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a b s t r a c t

The nested-simulation is commonly used for calculating the predictive distribution of the total variable
annuity (VA) liabilities of large VA portfolios. Due to the large numbers of policies, inner-loops and
outer-loops, running the nested-simulation for a large VA portfolio is extremely time consuming and
often prohibitive. In this paper, the use of surrogate models is incorporated into the nested-simulation
algorithm so that the relationship between the inputs and the outputs of a simulation model is
approximated by various statistical models. As a result, the nested-simulation algorithm can be run
with much smaller numbers of different inputs. Specifically, a spline regression model is used to reduce
the number of outer-loops and a model-assisted finite population estimation framework is adapted to
reduce the number of policies in use for the nested-simulation. From simulation studies, our proposed
algorithm is able to accurately approximate the predictive distribution of the total VA liability at a
significantly reduced running time.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Variable annuities (VA) have gained significant market share
over the last several decades since its introduction, especially in
the North American annuity market. According to LIMRA Secure
Retirement Institutes’ Fourth Quarter 2017 U.S. Individual Annu-
ity Sales Survey, the total VA sales in the U.S. market were $95.6
billion in 2017. In addition, Jackson National Life, TIAA and AXA
US all sold over $10 billion VA and the top 20 VA sellers together
share 93% of the total sales in 2017. Nowadays many major
insurance companies are managing very large variable annuity
portfolios.

Typically a variable annuity is embedded with guarantees
which provide death benefits or living protection. There are two
main categories of guarantees: guaranteed minimum death ben-
efits (GMDBs) and guaranteed minimum living benefits (GMLB).
The GMDB guarantees an amount of death benefit to the policy
holder upon death during the policy term. Normally the GMDB is
embedded in all variable annuities whereas the GMLBs are offered
as riders. Two most commonly elected GMLB riders are guar-
anteed minimum accumulation benefit (GMAB) and guaranteed
minimum withdrawal benefit (GMWB). The GMAB rider guaran-
tees an amount of the accumulated value of the policyholder’s
account at the contract maturity. The GMWB rider guarantees a
stream of periodic benefit payments to the policyholder regard-
less of underlying investment growth. A detailed introduction
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of the guarantees can be found in, for example, the Insured
Retirement Institute 2017 Fact Book. These embedded guarantees
often resemble the characteristics of a series of path-dependent
put options with time-varying strikes prices. In most situations,
close-form expressions are not available for calculating the VA
liabilities resulting from the guarantees. Hence the insurance
company normally uses the so-called nested-simulation algorithm
to calculate the liabilities.

The nested simulation is a two-step simulation algorithm: an
outer-loop simulation and an inner-loop simulation, as demon-
strated in Fig. 1.1 for variable annuity portfolios valuation. With-
out loss of generality we denote the valuation time and the future
time point by t = 0 and t = 1, respectively. In the first step
each policy’s account value is projected from t = 0 to t = 1
using many outer-loops where each outer-loop represents a real-
world scenario. In the second step a large number of inner-loops
are simulated at each outer-loop to calculate the fair value of
the VA liability by averaging the present values of the insurer’s
cash flows. The sum of liabilities over all policies among different
outer-loop simulations give the distribution of the total liability
at that future time point and that distribution is usually referred
to as the predictive total liability distribution.

Due to demographic variation and different guarantee de-
signs, a variable annuity portfolio is often constituted by highly
non-homogeneous contracts. As a result, running the nested sim-
ulation for a large VA portfolio can be time consuming and
sometimes prohibitive. For example, assuming a variable annuity
portfolio with 100,000 policies and a nested simulation algo-
rithm with 1000 outer-loops and 10,000 inner-loops nested in
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Fig. 1.1. The flow chart illustration of the nested simulation.

each outer-loop. If one wishes to find the predictive distribution
with a computer that can process 2,000,000 projections per sec-
ond, then the entire algorithm will run for 100,000 × 1000 ×

10,000/2,000,000 seconds which is approximately 6 days. This
speed is nowhere close to fulfill the portfolio risk management
needs.

There have been much research on developing efficient
nested-simulation algorithms for VA valuation. The existing re-
search on single VA policies mainly relies on the least-square
Monte Carlo (LSMC) method. This method was first proposed
by Longstaff and Schwartz (2001) for pricing American options.
The idea is to approximate the continuation value of the Amer-
ican option by regressing the discounted payoffs onto a set of
polynomials. The procedure starts from the maturity date and the
continuation values are estimated backward through time. As a
result of this basis approximation, running the nested inner-loops
is avoided. In Bacinello et al. (2011), a framework for valuing VA
using the LSMC method was proposed, in which the backward
algorithm is applied to the guarantee payoffs over the policy
term to calculate the VA liability at the current time. Ha and
Bauer (2015) considered stochastic interest rate and volatility
models and used the LSMC method to price VA with GMWB
riders. Huang and Kwok (2016) incorporated the LSMC method
into a stochastic control framework to price and hedge VA with
GLWB riders. Hörig et al. (2013) discussed the use of LSMC from
a practical prospective. Feng et al. (2016) conducted a study in
which the performance of the LSMC approach in the context of
VA was discussed. In addition to the valuation of VA, the LSMC
approach was also used to calculate various capital requirements
in terms of single VA policies. See, for example, Cathcart and
Morrison (2009), Bauer et al. (2012), Bauer and Ha (2015), etc.

Despite the broad application of the LSMC approach in the
context of VA, two main issues remain. The first issue is the
uncertainty of the performance under different circumstances as
documented by, for example, Areal et al. (2008). One primary
reason for this non-robust performance across different cases is
the accumulation of the estimation error throughout the back-
ward procedure. Another issue faced by the LSMC method is
the determination of the order of the polynomial basis functions
as mentioned in, for example, Feng et al. (2016) and Koursaris
(2011). Since the VA guarantee payments are usually multi-dated,
path-dependent, and policy-specific, these issues may result in
highly inaccurate VA liability estimates. Furthermore, when deal-
ing with large VA portfolios that are made up of a large number
of non-homogeneous VA policies, the aforementioned problems
may be further amplified. As a result, applying the LSMC approach
to the valuation of large VA portfolios is highly challenging.

Research on efficient nested-simulation for large VA portfolios
are comparatively more recent. Gan (2013) proposed a clustering
technique based on the k-means algorithm to select the so-
called representative policies. Gan and Lin (2015) proposed a
functional data approach where the liability for each policy in
the portfolio is assumed as a linear function of the selected
representative policies, The coefficients in the linear function
are fitted using a universal Kriging approach. Hejazi and Jack-
son (2016) proposed a neural network framework to estimate
the functional dependence between the liability and the policy
attributes. Recently Gan and Valdez (2018) proposed a regression
approach with a GB2 model to capture the skewness of the
liability distribution.

A common issue in the aforementioned research on efficient
nested-simulation for VA portfolios is the lack of theoretical jus-
tification on the estimator of the quantities of interest for a VA
portfolio. In other words, it is not clear whether the existing
methods can perform uniformly well over different portfolios.
Furthermore, all of the research to date focused mainly on com-
pressing the number of policies. When there are multiple un-
derlying assets being invested by the policyholders, the existing
methods might become inefficient again due to the large number
of inner and outer-loop projections.

To address these issues, in this paper we propose an efficient
nested simulation algorithm in which both the number of policies
and the number of inner and outer-loop projections are reduced,
as demonstrated in Fig. 1.2. The main contributions of our paper
are two-fold. First, we propose the use of a model-assisted popu-
lation sampling framework to reduce the number of policies. This
method is fundamentally different from the clustering method
and Latin hypercube method currently used in other papers.
Second, we propose to use a spline regression together with
scenario clustering to reduce the number of inner and outer-loop
projections. Specifically, we assign each policy in the portfolio an
inclusion probability and use the Cube sampling algorithm (Dev-
ille and Tillé, 2004) to select a set of representative policies; and a
k-means clustering approach to select a set of so called represen-
tative outer-loops. More importantly, the theoretical justification
behind the selection methods are provided. This ensures that the
algorithm would work well in general with different VA portfolios
and economic scenario generators. Since several statistical mod-
els are built into the proposed simulation algorithm, we name it
the surrogate model assisted nested-simulation algorithm.

The rest of the paper is organized as the follows. In Section 2
we focus the discussion on a single VA policy and introduce
a spline regression approach that enables the nested simula-
tion algorithm to run with fewer numbers of inner-loops and
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Fig. 1.2. The flow chart illustration of the proposed nested simulation.

outer-loops. In Section 3 we review the model-assisted finite pop-
ulation estimation framework which is used to reduce the num-
ber of policies. We construct a synthetic portfolio with 100,000
VA policies in Section 4 that realistically reflects a real VA port-
folio, the predictive distribution of its total liability is computed
using both the full simulation algorithm and the proposed algo-
rithm. Results are compared in terms of the estimation accuracy
and the running time. We show that the relative errors for various
risk metrics of the predictive total VA liability distribution are
very small meanwhile the running time is significantly shortened.

2. Fast and efficient nested simulation for single VA policies:
A spline regression approach

As mentioned in Introduction, most of the existing meth-
ods for efficient nested simulation for single VAs are built upon
the LSMC method. To calculate the VA liability using the LSMC
method, the accumulated present values of the guarantee pay-
ments from all of the projected scenarios are regressed to a set
of polynomial basis functions. As a result, for valuation purposes
each projected scenario contains two parts where the first part
is generated using the real-world economic scenario generator
(ESG) and the second part is generated using the risk-neutral ESG,
as demonstrated in Bauer et al. (2012). Essentially, under this
method the VA liability at the future time of interest along each
real-world projection is estimated using only one risk-neutral
scenario. Therefore, one needs to run the LSMC algorithm with
a large number of scenario projections (outer-loops) in order to
obtain an accurate estimate of the VA liability. In addition to the
estimation error that might arise from each liability calculation,
a large number of outer-loops may still be time consuming to
execute, especially when the method is applied to a portfolio of
many non-homogeneous policies.

