1− α)/2‖β‖2 + α‖β‖1)). (10)

λ is chosen to be the biggest penalty factor such that its deviance is less than the smallest deviance through five fold cross-
validation, and α is the corresponding weight to result in the deviance.
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TABLE 7
Variable Importance by Model Candidates

Variable DBM DBM Rank (R) GLM GLM R GBM GBM R EN EN R

Driver’s class 14.75 1 24.49 1 16.02 1 21.77 1
Years licensed 13.82 2 4.26 9 14.68 2 4.33 8
Ownership length 7.42 3 0.13 21 5.98 5 8.68 5
Renewal count 6.54 4 7.13 4 3.16 11 8.09 6
Deductible 6.53 5 14.31 2 4.75 7 12.43 2
Rate group 5.52 6 5.74 6 5.45 6 2.20 12
Credit score by region 5.31 7 2.86 11 6.40 4 2.86 10
Age licensed 4.93 8 1.34 14 6.60 3 9.57 4
Driver age 4.35 9 2.92 10 4.52 8 0 35
Years since last conviction 4.06 10 12.77 3 4.21 10 10.03 3

The importance of a variable by GLM and elastic net is derived through drop-in deviance approach. The deviance of the model
that drops the variable is calculated and minus the deviance of the full model. The change of deviance offers an intuition of the
importance of the variables. Again the numbers are normalized such that the total is 100 Table 7.

This comparison can provide actuaries insights into the variable selection and enhance the base GLM models.

6.2. Partial Dependence Plot
Actuaries can then dig deeper to understand how individual variables predict differently through the partial dependence plot.

Defined by Friedman (2001), a partial dependence plot is a visualization tool that views the partial dependence of the approximation
F (x) on selected small subsets of the input variables. We can study the plots, or commonly called differential plots in actuarial
science, for the variables for further investigation. As an illustration, the plots for years licensed and renewal counts are depicted
in Figure 4.

The shaded bar indicates the portion of risk at the level, whereas the line indicates the differential. We observe that the difference
between GBM and DBM is visible even at the levels with significant exposures. These differences contribute to the diverging
predictions between both models. The curves for GLM and GAM are usually more dramatic because the extrapolation of linearity,
whereas DBM andGBM tend to have a flattened curve at the extreme. Elastic net attempts to minimize the over fitting by penalizing
high coefficients.

To further compare the performance between DB and GB, we adopt the loss, lift, and double lift diagnostics suggested in
Section 5.

6.3. Negative Loglikelihood
Since we have a ex ante belief that the claim count follows the Poisson distribution, Poisson negative loglikelihood is used as

the basis of loss. The assessment of appropriateness in using Poisson is outside the scope of this article. However, despite the wide
spread adoption of Poisson in frequency modeling, readers are suggested to study Ismail and Jemain (2007) and references therein
about the over dispersion issue in claims data and other suggested alternative distributions.

FIGURE 3. 10 Most Important Variables by DBM with Matching Importance from GBM.
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TABLE 8
Normalized Negative Loglikelihood of Competing Models

No. Model Holdout

1 GLM 0.00
2 GB −135.80
3 DB −139.50

The best model should have the lowest negative loglikelihood among the candidates in the holdout data. Table 8 illustrates the
negative loglikelihood for all the candidate models.

We again focus on the raw holdout deviance as the measure of assessing fitness with GLM’s deviance served as the benchmark.
Using DB as an example,−139.5 = 2×(negative loglikelihood of DB-negative loglikelihood of GLM). Based on the results shown
in Table 8, we conclude that we can extract more information from the data using DB than GB.

6.4. Lift
The lift plot for the holdout data suggests that the lift of DB at 8.32 is higher than GB lift of 7.82.
Figure 5 shows that all candidates predict the frequency fairly well on each decile because all the points are close to the x = y

line. DB has a higher lift than GB, which in turn has a higher lift than GAM and GLM. The result is consistent with what the
likelihood table suggests. Since boosting and GAM perform better than GLM, it would be desirable if actuaries can use them to
improve on the GLM model (Lee and Antonio 2015).

FIGURE 4. Differential Plots for GB and DB.

FIGURE 5. Lift Plots for Holdout Data.
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FIGURE 6. Double Lift DB over GB.

6.5. Double Lift Plot
We conclude the section with the double lift plot in Figure 6.
It is vivid that the actual over GB (red) has a positive trend and is aligned to the DB to GB ratio (blue). It indicates that DB is

capable in explaining the residual of GB. Based on the assessment of all diagnostics, we can conclude that DB outperforms GB in
this actual claim count data.

7. DISCUSSION
ADelta BoostingMachine is presented as a forward stagewise additive model. It sequentially fits a relatively simple base learner

to complement the running prediction. The model attempts to find the optimal adjustment on the prediction that reduces the loss to
the maximum extent. Instead of relying on the negative gradient, we adopt delta as the basis. The motivation is intuitive: a higher
delta requires higher adjustment to generate satisfactory loss improvement. Thus, it is more beneficial to have delta with similar
magnitude partitioned together.

Delta for some loss functions can be computationally undefined. We developed a mechanism that allows the use of any mono-
tonic transformation of delta as the basis. With a suitable transformation, delta with well-defined values can be obtained for all loss
distributions. This is made possible through removing the reliance of the magnitude of delta in deriving at . Instead, we integrate
Regression and Adjustment steps and estimate at and βt,at simultaneously.

Some common regularization techniques including bagging and shrinkage are adopted to help reduce the over fitting. Other
techniques, like conditional inference and pruning, may also work well when implementing the model.