Here, we propose an alternative approach to estimating the
VA liabilities in which both the outer and inner-loop simula-
tion are run independently but the outer-loop is run only for
a few selected ones. Because the VA liabilities are calculated
from multiple inner-loops, they contain less estimation errors.
Our proposed method contains two steps: first, a set of repre-
sentative outer-loops is selected and the VA liabilities at those
outer-loops are calculated through multiple inner-loops; second,
these VA liabilities are used to estimate the true VA liabilities at
all the outer-loops (including both the selected and non-selected
ones). The first step is achieved by a scenario clustering approach.
The second step is done by fitting a functional relationship be-
tween a policy’s account values and its liabilities over different

outer-loops at the future time of interest. A similar approach
without scenario clustering was used in Hörig et al. (2013), in
which a polynomial basis was used to fit the functional relation-
ship. Because each polynomial basis function is defined globally,
all of the observed data points are fitted using the same set of
basis functions. As a result, a smooth curve fitted by the polyno-
mial basis is not flexible enough to capture the dependency over
the entire range. To improve upon this issue, in this paper we
choose to use a spline regression model with a set of B-spline
basis functions (see Section 2.2) to approximate the underlying
relationship. Different than the polynomial basis, the B-spline
basis are piece-wise polynomials jointed at a sequence of knots.
Because of this structure the spline regression model is very
flexible to accommodate any functional relationships and it can
produce accurate liability estimates at all outer-loops for all types
of embedded guarantees. This makes our method particularly effi-
cient at the portfolio level. Furthermore, the close approximation
allows for accurate estimation of the derivatives of the fitted
curve, which can then be used to estimate the partial dollar Deltas
of the VA liabilities with respect to different underlying assets,
see Lin and Yang (2020).

2.1. Motivation

As mentioned before, there are two steps in the nested-
simulation algorithm. In the first step a policy’s account value
is projected from t = 0 to t = 1 using multiple outer-
loop. Then in the second step multiple inner-loops are simulated
at each projected account value from t = 1 to the contract
maturity in order to find the liability. The total running time
of the algorithm is therefore proportional to the product of the
numbers of inner-loops and outer-loops. Furthermore, in practice
the VA mangers normally run the nested-simulation with differ-
ent sets of assumptions in order to study the sensitivity of the
total VA liability with respect to different parameters. If every
time the nested-simulation is run with large numbers of inner-
loops and outer-loops, then calculating the liability for a single
policy would be time consuming, not to mention doing that for
a large VA portfolio. Motivated by this we intend to reduce the
computing time by running much fewer numbers of inner-loops
and outer-loops. To illustrate we use the following two generic
but common VA policies in this section to demonstrate our
methodology:

• VA1: Male, age 45, 20 years of maturity, GMDB + GMAB rider
where the guaranteed death benefit base rolls up at 3% per
year and the accumulation benefit base rolls up at 1% per
year.
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Fig. 2.1. Predictive liabilities with different numbers of inner-loops.

• VA2: Female, age 65, 15 years of maturity, GMDB + GMWB
rider where guaranteed death benefit base is of ratcheting
type and annual withdrawal rate equals 1/15.

We run two sets of nested-simulations for the two policies to
calculate the predictive distributions of their VA liabilities in one
year (t = 1). The two simulation algorithms are 1000/1000 (1000
outer-loops with 1000 inner-loops) algorithm and 1000/10,000
algorithm. Both the inner-loops and the outer-loops are gen-
erated by the regime-switching lognormal model (see Hardy
(2001)) with different sets of parameters. The details of the
simulation are provided in Appendix A. The results under these
two settings are shown in Fig. 2.1. Each plot in Fig. 2.1 contains
1000 data points corresponding to 1000 outer-loops. The values
on the horizontal axis represent the projected account values,
and the values on the vertical axis are the estimated liabilities
calculated from different numbers of inner-loops.

Two observations are shown from Fig. 2.1: (i) the dependency
between the predicted account value and the predicted liability
is not linear and the pattern varies across policies and (ii) the
scatterplot becomes smoother with a larger number of inner-
loops, which is well-expected because running more inner-loops
reduces the estimation error. There exists a trade-off between
the estimation accuracy and the running time. According to our

study, for a single VA policy, the 1000/1000 and 1000/10,000
nested-simulation algorithm takes around 15 s and 150 s to run,
respectively. Hence, there is a need to have an efficient algorithm
that runs on a small number of inner-loops and still provides
accurate values of the liabilities, which can be achieved by a
spline regression approach introduced in the next subsection.

2.2. Spline regression: an overview

According to the above numerical illustration, it is reasonable
to assume a functional relationship between the predicted ac-
count value and the true liability. We propose to use a spline
regression model to approximate this relationship. The spline
regression was first proposed by Friedman and Stuetzle (1981)
as a generalization of the classic linear modeling framework. A
spline is a continuous function defined by piecewise polyno-
mials. One advantage of the spline regression modeling is its
ability in capturing the dependency between the predictors and
the response variables when a linear relationship fails to hold.
O’Sullivan (1986) was one of the first works that advocates the
use of the splines due to their desired properties. In the VA
context the spline model is fitted using the predicted account
values and the simulated liabilities. From a practical prospective,
the simulated liabilities do not need to be highly accurate in order
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to fit the spline model which means they can be calculated using
fewer number of inner-loops. As a result of this the simulation
algorithm can be run at a faster speed.

In the following we briefly review the definition of the
B-spline functions (see De Boor (1978)) which are the building
blocks of splines. We adapt the notation in Claeskens et al. (2009),
and let κ = {a = κ0 < κ1 < · · · < κK < κK+1 = b} be a
sequence of nondecreasing knots. In addition, define p knots at
the left boundary κ−p = κ−p+1 = · · · = κ−1 = κ0 and another
p knots at the right boundary κK+1 = κK+2 = · · · = κK+p+1. The
B-splines are piecewise polynomials defined recursively on inter-
val [a, b], with the first-order B-splines being indicator functions:

Nj,1(x) =

{
1 if κj ≤ x < κj+1,

0 otherwise,

where Nj,1(x) = 0 if κj = κj+1. The higher order B-splines are
defined as:

Nj,k(x) = ωj,k(x)Nj,k−1(x) + (1 − ωj+1,k(x))Nj+1,k−1(x),

where j = −p, . . . , K and

ωj,k(x) =

{ x−κj
κj+k−1−κj

if κj ̸= κj+k−1,

0 otherwise,

with the convention 0/0 = 0. One special property on the deriva-
tives of the spline functions which is useful in later discussions is
stated below.

Lemma 2.1 (Derivatives of Splines). Consider a spline function of
order p+ 1,

∑K
j=−p βjNj,p+1(x), then its qth derivative where q ≤ p,

(
∑K

j=−p βjNj,p+1(x))(q), is another spline function of order p + 1 − q
and⎛⎝ K∑

j=−p

βjNj,p+1(x)

⎞⎠(q)

=

K∑
j=−p+q

β
(q)
j Nj,p+1−q(x),

where β
(q)
j is obtained recursively by

β
(q)
j = (p + 1 − q)

β
(q−1)
j − β

(q−1)
j−1

κj+p+1−q − κj
.

It follows from the above identity that the relation between
β (q)

= (β (q)
−p+q, . . . , β

(q)
K )t and β = (β−p, . . . , βK )t may be written

in matrix form β (q)
= ∆qβ where ∆q = MqMq−1 · · ·M1 with Ml

given in Box I.
Consider now a univariate spline regression constructed by

B-splines with the aforementioned knots sequence κ . Let Yi de-
note the response variable and xi denotes the predictor. The
spline regression with (p+1)st order B-spline basis functions can
be written as:

Yi =

K∑
j=−p

βjNj,p+1(xi) + ϵi, (2.1)

where ϵi’s are assumed i.i.d. with mean 0 and variance σ 2. The
parameter βj’s may be fitted using the penalized least squares
estimation approach such that the following objective function is
minimized:

n∑
i=1

⎛⎝Yi −

K∑
j=−p

βjNj,p+1(xi)

⎞⎠2

+ λ

∫ b

a

⎛⎝(
K∑

j=−p

βjNj,p+1(x))(q)

⎞⎠2

dx.

(2.2)

Here, the first term is the objective function of a usual least
square optimization and the second term is a penalty term which

prevents the fitted curve from over-fitting. The condition q ≤ p is
normally imposed to ensure the existence of the second term. The
tuning parameter λ controls the degree of penalization. Under the
extreme cases when λ → ∞ the fitted function becomes to a (q−

1)th order polynomial whereas λ = 0 results in an unpenalized
estimate which is normally referred to as the regression spline
estimator. In practice the parameters λ is usually determined by
cross validation (CV) or generalized cross validation (GCV).

The solution to (2.2) is called the penalized spline estimator.
For the ease of notation hereafter the subscription p + 1 will
be dropped when we refer to the (p + 1)st order of B-splines.
The subscription will be used when referring other orders. Let
N(x) = (N−p,p+1(x), . . . ,NK ,p+1(x)) be a vector containing all
B-splines of order p + 1 at x and N = (N(x1)t ,N(x2)t , . . . ,N(xn)t )
be an n × (K + p + 1) matrix, and β = (β−p, . . . , βK )t be
the column vector of coefficient. The penalized spline estimator
can be solved in close-form by rewriting the penalty term as
λβ t∆t

qR∆qβ with ∆q given in Section 2.2 and matrix R contains
the inner-products of (p+1−q)th order B-spline functions: Rij =∫ b
a Nj,p+1−q(x)Ni,p+1−q(x)dx. With the notation the optimization

can be rewritten as

β∗
= argminβ∥Y − Nβ∥

2
+ λβ t∆t

qR∆qβ.

Let Dq = ∆t
qR∆q. The penalized spline estimator is given by

f̂ (x) = N(x)(N tN + λDq)−1N tY . (2.3)

Hence, the penalized spline estimator is a spline of order (p + 1)
with coefficients given by (N tN + λDq)−1N tY . In a special case
when λ = 0, the estimator is called the regression spline estimator.
It follows from Lemma 2.1 that the ith derivative of (2.3) is a
(p + 1 − i)th order spline and it can be written as

f̂ (i)(x) = Np+1−i(x)∆i(N tN + λDq)−1N tY . (2.4)

We remark that the method for training set selection relies heav-
ily on the asymptotic properties of the above estimators (2.3) and
(2.4), which will be provided in the next subsection.

2.3. Training set selection for spline regression models

The objective in this subsection is to reduce the number
of outer-loops. Consider a nested-simulation algorithm with M
outer-loops. For each policy one observes M predicted account
values where each is obtained through a particular outer-loop.
At each account value a predicted liability is computed from
simulating multiple inner-loops. Due to the use of the spline
model, the running time maybe further reduced by simulating
a smaller number of inner-loops. However, it may still be time-
consuming to simulate inner-loops for all outer-loops. Hence,
we propose an approach such that the predicted liabilities are
simulated only at some selected account values, and then use
the resulting pairs of the selected account values and liabilities
to fit a spline model to estimate the liabilities at all outer-loops.
Ideally the model fitted by the selected subset should be close to
the model fitted by the entire observations so that the estimated
liabilities have higher accuracy.

In the following we introduce a clustering based method to
select the predicted account values. For the ease of notation, let
x = (x1, . . . , xM ) be the observed values of the predictor, which is
generated from a uni-variate distribution of X , say Q (X). Let Y =

(Y1, . . . , YM ) be the corresponding responses. The relationship x
and Y is modeled by a spline model:

Yi = f (xi) + ϵi =

K∑
j=−p

βjNj,p+1(xi) + ϵi, i = 1, . . . ,M, (2.5)
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Ml = (p + 1 − l)

⎛⎜⎜⎜⎜⎝
−

1
κq−κ−p+q

1
κq−κ−p+q

0 . . . 0 0
0 −

1
κq+1−κ−p+q+1

1
κq+1−κ−p+q+1

. . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −
1

κK−κK−p
1

κK−κK−p

⎞⎟⎟⎟⎟⎠ .

Box I.

where ϵi’s are i.i.d. with zero means. In the VA context, x and
Y represent the predictive account values and the predictive
liabilities of a policy at different outer-loops, respectively, and M
represents the number of outer-loops. In order to further reduce
the running time, we select a subset of the predictive account
values, denoted by x∗

= (x∗

1, . . . , x
∗
m), where m ≪ M , so that only

at those predictive account values will the predictive liabilities
be calculated. As a result, the spline model will be fitted by
a smaller amount of data. The objective is to select a set of
predictive account values such that the fitted model produces
close approximations to the predictive liabilities at all predictive
account values.

Let f̂ (·) denote the fitted model. We define the following
objective function to be minimized:
M∑
i=1

E
(
(f̂ (xi) − f (xi))2

)
. (2.6)

In the next theorem we give an upper bound of (2.6) which
depends on the selected predictors x∗. This bound will be used
for setting the selection criterion.

Theorem 2.1. Let {C1, . . . , Cm} be a partition of x such that x∗

j ∈ Cj

for j = 1, . . . ,m and each Cj contains Mj elements,
∑m

j=1 Mj = M.
When p ≥ 3, the following statement holds:

M∑
i=1

E
(
(f̂ (xi) − f (xi))2

)
≤ 3

⎛⎝M max
j

MSE(f̂ (x∗

j ))

+max
j

MSE(f̂ ′(x∗

j ))
m∑
j=1

Mj∑
i=1

(xi − x∗

j )
2
+

m∑
j=1

Mj∑
i=1

O((xi − x∗

j )
4)

⎞⎠ .

Proof. Without loss of generality, consider an xi ∈ Cj such that
xi ≥ x∗

j . Applying the Taylor’s theorem to both f̂ (xi) and f (xi), one
writes:

f (xi) = f (x∗

j ) + f ′(x∗

j )(xi − x∗

j ) +
f ′′(ζi)
2

(xi − x∗

j )
2,

for some ζi ∈ (x∗

j , xi);

f̂ (xi) = f̂ (x∗

j ) + f̂ ′(x∗

j )(xi − x∗

j ) +
f̂ ′′(ηi)
2

(xi − x∗

j )
2,

for some ηi ∈ (x∗

j , xi).

Thus,
M∑
i=1

E
(
(f̂ (xi) − f (xi))2

)
=

m∑
j=1

Mj∑
i=1

E
(
(f̂ (xi) − f (xi))2

)

=

m∑
j=1

Mj∑
i=1

E

(
(f̂ (x∗

j ) + f̂ ′(x∗

j )(xi − x∗

j ) +
f̂ ′′(ηi)
2

(xi − x∗

j )
2

− f (x∗

j ) − f ′(x∗

j )(xi − x∗

j ) −
f ′′(ζi)
2

(xi − x∗

j )
2)

2
)

≤ 3
m∑
j=1

Mj∑
i=1

(
E
(
(f̂ (x∗

j ) − f (x∗

j ))
2
)

+ (xi − x∗

j )
2E
(
(f̂ ′(x∗

j ) − f ′(x∗

j ))
2
)

+
(xi − x∗

j )
4

4
E
(
(f̂ ′′(ηi) − f ′′(ζi))2

))

= 3

⎛⎝ m∑
j=1

Mj∑
i=1

MSE(f̂ (x∗

j )) +

m∑
j=1

Mj∑
i=1

(xi − x∗

j )
2MSE(f̂ ′(x∗

j ))

+

m∑
j=1

Mj∑
i=1

O((xi − x∗

j )
4)

⎞⎠
≤ 3

⎛⎝M max
j

MSE(f̂ (x∗

j )) + max
j

MSE(f̂ ′(x∗

j ))
m∑
j=1

Mj∑
i=1

(xi − x∗

j )
2

+

m∑
j=1

Mj∑
i=1

O((xi − x∗

j )
4)

⎞⎠ . (2.7)

Here, the third line follows from (u1+· · ·+un)2 ≤ n(u2
1+· · ·+u2

n)
where uj ∈ R for j = 1, . . . , n. The fourth line follows from
the fact that both f ′′(·) and f̂ ′′(·) are bounded from above when
p ≥ 3. □

The first and the second term of (2.7) involve the mean-
squared-errors of the spline estimator and its first derivative of
the selected predictor values. The third term of (2.7) is a fourth-
order term which converges to zero faster than the second term
when the partition becomes finer and finer. Hence, we will ignore
the third term and propose a method for selecting x∗ that controls
the first two terms. In order to develop a proper selection method,
it is necessary to study the properties of the mean-squared-error
terms. In the next we will derive the asymptotic bias and variance
for the derivatives of a penalized spline estimator. The asymptotic
properties of the penalized spline estimator have been studied by
several authors. Zhou et al. (1998) first studied the asymptotic
properties of the splines estimators and derived their confidence
interval. In Zhou and Wolfe (2000) the asymptotic properties
of the derivatives were studied. More recently Claeskens et al.
(2009) extended the results in Zhou et al. (1998) and derived
the asymptotic properties of the penalized splines estimators.
We rely on their results and derive the asymptotic properties of
the derivatives of the penalized spline estimators. We first state
several standard and necessary assumptions followed by the main
theorem. To be consistent with the existing literature, we will use
n to denote the number of data points in the following theorem
and corollary.

Assumption 2.1. Let δ denote the maximum distance between
adjacent knots, i.e. δ = max0≤j≤K (κj+1−κj), there exists a constant
Π > 0 such that δ = O(K−1) and δ/min0≤j≤K (κj+1 − κj) ≤ Π .
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Assumption 2.2. Assume the design density Q is continuously
differentiable and supx∈[a,b] |Qn(x) − Q (x)| = o(K−1) where Qn is
the empirical distribution of x1, . . . , xn.

Assumption 2.3. The number of knots is of smaller order than
the total number of design points, i.e. K = o(n).

Theorem 2.2. Define Kq = (K + p + 1 − q)(λc̃1)1/2qn−1/2q where
c̃1 = c1(1 + o(1)) in which c1 is a constant and depends only on
the design density Q (see Lemma A3 in Claeskens et al. (2009)).
Assume f (x) ∈ Cp+1 and denote f (i)(x) the ith derivative of f (x) for
i = 1, 2, . . . , q−1. Under Assumptions 2.1–2.3, the following results
hold:

If Kq < 1, then

E
(
f̂ (i)(x)

)
− f (i)(x) = O(λn−1δ−q−i);

Var
(
f̂ (i)(x)

)
= O(n−1δ−2i−1) + O(λn−2δ−2q−2i−1);

If Kq ≥ 1,1 then

E
(
f̂ (i)(x)

)
− f (i)(x) = O((λ/n)1/2δ−q−i);

Var
(
f̂ (i)(x)

)
= O((λn)−1/2δ−2i−1) + O((λn)−1δ−2q−2i−1).

We delegate the proof to Appendix C. From the above results,
the derivatives of a penalized spline estimator have lower con-
vergence rate than the original estimator. This is consistent to
the findings in nonparametric regression literature (for exam-
ple Zhou and Wolfe, 2000). The constant Kq can be thought as an
alternative measurement of the number of knots, and the results
show that the convergence rates for both bias and variance are
faster when the number of knots is relatively small. Theorem 2.2
gives the order of the pointwise expectation and variance of
the penalized splines estimator, with those results the following
lemma on mean-squared-errors follows immediately.

Corollary 2.1. As a result of Theorem 2.2, the asymptotic mean-
squared-errors of f (i)(x) are as follows:

If Kq < 1, then

MSE
(
f (i)(x)

)
= O(λ2n−2δ−2q−2i) + O(n−1δ−2i−1)

+ O(λn−2δ−2q−2i−1);

If Kq ≥ 1, then

MSE
(
f (i)(x)

)
= O((λ/n)δ−2q−2i) + O((λ/n)−1/2δ−2i−1)

+ O((λn)−1δ−2q−2i−1).

Corollary 2.1 states that asymptotically the mean-square-
errors of the derivatives of the penalized spline estimator are
proportional to the number of observations, maximum mesh size
of the knots sequence and the smoothing parameter. In other
words, they do not dependent on the value of predictor. For a
concrete example, consider a case where there are m out of M
data points used to fit a spline regression. Assume that Kq < 1 (a
sparse knot sequence relative to the observed data), p = 3 (cubic
splines), q = 2 (penalizing the second derivative), the number
of knots K = O(m1/9), see Stone (1982), and the smoothing
parameter λ = O(m−1). Then there exist some constants C1 and
C2 such that an upper bound of the sum of the squared errors is
approximately:

3

⎛⎝M max
j

MSE(f̂ (x∗

j )) + max
j

MSE(f̂ ′(x∗

j ))
m∑
j=1

Mj∑
i=1

(xi − x∗

j )
2

⎞⎠
1 When Kq ≥ 1, the assumption f (x) ∈ Cp+1 can be relaxed to f (x) ∈ W q

[a, b],
the Sobolev space of order q, i.e. W q

[a, b] = {f : f ∈ Cq−1,
∫ b
a (f

(q)(x))2dx < ∞}.

= C1Mm−8/9
+ C2m−6/9

m∑
j=1

Mj∑
i=1

(xi − x∗

j )
2.

It is easy to see, based on the above example, that asymptotically
the upper bound can always be written in a form such that x∗ only
appears in

∑m
j=1
∑Mj

i=1(xi −x∗

j )
2. Based on this we propose a strat-

egy to select x∗ such that
∑m

j=1
∑Mj

i=1(xi − x∗

j )
2 is minimized. We

remark that our proposed method is not the optimal strategy in
the sense of minimizing the objective function. However, our pro-
posed method is a simple approach which can be implemented
easily among different situations.