Although DB cannot be proven to be optimal universally, it works very well in many common modeling situations. The asymp-
totic version helps us to understand that DB eventually outperforms other boosting members at later iterations. This asymptotic
behavior does not depend on the number of observations, but rather it describes the behavior when� becomes small. Thus, a small
shrinkage is desirable to help guaranteeing a better performance.

Like GB, DB provides the ability to assess variable performance through measures such as a relative influence chart and
the marginal plot (Friedman 2001). We can also assess overall model performance through losses, lifts, and double lifts on
the holdout sample. With the help of these diagnostics, empirical tests have validated the theory and provide confidence in
adopting DB.

Application of DB on insurance pricing can bring substantial economic benefit to insurance companies. Retail insurance is
in general highly competitive for an open market, and with the availability of premium aggregators, clients can easily pick the
most attractive offering among the insurers. It implies that not only the pricing model has to be accurate overall or for coarse
segments, it has to be accurate for more refined customer groups. Otherwise, the under priced segment will be attracted to the
company, resulting in an operating loss, whereas the loss cannot be made up by over-priced segment because the customers will
be attracted by other companies. From this point of view, applying DB can significanty limit the selection problem, compared to
other competing candidates mentioned here including GB.

Going further, predictive models can be found to be influential in understanding the customer life cycle, including the conversion
rate, renewal rate, and lapse rate. A more accurate forecast for those components can help insurers derive a strategy that improves
overall attractiveness and competitive edge.
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APPENDIX A. GB AND DB ALGORITHMS FOR BERNOULLI, NORMAL, POISSON, AND TWEEDIE DISTRIBUTIONS
This appendix presents the head-to-head comparison between the two algorithms for Bernoulli, Normal, Poisson, and Tweedie

distributions.

https://xgboost.readthedocs.org/en/latest/
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ALGORITHM 9
Algorithms for Bernoulli

GBM—Bernoulli DBM—Bernoulli

1: F0 = ln(
∑M

i=1 yi∑M
i=1 1−yi

) 1: F0 = ln(
∑M

i=1 yi∑M
i=1 1−yi

)

2: For t = 1 to T Do 2: For t = 1 to T Do
3: ri = yi − pi 3: δi = (yi − pi)/(pi(1− pi))

pi = (1+ eFt−1(xi ) )−1 4: pi = (1+ eFt−1(xi ) )−1
4: Find the best split at to form J partitions 5: Find the best split at to form J partitions
based on ri using standard CART approach. based on δi using standard CART approach.

5: βt,at =
∑

i∈Nj yi−pi∑
i∈Nj pi(1−pi )

∀i ∈ Nj 6: βt,at =
∑

i∈Nj yi−pi∑
i∈Nj pi(1−pi )

∀i ∈ Nj

6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at) 7: Update Ft (x) = Ft−1(x)+ βt,ath(x; at)
7: End For 8: End For
8: Output F̂ (x) = FT (x) 9: Output F̂ (x) = FT (x)

ALGORITHM 10
Algorithms for Gaussian

GBM-Gaussian DBM-Gaussian

1: F0 =
∑M

i=1 yi/M 1: F0 =
∑M

i=1 yi/M
2: For t = 1 to T Do 2: For t = 1 to T Do
3: ri = yi − Ft−1(xi) 3: δi = yi − Ft−1(xi)
4: Find the best split at to form J partitions 4: Find the best split at to form J partitions
based on ri using standard CART approach. based on δi using standard CART approach.

5: βt,at =
∑

i∈Nj
yi − Ft−1(xi)/M∀i ∈ Nj 5: βt,at =

∑
i∈Nj

yi − Ft−1(xi)/M∀i ∈ Nj

6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at) 6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at)
7: End For 7: End For
8: Output F̂ (x) = FT (x) 8: Output F̂ (x) = FT (x)

ALGORITHM 11
Algorithms for Poisson

GBM-Poisson DBM-Poisson

1: F0 = ln(
∑M

i=1 yi
M ) 1: F0 = ln(

∑M
i=1 yi
M )

2: For t = 1 to T Do 2: For t = 1 to T Do
3: ri = yi − eFt−1(xi ) 3: δi = yi

eFt−1(xi )

4: Find the best split at to form J partitions 4: Find the best split at to form J partitions
based on ri using standard CART approach. based on δi using standard CART approach.

5: βt,at = ln
∑

i∈Nj yi∑
i∈Nj expFt−1(xi )

∀i ∈ Nj 5: βt,at = ln
∑

i∈Nj yi∑
i∈Nj expFt−1(xi )

∀i ∈ Nj

6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at) 6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at)
7: End For 7: End For
8: Output F̂ (x) = FT (x) 8: Output F̂ (x) = FT (x)
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ALGORITHM 12
Algorithms for Tweedie

GBM-Tweedie DBM-Tweedie

1: F0 = ln(
∑M

i=1 yi
M ) 1: F0 = ln(

∑M
i=1 yi
M )

2: For t = 1 to T Do 2: For t = 1 to T Do
3: ri = yieFt−1(x)(1−p) − eFt−1(x)(2−p) 3: δi = yi

eFt−1(xi )

4: Find the best split at to form J partitions 4: Find the best split at to form J partitions
based on ri using standard CART approach. based on δi using standard CART approach.

5: βt,at = ln
∑

i∈Nj (ye
(Ft−1(xi )∗(1−p)) )∑

i∈Nj e
(Ft−1(xi )∗(2−p)) ∀i ∈ Nj 5: βt,at = ln

∑
i∈Nj (ye

(Ft−1(xi )∗(1−p)) )∑
i∈Nj e

(Ft−1(xi )∗(2−p)) ∀i ∈ Nj

6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at) 6: Update Ft (x) = Ft−1(x)+ βt,ath(x; at)
7: End For 7: End For
8: Output F̂ (x) = FT (x) 8: Output F̂ (x) = FT (x)
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