In order to implement the proposed method, we need to find
a vector x∗

= (x∗

1, . . . , x
∗
m) which minimizes

∑m
j=1
∑Mj

i=1(xi −

x∗

j )
2. This is a NP-hard problem which has been documented by,

for example, Aloise et al. (2009). The well established k-means
clustering algorithm can be used to serve for the purpose. The
k-means clustering algorithm is an unsupervised learning algo-
rithm which was introduced by MacQueen et al. (1967). For a
given vector x = (x1, . . . , xM ), the algorithm finds a partition
whose objective is minimizing the within-cluster sum of squares
(WCSS),

∑m
j=1
∑Mj

i=1(xi − zj)2 where zj represents the average of
all xi in the jth cluster. It is worth noticing that a cluster center
is usually not an element of that cluster. Hence, as an additional
step to running the k-means algorithm with the predictors we
will select the point that is the closest to its cluster center from
each cluster.

2.4. Selection of representative outer-loops

In practice running the k-means algorithm with the predictive
account values for different policies may result in different sets
of training data. This is caused by two main issues: the first
issue is that the k-means algorithm starts at a set of randomly
initialized cluster centers and it stops at a local optimum. Hence
the results vary from time to time; the second issue is that
the clustering depends on the policy’s predictive account values
which are different among different policies.

Having different training data for different policies is inef-
ficient in terms of computation because it means the nested-
simulation algorithm runs for different sets of outer-loops for
different policies. To conquer the above issue we decide to select
the training set based on the underlying asset’s returns from
different outer-loops. We will refer to this set as a set of rep-
resentative outer-loops. In order to better control the variability
at the tail parts the maximum and minimum returns are also
included in the representative set. By doing this one gets the
same training set for all of the polices in the portfolio. Generally
speaking the selection based on real-world returns is similar to
the selection based on the predicted account values since a higher
return normally yields a higher predicted account value.

Fig. 2.2 demonstrates the performance of our proposed
method. The left two panels show the selected data points and
the fitted spline curves. The scattered crosses are those liabilities
computed using only 1000 inner-loop simulations. The red circles
are the data points selected by running the k-means algorithm
with the return vector. We select 200 outer-loops out of 1000 so
in the clustering algorithm we set m = 200. The black curve is
the fitted spline curve fitted by the selected data. In the numerical
study we use ten B-spline basis functions with equidistant knots
to fit the spline model.

The predictive VA liabilities obtained from the 1000/10,000
simulation algorithm are used to benchmark the performance
of our proposed method. The results are compared in the right
panels of Fig. 2.2. Overall the proposed method provides good
approximations at all predicted account values including the two
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Fig. 2.2. Approximated liabilities.

extreme regions. The average absolute relative error of the ap-
proximated liabilities is 1.12% for the first VA policy and 0.79% for
the second VA policy whereas the running time for each policy is
reduced by approximately 50 times.

We remark that there exists a trade-off between the num-
bers of outer and inner-loops in the reduced simulation and the
standard error of the VA liability estimates. This trade-off can
also be seen from Theorem 2.2. In practice, the allocation of the
computing resources between the numbers of outer and inner-
loops is normally constrained by a simulation budget. A thorough
review of some mathematical frameworks on the allocation of
simulation budget can be found in, for example, Feng et al. (2016).
Here we do not elaborate further into that direction and simply
treat the simulation budget as given for illustration purpose.

3. Selection of representative policies: A finite population es-
timation approach

To obtain the predictive distribution of the total VA liability
at a future time point (t = 1), we need to calculate the total
liability at each of the outer-loops. When the portfolio contains a
large number of policies (100K+) the calculation can be extremely

time consuming even with small numbers of inner and outer-
loops. In order to estimate the total liability at a significantly less
running time we adapt the model-assisted population estimation
framework to select a small subset of the policies, which is called
representative policies, and the total liability is estimated only by
the liabilities of the selected representative policies.

3.1. Model-assisted estimation: an overview

We start with several terminologies. Consider a population
of size N with population units labeled by U = {1, 2, . . . ,N}

and let Li, i = 1, 2, . . . ,N denote the value associated with
the population units. In the VA context, N is the total number
of policies and Li is the quantity of interest of policy i such
as the predictive liability. A random sample S that is sampled
without replacement is an element in the power set of U . By
assigning a probability to each element in the power set of U
one generates a probability distribution P for all possible samples,
called sampling distribution. In this paper we consider only the
fixed size sampling design and we use n to denote the sample
size. Again, in the VA context the sample size n represents the
number of representative policies. A sampling distribution can
be uniquely determined by assigning an inclusion probability to
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each population unit. Define 1k, the inclusion indicator random
variable, that indicates the inclusion of the unit k in a random
sample S. The first-order inclusion probability of unit k is defined
as πk = EP (1k) = P(k ∈ S). For a fixed size sampling design the
constrain

∑N
k=1 πk =

∑N
k=1 EP (1k) = n must be satisfied by all

inclusion probabilities.
A typical objective in finite population estimation is estimating

the population total T =
∑N

k=1 Lk, which is the total VA liability,
by a linear estimator T̂ =

∑
k∈S ωkSLk where ωkS represents the

weight given to the sampled unit k in sample S. In order to
find the estimate of the population total one needs to specify
the weights and a sampling design, both of which are normally
derived from a set of criteria given by the sampler. One of the
most commonly imposed criterion is design unbiasedness such
that EP (T̂ ) = T . The design unbiasedness criterion implies a
relationship between the weight ωkS and the inclusion probability
πk which is given by the following theorem.

Theorem 3.1 (Godambe, 1955). Denote Ck = EP (ωkS1k) =

πkEP (ωkS |1k = 1). The estimator T̂ =
∑

k∈S ωkSLk is design-
unbiased to T =

∑N
k=1 Lk if and only if Ck = 1.

Hence, under the design unbiasedness criterion the expected
weights for the population units are the reciprocal of their re-
spective inclusion probabilities, i.e. EP (ωkS |1k = 1) = 1/πk, or
πk = 1/EP (ωkS |1k = 1), k = 1, . . . ,N .

The above classic framework focuses on the properties of a
population estimator with respect to the sampling distribution.
The model-assisted population estimation framework (see, for ex-
ample, Särndal et al. (2003)) extends the classic framework by
utilizing the auxiliary information of the population units. Under
this framework a model is assumed between the value associated
with the population unit (response variable) and their auxiliary
information (predictors). This assumed model is referred to as the
superpopulation model. In most cases the superpopulation model
takes a linear form. Let Lk denote the response variable and xk
denote the predictors. The superpopulation model is:

ξ : Lk = x′

kb + ek, k = 1, . . . ,N,

where the residuals ek’s are assumed independently distributed
with zero means and standard deviation σk. In the VA context the
predictors xk may represent the attribute variables of the kth pol-
icy such as age, gender, term of maturity, guarantee type, etc., and
the linear superpopulation model can be viewed as a first-order
approximation to the relation between the quantity of interest
and the attribute variables. Different from the classic framework,
the model-assisted estimation aims at a valid inference under
both the sampling distribution and the superpopulation model.
A commonly used measurement for the validity of an estimator
under the model-assisted framework is the anticipated mean-
squared error (Isaki and Fuller, 1982). We use Eξ and varξ to
denote the mean and variance with respect to the superpopu-
lation model, the anticipated mean-squared error is defined as
follows.

Definition 3.1. The anticipated mean-squared error (anticipated
MSE) of an estimator T̂ is EPEξ (T̂ − T )2.

The anticipated MSE takes into account the estimation errors
from both the random sampling and the model mis-specification.
Nedyalkova and Tillé (2008) derived an expression of the antici-
pated MSE that contains the constant Ck defined in Theorem 3.1.

Theorem 3.2 (Result 1 of Nedyalkova and Tillé (2008)). Under the
superpopulation linear model (3.3) the anticipated mean-squared
error of the linear estimator T̂ =

∑
k∈S ωkSLk can be expressed as

EPEξ (T̂ − T )2 =

∑
k∈U

σ 2
k C

2
k
1 − πk

πk
+

∑
k∈U

σ 2
k πkvarP (ωkS |1k = 1)

+

∑
k∈U

σ 2
k (Ck − 1)2

+ varP

(∑
k∈S

wkSx′

kb

)

+

(∑
k∈U

Ckx′

kb −

∑
k∈U

x′

kb

)2

. (3.1)

All the terms in (3.1) are non-negative. Theorem 3.1 states
that, if T̂ is design-unbiased, then Ck = 1 and EP (ωkS |1k =

1) = 1/πk for all k ∈ U . By setting ωkS = 1/πk for all samples
containing the kth population unit, one has varP (ωkS |1k = 1) = 0.
The anticipated MSE (3.1) now becomes:

EPEξ (T̂ − T )2 =

∑
k∈U

σ 2
k
1 − πk

πk
+ varP

(∑
k∈S

x′

kb/πk

)
.

The term varP
(∑

k∈S x
′

kb/πk
)
is zero if

∑
k∈S x

′

kb/πk is indepen-
dent of the random sampling. This can be achieved by requiring
the random sample to be balanced, as defined below.

Definition 3.2 (Deville and Tillé, 2004). A sample is said to be
balanced on predictors if the Horvitz–Thompson estimator of the
predictors satisfies∑
k∈S

xk
πk

=

∑
k∈U

xk.

Clearly if a sample is balanced then varP
(∑

k∈S x
′

kb/πk
)

=

varP (
∑

k∈U x′

kb) = 0. As a result, the anticipated MSE is further
reduced to:

EPEξ (T̂ − T )2 =

∑
k∈U

σ 2
k
1 − πk

πk
.

Minimizing the above expression implies choosing πk =

min(1, ασk/N) for some normalizing constant α. For fixed size
sampling design we have πk = nσk/

∑
k∈U σk since

∑
k∈U πk = n.

3.2. Balanced sampling: the cube method

The cube sampling method proposed by Deville and Tillé
(2004) is an algorithm that uses a first-order inclusion probability
to obtain a sample that is nearly balanced. The cube sampling
algorithm has two phases: flight phase and landing phase. As-
sume a population with N units and each unit is equipped with
r attributes. The flight phase translates the given inclusion prob-
abilities to a vector of at least (N − r) zeros or ones. The landing
phase then converts the non-zero/one units to either zero or one
giving an approximately balanced random sample. The balanced
condition

∑
k∈S xk/πk =

∑
k∈U xk can be written in the matrix

form:

AS = Aπ, (3.2)

where A = (a1, a2, . . . , aN ) a r × N matrix and ak = xk/πk for
k = 1, . . . ,N; S = (11, 12, . . . , 1N )t a random column vector
where 1k = 1 or 0 indicating the inclusion of the kth unit. Eq. (3.2)
implies that all balanced samples form a subspace of RN with
dimension N − r . Hence S can be written as π + u where u is in
the kernel of matrix A, i.e. Au = 0. The flight phase uses this fact
and moves the given inclusion probabilities π randomly inside
the kernel space of A until it reaches to a point that is close to a
vertex of the N dimensional hypercube.

There are three steps in each iteration in the flight phase. For
a given inclusion probability vector π, set π(1) = π, at iteration
i = 1, 2, . . . , I:
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• Step 1: Randomly generate a vector u(i) in the kernel of
matrix A = (a1, a2, . . . , aN ). Set uk(i) = 0 if πk(i) = 0 or
1.

• Step 2: Compute λ∗

1(i) and λ∗

2(i), the largest values among
λ1(i) and λ2(i) such that:

0 ≤ π(i) + λ1(i)u(i) ≤ 1;
0 ≤ π(i) − λ2(i)u(i) ≤ 1.

• Step 3: Compute π(i + 1) as follows:

π(i + 1) = π(i) + λ∗

1(i)u(i) with probability
λ∗

2(i)
λ∗

1(i) + λ∗

2(i)
;

π(i + 1) = π(i) − λ∗

2(i)u(i) with probability
λ∗

1(i)
λ∗

1(i) + λ∗

2(i)
.

The above three steps iterate until π(i) stops changing. Deville
and Tillé (2004) show the above algorithm runs in the order
of O(N × r2). Hence it is very efficient given that r is not too
large. They also show that at the end of the flight phase the
number of non-integer elements in π(I) is less than the number
of balancing variables r . In the landing phase, the non-integer
elements resulted from the flight phase are converted into either
zero or one by linear programming. The resulting vector with only
zeros and ones gives a balanced sample.

3.3. Selection of representative policies

We will use the cube sampling algorithm in Section 3.2 to
select a set of representative policies. We assume a linear surro-
gate model as a first-order approximation between the policies’
liabilities and their attributes at each outer-loop s:

Lk,1(s) = x′

k,0b(s) + ek(s), (3.3)

where Lk,1(s) is the predicted liability estimated from the spline
model of policy k at the sth outer-loop simulation where k =

1, 2, . . . ,N and s = 1, 2, . . . ,M , the vector xk,0 is the attribute
vector of policy k, i.e. age, gender, guarantee type, term of ma-
turity, account value, etc., at the valuation time t = 0. The di-
mension of this vector depends on the complexity of the products
that an insurance company offers. The term ek(s) represents the
discrepancy between the first-order approximation and the true
liability and they are assumed to be independently distributed
with Eξ (ek(s)) = 0 and varξ (ek(s)) = σk(s)2.

Model (3.3) is scenario specific as for each population unit
its error standard deviation σk(s) varies over different outer-
loops. In order to achieve the highest efficiency we look for a
selection procedure that is scenario independent, hence a same
set of representative policies can be used to estimate the total VA
liability across all outer-loops. We propose a two-stage sampling
procedure in order to get a single set of representative policies for
all selected outer-loops. The main objective of the first stage is to
fit a deterministic function to the error standard deviation σk(s) =

hs(x∗

k,0) where x∗

k,0 is some predictor variable that accounts the
most for the heteroscedasticity of the residual variation. This
fitting procedure is done through residual diagnostic in which the
residuals from the fitted linear model are plotted against different
predictors. Then set πk(s) = nhs(x∗

k,0)/
∑

k∈U hs(x∗

k,0) in the sec-
ond stage to select a set of representative policies. Furthermore
in order to achieve the scenario independence we assume that
function hs(·) takes a separable form

hs(x∗

k,0) = γ (s)g(x∗

k,0), (3.4)

so that the scenario dependency of the error standard deviation
is captured by γ (s). As a result, the inclusion probabilities are

πk(s) = nγ (s)g(x∗

k,0)/
∑
k∈U

γ (s)g(x∗

k,0) = ng(x∗

k,0)/
∑
k∈U

g(x∗

k,0),

k = 1, . . . ,N,

which depends only on the information at time t = 0. In
principle the function hs(x∗

k,0) should be fitted by running the
nested simulation for the entire portfolio. In practice, however, it
is extremely time consuming yet unnecessary to do so. One may
use a sample of the population to diagnose the residuals as the
sample has similar distributional properties to the population for
all predictors. We use a balanced sampling algorithm with πk =

n1/N to select a sample, calling this the first stage sample, where
n1 is the budgeted first stage sample size which can be different
from the budgeted number of representative policies. Using equal
inclusion probabilities the resulting sampling distribution of each
predictor variable would mimic its corresponding distribution for
the population (see Tillé (2006)). This implies that the residual
distribution obtained from such a balanced sample would be
similar to those generated by the population. In the second stage
another balanced sampling is run using the inclusion probabilities
given by the first stage results. The resulting set of policies is a set
of representative policies whose liabilities are used to estimate
the total liability of the VA portfolio across all outer-loops.

We remark that if the heteroscedasticity of residuals is sig-
nificantly related to more than one predictor variables then one
can either divide the entire dataset into subgroups based on the
levels of certain predictors or follows the idea discussed above to
fit a function that is a product of two parts: a part that captures
the scenario dependency and another part that involves only the
predictor variables. This will lead to a set of inclusion probabilities
that are scenario independent.

4. A simulation study

In this section we illustrate the performance of the proposed
algorithm using a synthetic VA portfolio that realistically reflects
a real VA portfolio. We calculate the predictive distribution of the
total VA liability in one year (t = 1) using both the full nested-
simulation and the proposed algorithm which we call the fast
nested-simulation algorithm. We also test the proposed method
with another synthetic VA portfolio given in Appendix D which
is similar to the portfolio used in other papers of this topic, for
example, Gan and Lin (2015) and Hejazi and Jackson (2016).

4.1. Synthetic VA portfolio

We construct a synthetic VA portfolio containing 100,000 poli-
cies where the guarantee(s) of each contract fall in one of the
three categories: GMDB only, GMDB+GMWB and GMDB+GMAB.
Most existing research assumes uniform distribution for the at-
tribute variables. However this assumption is hardly reflected in
reality especially for variables such as account value and guaran-
tee type. According to the SOA and LIMRA 2015 Variable Annu-
ity Guaranteed Living Benefits Utilization Study on GMWB and
GMAB policies over 13 major companies, the election rates of
the GMWB and GMAB riders are different over different age
groups. For the GMWB rider the election rates are higher for
senior groups while those for the GMAB riders are higher among
younger age groups. The total election rate for the GMWB rider
is around 60% for people aged between 61 and 80. On the other
hand for the GMAB rider almost half of the policies with this rider
are between age 45 to 60. In terms of the account value distribu-
tion, based on the same study, only 10% of the contracts value
at $250,000 or more, 40% are in between 10,000 to 50,000 and
the remaining 50% lies in 50,000 to 250,000. We use the above
information to construct a synthetic VA portfolio as follows.
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Fig. 4.1. Adjusted residuals and inclusion probabilities.

Table 4.1
Synthetic VA portfolio attribute variables and their distributions.
Attribute Value Distribution

Gender Male, Female Uniform
Policyholder’s age 45 to 85 Uniform
Maturity 10 to 25 years
Guarantee type GMDB GMWB: 15% among 45-60

GMDB+GMAB 30% among 61–70
GMDB+GMWB 30% among 71–80

20% among 81–85
GMAB: 50% among 45–60
30% among 61–70
15% among 71–80
5% among 81–85

Annual withdrawal rate 1/Maturity –
Account value $10,000, 20,000, . . . , 500,000 40% between 10,000 and 50,000

50% between 50,000 and 250,000
10% above 250,000

Withdrawal benefit base Initial account value –
Death benefit base Initial account value –
Death benefit guarantee design Ratcheting or roll-up Uniform

Roll-up rate 1%–5%
Accumulation benefit Initial account value –
Accumulation benefit guarantee design Ratcheting or roll-up

Roll-up rate 1%–5% Uniform
Mortality table 1996 IAM –

4.2. Representative policies

In Section 3 we had presented a two-stage procedure to select
a set of representative policies. In the first stage a balanced
sampling with πk = n/N is used to get a set of policies for residual
diagnostic; in the second step the inclusion probabilities are set
according to the identified residual variances.

We select 1500 policies in both residual diagnostic stage and
the selection stage. Note that the number of policies we use is
more than those in many of the existing studies, such as Gan
and Lin (2015). The reason that a larger number of policies can
be afforded is that in our approach the liabilities of the non-
selected policies are not estimated. Instead, the total liability is
estimated directly through the liabilities of the selected policies.
Therefore our approach does not require solving a system of
linear equations or other methods to find the relations between
the non-selected policies and the selected ones.

We used a balanced sampling algorithm with πk =

1500/100,000 in the first stage to select a set of policies to
run the fast simulation algorithm and then use their liabilities
and covariates to perform a series of residual diagnostics for

various predictor variables. We find that the initial account value
accounts the most for the heteroscedasticity among the residuals.
So we fit a function for the error standard deviation with account
value as the predictor, i.e. σk(s) = γ (s)g(AVk,0). Further we
assume the function g(AVk,0) taking a power form with a constant
shift g(AVk,0) = |AVk,0 − α|

β . We find that after standardizing
the residuals with by the initial account values to the power
of 1/10, i.e. g(AVk,0) = AV 1/10

k,0 , the residuals variation becomes
significantly more homogeneous, which implies a choice of α and
β in this case are 0 and 1/10 respectively. Resulted from the first
stage study, the inclusion probabilities πk where k = 1, 2, . . . ,N
used for the second stage sampling are:

πk(s) = nσk(s)/
∑
k∈U

σk(s) = nγ (s)AV
1
10
k,0/

∑
k∈U

γ (s)AV
1
10
k,0

= nAV
1
10
k,0/

∑
k∈U

AV
1
10
k,0 . (4.1)

The left panel in Fig. 4.1 compares the distribution of the
unadjusted residuals and the adjusted residuals over different
initial account values under a generic outer-loop simulation. The
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Fig. 4.2. Distributions of predicted total liability.

Fig. 4.3. Relative error.

overall pattern of the unadjusted and the adjusted residuals are
similar among other outer-loops, which validates the separability
assumption (3.4). The right panel shows the inclusion probability
as a function of the initial account value. Policies with larger
initial account values are more likely to be selected into the
representative set than those with smaller initial account values.
This choice also has a practical implication: policies with larger
account values have larger liabilities therefore the approxima-
tion accuracy of their liabilities will have material impacts on
the total accuracy. Therefore those policies should have higher
probabilities to be included in the representative policy set.

4.3. Numerical results

We run both the full nested-simulation and the fast nested-
simulation algorithm with R in parallel using the doSNOW pack-
age. The full simulation algorithm is run with 100,000 policies,
1000 outer-loops and 10,000 inner-loops whereas the fast simu-
lation algorithm is run with 1500 selected policies, 200 selected
outer-loops and 1000 inner-loops. The full simulation is run using
60 CPU-cores and the proposed fast simulation is run using 4
CPU-cores. We compare these two algorithms from two prospec-
tives: approximation performance and running time. The two
predicted total liability distributions are compared in Fig. 4.2.

The overall distribution is well approximated especially for the
right tail part which usually is used to calculate risk metrics of

the entire distribution. The distribution of the percentage errors
of the approximated total liabilities is shown in the left panel in
Fig. 4.3. From the numerical study we found the mean relative
percentage error is around 0.73%. Most of the percentage errors
are distributed in the range of −1% to 1%. The right panel in
Fig. 4.3 is the Q–Q plot between the approximated total liability
distribution and the true distribution. The two sets of quan-
tiles fall about a straight line implying a good approximation
performance.

In the following we compare the two predictive distributions
quantitatively by calculating various statistics and their relative
errors:

100% ×

⏐⏐⏐⏐⏐ θ̂ − θ

θ

⏐⏐⏐⏐⏐ ,
where θ̂ is a statistic such as those in Table 4.2 of the ap-
proximated distribution and θ is that of the true distribution.
In Table 4.2 several statistics of the predicted liability distribu-
tions obtained from the two simulation algorithms are presented.
Also reported are the absolute relative errors for those statistics.
In terms of the distributional properties we compute different
central moments for the two predictive distribution including
standard deviation, skewness and kurtosis. Comparing the central
moments, the approximated predictive distribution is close to the
true distribution. Both distributions have positive skewness and
large kurtosis which implies a heavy right tail with a relative large
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Table 4.2
Comparison of different statistics.

Full
nested-simulation

Fast
nested-simulation

Relative
error

Mean 1,435,261,959 1,431,534,562 0.26%
Standard deviation 202,322,678 201,915,195 0.20%
Skewness 2.8614 2.8645 0.11%
Kurtosis 16.6721 17.0674 2.37%
VaR(90) 1,676,803,005 1,673,505,367 0.20%
CVaR(90) 1,905,358,443 1,895,366,512 0.52%
VaR(95) 1,825,330,894 1,803,471,737 1.20%
CVaR(95) 2,071,569,424 2,059,810,942 0.57%
VaR(99) 2,139,601,926 2,116,332,137 1.09%
CVaR(99) 2,519,785,055 2,520,134,600 0.01%

Table 4.3
Comparison of running time.

Full
nested-simulation

Fast
nested-simulation

Number of policies 100,000 1500
Number of outer-loops 1000 200
Number of inner-loops 10,000 1000
Number of CPU cores 60 4

Scenario selection – 0.008(s)
First stage sampling – 0.5(s)
First stage nested-simulation – 1083(s)
First stage model fitting – 18(s)
Second stage sampling – 0.5(s)
Second stage nested-simulation – 1083(s)
Second stage model fitting – 18(s)
Full simulation 6.02(d) –
Total running time 6.02(d) ≈ 37(m)

number of outliers. In addition we calculate two most widely
used tail risk metrics: value at risk (VaR) and conditional VaR
(CVaR) at three security levels: 90%, 95% and 99%. From the results
most of the approximation errors are within 1%.

Lastly we compare the running time of these two algorithms.
The full algorithms is a brute-force algorithm whereas the fast
algorithm contains multiple steps. The running time for each step
is reported in Table 4.3 and the total running time is compared
to that of the full algorithm. Even with 60 CPU-cores the full
algorithm still takes around 6 days to run, while the running time
of the fast simulation algorithm only takes about 30 min with a
computer containing 4 CPU-cores, the total running time is there-
fore reduced by more than 230 times. It is worth to remark that
in practice heavy computing programs such as nested-simulation
are usually done by parallel using both CPU and GPU such as the
NVIDIA-CUDA programming model.2 Nonetheless the proposed
fast simulation algorithm is still expected to be much more ef-
ficient than the classic algorithm regardless of the computing
platforms as the fast algorithm runs with much fewer numbers
of all input variables.

5. Concluding remarks

For both regulatory and hedging purposes the variable annuity
portfolio managers are often required to compute the predic-
tive distribution of the total VA liability on a timely basis. The
heterogeneity and path-dependency of the VA guarantees cause
the traditional nested-simulation extremely time-consuming to
run. To address this practically important issue we propose a
surrogate model assisted nested-simulation algorithm which in-
corporates several statistical tools to speed up the computation
from running much fewer numbers of different input variables

2 https://developer.nvidia.com/cuda-zone.

while maintaining high accuracy in approximating the predictive
total liability distribution.

Two major classes of surrogate models are considered: a spline
regression model is used to select a set of representative outer-
loops and a linear model is adapted along with the probability
sampling framework to select a set of representative policies. Dif-
ferent objectives associated with the two models lead to different
selection criteria. When reducing the number of outer-loops, the
objective is good approximations to the liabilities at all outer-
loops. This requires the selected outer-loops to spread out the
entire range of the simulated returns. When reducing the number
of policies, the main objective is a close estimation of the popu-
lation total. Based on this, policies whose liabilities are less likely
to be correctly estimated are more likely to be included in the
representative policies set.

The proposed simulation algorithm is data-driven since the
selection of the representative outer-loops and representative
policies depend only on the given data. The theoretical justifica-
tions of the selection procedures ensure a robust performance of
the algorithm for a wide range of VA portfolios. We experiment
the algorithm with two generic VA portfolios having different
distributions of the attribute variables (Section 4 and Appendix D)
. The numerical results show that predictive distributions can be
closely approximated by the proposed algorithm at a significantly
reduced running time. We expect the proposed method also
works well for other nonhomogeneous insurance portfolios and
different scenario generators since the proposed framework does
not assume any specific model for the dynamics of the underlying
asset.

This paper may lead to several further research directions.
For example one may develop an efficient algorithm that does
multiperiod prediction, or one can investigate situations where
multiple underlying assets are involved. In these cases a multi-
dimensional clustering technique might be considered. Moreover,
one may apply the proposed algorithm to the valuation of other
insurance portfolios such as universal life insurance (UL), variable
universal life insurance (VUL) portfolios. In terms of application,
one may consider applying the proposed framework to calculate
other quantities for large VA portfolios such as Greeks. Last but
not the least, an ultimate goal for developing an efficient nested-
simulation algorithm is to use it to dynamically hedge the market
risk of large VA portfolios. Having an efficient dynamic hedging
program is critical in risk managing the liability risk of large VA
portfolios, yet it is a challenging task due to the complexity of
the products and the non-homogeneity of the VA portfolios. The
issue of hedging has been addressed by many studies, and most
of them focused on single policies, for example Feng et al. (2016).
The question of hedging large VA portfolios will be addressed
in Lin and Yang (2020), in which a dynamic hedging program is
implemented with the proposed algorithm.
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Appendix A. Nested-simulation

In this section we describe the algorithm for computing the
total variable annuity (VA) liabilities of the entire portfolio. The
algorithm and notation follow closely from those in Gan and
Lin (2015). The following table summarizes all of the relevant
notation.

https://developer.nvidia.com/cuda-zone
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Notation Description

St Value of the underlying asset at time t
At Account value at time t
Et Withdraw amount at time t
Wt Withdrawal benefit at time t
Dt Death benefit at time t
MT Accumulation benefit at time t
GW
t The guaranteed withdrawal benefit base at time t

GD
t The guaranteed death benefit base at time t

GA
t The guaranteed accumulation benefit base at time t

ρW The roll-up rate of the withdraw guarantee base
ρA The roll-up rate of the accumulation guarantee base
ρD The roll-up rate of the death guarantee base
w Withdrawal rate
T Term of maturity

At a specific time point t we use superscripts − and + to
indicate the values of a quantity prior to and after the benefit
payments are made at that time. For example, A−

t is the account
value at time t just before any benefit payments are paid and
A+

t equals A−

t less all the payments made at time t such as
withdrawals.

A.1. Economic scenario generators

We assume a regime-switching lognormal model for the real-
world dynamics of the underlying asset and use the following to
generate outer-loops.

R0 = 1; Rt = Rt− 1
12

exp
(

µk −
1
2
ν2
k + νkZP

t

)
given the regime at t −

1
12

is k,

where ZP
t , t =

1
12 , . . . , 1 is a sequence of i.i.d. standard normal

random variables. The value of µk, νk depends on the regime
at time t −

1
12 . We assume there are two regimes k = 1, 2

and the transition probabilities are p12 = 0.0398 and p21 =

0.3798. We use the parameters given by Hardy (2001) where
µ1 = 0.0126, µ2 = −0.0185, ν1 = 0.0350 and ν2 = 0.0748.
As mentioned in Hardy (2001) the parameters are estimated
using monthly data, therefore in the simulation studies we first
simulate monthly returns then convert them into annual returns.

At t = 1 along each outer-loop, multiple inner-loops are
simulated using a risk-neutral model. For consistency purposes
the risk-neutral dynamics of the underlying asset is also as-
sumed to follow a regime-switching lognormal model. Unlike
the Black–Scholes framework, the market is incomplete under
the regime-switching model hence the equivalent risk-neutral
measure is not unique. Therefore the choice of the risk-neutral
parameters is not unique. Bollen (1998) proposed a method to set
the values for the risk-neutral parameters by replacing the drifts
with the risk-free rate and using the same transition probabilities
and volatilities as in the real-world model so that the ’regime
risk is not priced’. Based on this we use the following model to
generate inner-loops.

S1 = 1; St+1 = St+1− 1
12

exp
(

r
12

−
1
2
ν2
k + νkZ

Q
t

)
given the regime at t + 1 −

1
12

is k,

where ZQ
t , t =

1
12 , . . . is a sequence of i.i.d. standard normal

random variables. We assume the effective interest rate is r = 3%
per year and all other values being the same as those in the
P-model.

A.2. VA liability calculation

In the first step the account values are projected under all real-
world scenarios from t = 0 to t = 1 for all policies. Denote GW/D/A

0

the guarantee bases at time t = 0 and GE
= wA0 the guaranteed

annual withdrawal amount ; ρD/A the roll-up rate of the death
and accumulation benefits guarantee bases; w the withdraw rate,
then the withdraw guarantee base at time t = 1 before payments
are made is GD/A−

1 = (1+ρD/A)GD/A
0 . Note that if the guarantee is of

ratcheting-type then its corresponding ρ = 0. The account value
at time t = 1 after withdrawals equals

A+

1 = max
(
A0

R1

R0
− wA0, 0

)
(A.1)

The guarantee withdrawal base, i.e. the remaining amount can be
withdrew, is reduced by the withdraw amount

GW+

1 = GW
0 − wA0

After the withdraw benefit payments are made the death and
accumulation guarantee bases will be reduced by the withdraw
amounts which is fixed throughout the term since we assume the
policyholder takes out the maximum available amount at the end
of each year, i.e.

GD/A+

1 = GD/A−

1 − wA0

If the guarantee is of ratcheting type, then the guarantee base will
be adjusted after the withdrawals are made, i.e.

GD/A+

1 = max(GD/A−

1 − wA0, A+

1 )

The second step, after account values are projected to t = 1, is to
calculate the fair value of the embedded guarantees. The liabilities
are computed from running inner loops which correspond to the
risk-neutral simulations. We outline how cash flow evolves under
a single risk-neutral path in a general setting during time interval
[t+, t+1+

]. At time t+1−, similar to the above procedure, we first
adjust all the guarantee bases according to the contract design.

GW−

t+1 = GW+

t

GD/A−

t+1 = GD/A+

t (1 + ρD/A)

Again for ratcheting type guarantee bases, set ρ = 0. From t+ to
t + 1− the account value becomes

A−

t+1 = A+

t
St+1

St
Notice that different than (A.1) the account values under the
inner-loops evolve according to the risk-neutral model. At time
t + 1 the policyholder withdraws Et+1 = min(GW−

t+1 ,G
E) from the

account which brings the account value to

A+

t+1 = max
(
A−

t+1 − Et+1, 0
)

The withdraw benefit can be expressed as the payoff function of
a put option with strike price Et+1

Wt+1 = max
(
Et+1 − A−

t+1, 0
)
.

The guarantee bases are then adjusted by the withdrawal amount.

GW/D/A+

t+1 = GW/D/A−

t+1 − Et+1.

If death happens during the period then only the death benefit
payment is made at the end of the period and the benefit equals

Dt+1 = max
(
GD−

t+1 − A−

t+1, 0
)
.

After all payments made at t + 1 if the policy are still enforced
and if the benefit bases are of ratcheting type then

GD/A+

t+1 = max(GD/A−

t+1 − Et+1, A+

t+1).

At maturity for those contracts with GMAB rider the benefit at
maturity is

MT = max
(
GA+

T − A+

T , 0
)
.
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At the end the liability of the guarantee rider for policyholder
p in the kth real-world scenario is the present value of all the
projected withdraw, death and maturity benefits

Lt =

T∑
s=t+1

s−t−1px+t (1 − qx+s−1)Wse−r(s−t)

+

T∑
s=t+1

s−t−1px+tqx+s−1Dse−r(s−t)
+ MT e−r(T−t).

Appendix B. Pseudocode of the proposed algorithm

Algorithm 1 Selection of Representative Outer-loops

Input:
Vector of real-world asset returns R = {R1, ..., RM}.
Number of representative outer-loops m.

Initialize:
Vector r = (maxR,minR).

Run k-means algorithm with k = m with R, record cluster
centers c = {c1, ..., cm}.
for i = 1 : m do

Find R∗

i ∈ R that is the closest to ci.
r = (r, R∗

i ).
end for
Output:

Representative outer-loops r .

Algorithm 2 Selection of Representative Policies
## Step 1: Residual Diagnostic
Input:

Representative outer-loops r .
Number of representative policies n.
The attribute matrix A.
Number of inner-loop l.

Run the balanced sampling algorithm with π0 = (n/N, ..., n/N)
and A.
Output:

A random sample of policies P0.
Initialize:

An n × m matrix L0
Run the nested simulation algorithm with P0, r and l
inner-loops for each outer-loop.
Output:

Matrix L0 containing simulated liabilities.
for j = 1 : n do

Obtain the simulated liabilities and the predicted account
values in the selected scenarios of policy j, L0[j, :] and AV j.

Fit a spline regression using AV j and L0[j, :].
Obtain the fitted value L̂0[j, :] from the fitted spline model.

end for
for s = 1 : m do

Run regression between L0[:, s] and A[P0, :].
end for
Using the residuals from the regression procedure, identify the
parameters α and β in g(AV ) = |AV − α|

β where σk(s) =

γ (s)g(AVk) for k = 1, ...,N .
## Step 2: Representative Policies
Run the balanced sampling algorithm with π =

(ng(AV1)/
∑

g(AVj), ..., ng(AVN )/
∑

g(AVj)) and A.
Output:

A set of representative policies P .

Algorithm 3 Predictive Distribution of the Total VA Liability
## Step 1: Run Reduced Nested Simulation
Input:

Representative outer-loops r .
Number of inner-loop l.
Representative policies P .

Initialize:
An n × m matrix L.

Run the nested simulation algorithm with P , r and l inner-loops
for each outer-loop.
Output:

Matrix L containing simulated liabilities.
Initialize:

An n × M matrix L̂.
for j = 1 : n do

Obtain the simulated liabilities and the predicted account
values in the selected scenarios of policy j, L[j, :] and AV j.

Fit a spline regression using AV j and L[j, :].
Using the fitted parameters, compute the approximated

liabilities L̂[j, :] of policy j for all scenarios.
end for
Output:

Matrix L̂ containing all approximated liabilities.
## Step 2: Compute Approximated Total Liabilities
Input:

The n × M liability matrix L̂.
The inclusion probability of the selected policies π∗.

Initialize:
A vector L̂ of length m.

for s = 1 : m do
L̂[s] =

∑n
j=1 L̂[j, s]/π

∗
[j]

end for
Output:

The approximated total liability for all scenarios, L̂.

Appendix C. Proof of Theorem 2.2

The following lemma states the infinitive norm for various
matrices that will be used in the proof of Theorem 2.2. The proof
of these results can be found in Cardot (2000) (Lemma 6.2), Zhou
et al. (1998), (Lemma 6.3 and 6.4) and Claeskens et al. (2009)
(Lemma A1).

Recalling the definition of N,N(x), ρ(x) in Section 2.2, define
Gk,n = (N tN)/n, G =

∫ b
a N t (x)N(x)ρ(x)dx, Hk,n = Gk,n + λDq/n and

H = G+λDq/n. As in Lemma A3 of Claeskens et al. (2009), define
the constant Kq = (K + p + 1 − q)(λc̃1)1/2qn−1/2q. We state the
following results:

Lemma C.1. ∥Dq∥∞ = O(δ−2q+1), ∥G−1
k,n∥∞ = O(δ−1), ∥H−1

k,n∥∞ =

O(δ−1), max1≤i,j≤K+p+1 |{H−1
k,n − H−1

}i,j| = o(δ−1) for Kq < 1 and
∥H−1

k,n∥∞ = O(δ−1(1 + K 2q
q )−1), max1≤i,j≤K+p+1 |{H−1

k,n − H−1
}i,j| =

o(δ−1(1 + K 2q
q )−1) for Kq ≥ 1. ∥Gk,n − G∥∞ = ∥Hk,n − H∥∞ = o(δ)

and ∥G−1
k,n − G−1

∥∞ = o(δ−1).

Let f̂reg (x) denote the regression spline estimator which equals
N(x)(N tN)−1N tY . The following lemma states the relation be-
tween the regression spline estimator and the penalized spline
estimator f̂ (x) = N(x)(N tN + λDq)−1N tY .

Lemma C.2. The following relation holds:

f̂ (x) = f̂reg (x) −
λ

n
N(x)H−1

K ,nDqG−1
K ,n

1
n
N tY ,
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Proof. Apply the inverse matrix identity (A+ B)−1
= A−1

− (A+

B)−1BA−1 with A = N tN and B = λDq,

(N tN + λDq)−1
= (N tN)−1

− (N tN + λDq)−1λDq(N tN)−1.

The penalized regression estimator can be written as

f̂ (x) = N(x)(N tN−1
− (N tN + λDq)−1λDq(N tN)−1)N tY

= N(x)(N tN)−1N tY

−
λ

n
N(x)

(
N tN + λDq

n

)−1

Dq

(
N tN
n

)−1 1
n
N tY

= f̂reg (x) −
λ

n
N(x)H−1

K ,nDqG−1
K ,n

1
n
N tY . □

With the above lemmas, we are ready to prove Theorem 2.2.

Proof. According to Lemma C.2,

f̂ (x) = f̂reg (x) −
λ

n
N(x)H−1

K ,nDqG−1
K ,n

1
n
N tY . (C.1)

Thus, the derivative of the penalized estimator is

f̂ (i)(x) = f̂ (i)reg (x) −
λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N tY .

The bias of the penalized estimator’s derivative is then given by

E
(
f̂ (i)(x)

)
− f (i)(x)

= E
(
f̂ (i)reg (x)

)
− f (i)(x) −

λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N t f . (C.2)

Zhou and Wolfe (2000) show that

E
(
f̂ (i)reg (x)

)
− f (i)(x) = b(i)(x; p + 1 − i) + o(δp+1−i),

where b(i)(x; p + 1 − i) = −
f (p+1−i)(x)(κj+1−κj)p+1−i

(p+1−i)! Bp+1−i

(
x−κj
δj+1

)
for

x ∈ [κj, κj+1] and j = 0, . . . , K . Bl(·) is a Bernoulli polynomial of
order l, see Abramowitz and Stegun (1965). Next we derive the
asymptotic property for the third term in (C.1). Write the third
term as
λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N t f

=
λ

n
Np+1−i(x)∆iH−1

K ,nDqGK ,n
1
n
N t (f − sf + sf )

=
λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N t (f − sf )

+
λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N tsf , (C.3)

where sf (·) = N(·)β is the best L∞ approximation to f . We first
derive the order for the first term in (C.3) Due to definition we
have ∥∆i∥∞ = O(δ−i), Agarwal and Studden (1980) show in their
Lemma 6.10 that G−1

K ,n
1
nN

t (f − sf ) = o(δp+1) and G−1
K ,n

1
nN

t (f − sf ) =

o(δq).
It follows from Lemma C.1 that if Kq < 1, then

∥
λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N t (f − sf )∥∞

≤
λ

n
∥Np+1−i(x)∥∞∥∆i∥∞∥H−1

k,n∥∞∥Dq∥∞∥G−1
K ,n

1
n
N t (f − sf )∥∞

≤
λ

n
O(δ−i)O(δ−1)O(δ−2q+1)o(δp+1) = o(λn−1δp−2q+1−i).

Similarly if Kq ≥ 1, then

∥
λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N t (f − sf )∥∞

= o(λn−1δ−q(1 + K 2q
q )−1δ−i)

= o((λ/n)1/2δ−qK q
q (1 + K 2q

q )−1δ−i) = o((λ/n)1/2δ−q−i), (C.4)

where the last equation follows from the fact that K q
q (1+K 2q

q )−1
≤

1/2 if Kq ≥ 1. In the next we derive the order for the second term
in (C.3). As in Claeskens et al. (2009), apply the mean value theory
to the second term, write

λ

n
Np+1−i(x)∆iH−1

K ,nDqG−1
K ,n

1
n
N tsf

=
λ

n
Np+1−i(x)∆iH−1

K ,n∆
t
q

∫ b

a
N t

p+1−q(x)s
(q)
f (x)dx

=
λ

n
Np+1−i(x)∆iH−1

K ,n∆
t
qWs(q)f (τ ), (C.5)

where s(q)f (x) = (N(x)β)(q) = Np+1−q(x)∆qβ with β = G−1
k,nN

tsf /n,
W = diag{

∑j+p−q
l=j

∫ kl+1
kl

Nj,p+1−q(t)dt} a diagonal matrix and τ =

(τ−p+q, . . . , τK )t with τj ∈ [κj, κj+p+1−q) for j = −p + q, . . . , K .
Rewrite (C.5) as

λ

n
Np+1−i(x)∆i(H−1

K ,n − H−1)∆t
qWs(q)f (τ )

+
λ

n
Np+1−i(x)∆iH−1∆t

qWs(q)f (τ ). (C.6)

Denote the second term in (C.6) by b(i)λ (x) which goes to 0 as
n → ∞. Next we derive the order for λ

nNp+1−i(x)∆i(H−1
K ,n −

H−1)∆t
qWs(q)f (τ ). It is easy to see that ∥W∥∞ = O(δ) from its

definition. Claeskens et al. (2009) showed that ∥s(q)f (τ )∥∞ = O(1),
together with Lemma C.1 we have if Kq < 1, then

λ

n
Np+1−i(x)∆i(H−1

K ,n − H−1)(∆q)tWs(q)f (τ )

=
λ

n
O(δ−i)o(δ−1)O(δ−q)O(δ) = o(λn−1δ−q−i),

if Kq ≥ 1, then

λ

n
Np+1−i(x)∆i(H−1

K ,n − H−1)(∆q)tWs(q)f (τ )

=
λ

n
O(δ−i)o(δ−1(1 + K 2q

q )−1)O(δ−q)O(δ)

= o(λn−1δ−i−q(1 + K 2q
q )−1) = o((λ/n)1/2δ−q−i),

in which the last equation follows from the same argument used
for (C.4). As a result,

E
(
f̂ (i)(x)

)
− f (i)(x) = b(i)(x; p + 1 − i) + b(i)λ + o(λn−1δp−2q+1−i)

+ o(λn−1δ−q−i)

= O(λn−1δp−2q+1−i) + O(λn−1δ−q−i)

= O(λn−1δ−q−i) if Kq < 1;

E
(
f̂ (i)(x)

)
− f (i)(x) = b(i)(x; p + 1 − i) + b(i)λ + o((λ/n)1/2δ−q−i),

+ o((λ/n)1/2δ−q−i)

= O((λ/n)1/2δ−q−i) if Kq ≥ 1.

For the asymptotic properties of the variance, from f̂ (i)(x) =

Np+1−i(x)∆i(N tN + λDq)−1N tY , we have

Var
(
f̂ (i)(x)

)
=

σ 2

n
Np+1−i(x)∆iH−1

k,nGk,nH−1
k,n (∆i)tNp+1−i(x)t

=
σ 2

n
Np+1−i(x)∆iH−1

k,n (Hk,n − λDq/n)H−1
k,n (∆i)tNp+1−i(x)t

=
σ 2

n
Np+1−i(x)∆iH−1

k,n (∆i)tNp+1−i(x)t

−
σ 2

n
Np+1−i(x)∆iH−1

k,n
λDq

n
H−1

k,n (∆i)tNp+1−i(x)t .
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Fig. D.1. Inclusion probabilities.

Using Lemma C.1 one may write, if Kq < 1, then

σ 2

n
Np+1−i(x)∆iH−1

k,n (∆i)tNp+1−i(x)t

−
σ 2

n
Np+1−i(x)∆iH−1

k,n
λDq

n
H−1

k,n (∆i)tNp+1−i(x)t

≤ O(n−1δ−2i−1) +
λ

n2O(δ
−i)O(δ−1)O(δ−2q+1)O(δ−1)O(δ−i)

= O(n−1δ−2i−1) + O(λn−2δ−2q−2i−1),

and if Kq ≥ 1, then

σ 2

n
Np+1−i(x)∆iH−1

k,n (∆i)tNp+1−i(x)t

−
σ 2

n
Np+1−i(x)∆iH−1

k,n
λDq

n
H−1

k,n (∆i)tNp+1−i(x)t

≤O(n−1δ−2iδ−1(1 + K 2q
q )−1)

+
λ

n2O(δ
−i)O(δ−1(1 + K 2q

q )−1)O(δ−2q+1)O(δ−1(1 + K 2q
q )−1)O(δ−i)

=O(n−1δ−2i−1K q
q (1 + K 2q

q )−1(λ/n)−1/2)

+ O(λn−2δ−2q−2i−1K 2q
q (1 + K 2q

q )−2(λ/n)−1)

=O((λn)−1/2δ−2i−1) + O((λn)−1δ−2q−2i−1). □

Appendix D. Simulation study of another synthetic VA portfo-
lio whose attributes follow uniform distributions

In order to show the wide applicability of our proposed algo-
rithm, we present and evaluate the performance of the algorithm
for another VA portfolio containing 100,000 policies that is sim-
ilarly constructed in Gan and Lin (2015). The attributes of this
portfolio are the same as given in the second column of Table 4.1.
Different from the portfolio constructed in Section 4, in this
section the distributions of the attribute variables are assumed
uniform.

From the residual diagnostic stage, we find the account value
is mostly associated to the variation of the residual and the vari-
ation is larger in the regions where the account values are either
small or large. After standardizing the residuals by g(AV k,0) =

|AVk,0 − 2.5 × 105
|
1/10 the variation among different account val-

ues becomes much more homogeneous. This implies the inclusion
probability for unit k in the population is

πk = n
|AVk,0 − 2.5 × 105

|
1/10∑

k |AVk,0 − 2.5 × 105|
1/10 ,

where k = 1, 2, . . . ,N . In other words, policies with either
smaller or larger account values have higher probabilities to be
included in the representative set in order to control the total
anticipated MSE of the estimator. The inclusion probabilities are
plotted against the initial account values in Fig. D.1

The two predictive distributions obtained from the full sim-
ulation algorithm and the proposed simulation algorithm are
compared in Fig. D.2. From the histograms, the relative errors
and the Q–Q plot it can be seen that the predictive distribution
is well approximated. The relevant statistics of the predictive
distributions are presented in Table D.1. Similar to the synthetic
portfolio studied in Section 4 almost all of the relative errors are
within 1% (see Fig. D.3).

Appendix E. Numerical studies with guarantee fees included

For illustration purposes, in the paper we assume no fees for
the guarantee riders. In the following we briefly report the results
of several more numerical studies in which the guarantee fees
are considered. We assume that at the end of each period fees
are deducted from the policy’s subaccount before any guarantee
payments are made (withdrawal benefit, death benefit, etc.).

In particular, three fee schemes are studied: 100 bps (1%)
fee for all policies; 200 bps fee for all policies and variable fee

Fig. D.2. Distributions of predicted total liability.
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Fig. D.3. Relative error.

Table D.1
Comparison of different statistics.

Full
nested-simulation

Fast
nested-simulation

Relative
error

Mean 2,315,647,767 2,323,979,465 0.36%
Standard deviation 346,641,044 346,383,216 0.07%
Skewness 2.6962 2.7234 1.01%
Kurtosis 15.8542 15.9712 0.74%
VaR(90) 2,732,596,388 2,739,858,371 0.27%
CVaR(90) 3,105,938,460 3,113,825,169 0.25%
VaR(95) 2,971,191,573 2,959,823,966 0.38%
CVaR(95) 3,379,334,909 3,390,704,638 0.34%
VaR(99) 3,491,688,367 3,486,979,014 0.13%
CVaR(99) 3,379,334,909 3,390,704,638 0.34%

Table E.1
Relative errors of different risk metrics under different fee schemes.
Risk metrics Flat fee of 100 bps Flat fee of 200 bps Variable fees

Mean 0.39% 0.11% 0.92%
Standard deviation 1.63% 1.18% 1.51%
Skewness 1.93% 0.88% 0.63%
Kurtosis 2.72% 1.31% 1.01%
VaR(90) 0.40% 0.15% 0.94%
CVaR(90) 1.07% 0.29% 1.91%
VaR(95) 0.46% 0.15% 0.99%
CVaR(95) 0.66% 0.21% 1.83%
VaR(99) 0.43% 0.21% 1.21%
CVaR(99) 0.39% 0.25% 0.42%

depending on the guarantee type. For variable fee scheme, we
assume the followings:

• GMDB roll-up: 50 bps per year,
• GMDB ratcheting: 100 bps per year,
• GMWB: 50 bps per year,
• GMAB roll-up: 50 bps per year,
• GMAB ratcheting: 100 bps per year.

For example, if a policy has both a GMDB of ratcheting type and
a GMWB rider, then the total rider fee will be charged at 150 bps
per year. The relative errors, similar to those reported in Table 4.2
in Section 4, under different fee schemes are given in Table E.1.
The numerical results show that the proposed algorithm performs
well with different fee schedules. In general, the relative errors for
variable fees are higher due to the extra non-homogeneity added
into the portfolio attributes.
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