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ABSTRACT

A variable annuity (VA) is an equity-linked annuity that provides investment
guarantees to its policyholder and its contributions are normally invested in
multiple underlying assets (e.g., mutual funds), which exposes VA liability
to significant market risks. Hedging the market risks is therefore crucial in
risk managing a VA portfolio as the VA guarantees are long-dated liabili-
ties that may span decades. In order to hedge the VA liability, the issuing
insurance company would need to construct a hedging portfolio consisting
of the underlying assets whose positions are often determined by the liability
Greeks such as partial dollar Deltas. Usually, these quantities are calculated
via nested simulation approach. For insurance companies that manage large
VA portfolios (e.g., 100k+ policies), calculating those quantities is extremely
time-consuming or even prohibitive due to the complexity of the guarantee
payoffs and the stochastic-on-stochastic nature of the nested simulation algo-
rithm. In this paper, we extend the surrogate model-assisted nest simulation
approach in Lin and Yang [(2020) Insurance: Mathematics and Economics,
91, 85–103] to efficiently calculate the total VA liability and the partial dollar
Deltas for large VA portfolios with multiple underlying assets. In our proposed
algorithm, the nested simulation is run using small sets of selected representa-
tive policies and representative outer loops. As a result, the computing time
is substantially reduced. The computational advantage of the proposed algo-
rithm and the importance of dynamic hedging are further illustrated through a
profit and loss (P&L) analysis for a large synthetic VA portfolio. Moreover, the
robustness of the performance of the proposed algorithm is tested with multiple
simulation runs. Numerical results show that the proposed algorithm is able to
accurately approximate different quantities of interest and the performance is
robust with respect to different sets of parameter inputs. Finally, we show how
our approach could be extended to potentially incorporate stochastic interest
rates and estimate other Greeks such as Rho.
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1. INTRODUCTION

A variable annuity (VA) is an equity-linked annuity that provides investment
guarantees to its policyholder. It has become one of the major products in the
insurance market. According to Coleman et al. (2019), the total VA sales in the
US in 2018 were around $100 billion. In addition, according to LIMRA Secure
Retirement Institute (LIMRA SRI), the top 10 VA sellers in 2018 together
accounted for 78% of the market share. Implied by these numbers are large
VA portfolios managed by a few major insurance companies.

Amain reason for the popularity of VA is their embedded guarantees which
provide downside protection to the policyholders. The two broad categories of
the guarantees are the guaranteed minimum death benefits (GMDBs) and the
guaranteed minimum living benefits (GMLBs). A GMDB guarantees a min-
imum death benefit to the policyholder and it is typically embedded in all
VA polices. GMLBs, on the other hand, can be elected as riders according
to policyholders’ choice. Two most offered GMLBs are the guaranteed mini-
mum accumulation benefit (GMAB) and the guaranteed minimum withdrawal
benefit (GMWB) (see Coleman et al., 2019). A GMAB rider guarantees a min-
imum accumulation value of the policyholder’s VA account at maturity, while
a GMWB rider guarantees a minimum level of periodic withdrawals for the
policyholder throughout the policy term. A detailed description of the guaran-
tees can be found in, for example, the Insured Retirement Institute 2019 Fact
Book. The popularity of the VA has stimulated a vast amount of research in
academia on its modeling and risk management. For example, here are some of
highly cited papers: Milevsky and Posner (2001), Boyle and Hardy (2003), Lin
and Tan (2003), Milevsky and Salisbury (2006), Bauer et al. (2008), Dai et al.
(2008), Lin et al. (2009), Bacinello et al. (2011), and Bernard et al. (2014).

Since the 2008 financial crisis, regulators have put more emphasis on the
solvency of the insurance companies. The Solvency II regulatory framework
requires insurance companies to calculate the solvency capital requirement
(SCR) for their insurance portfolios, which is the minimum amount of capital
to hold to remain solvent in a year with a probability of 99.5%. To calcu-
late the capital requirements for a VA portfolio, one must first calculate the
predictive total liability distribution at some future time point. As the guaran-
tees of VAs may be viewed as multi-dated, path-dependent put options, the
most widely used approach to calculating their predictive liability is nested
simulation. Nested simulation is a stochastic-on-stochastic (SoS) algorithm
that contains two parts: an outer-loop simulation and an inner-loop simula-
tion. In the outer-loop simulation, the dynamics of the underlying assets are
projected using multiple real-world economic scenarios (outer loops) from the
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current time to a future time point of interest. The account value and guaran-
tee base are then calculated for each policy along outer loops. In the inner-loop
simulation, the VA liability at the future time point of each policy is calcu-
lated by simulating a large number of risk-neutral economic scenarios (inner
loops). Lastly, the total VA liabilities among the simulated outer loops give
the predictive total VA liability distribution. The relevant risk metrics, such
as the value-at-risk (VaR) and the conditional value-at-risk (CVaR), of that
distribution can then be easily determined. Bauer et al. (2012) provided a
detailed introduction of the capital requirements calculation under the nested
simulation approach.

Since most of the VA contributions are invested in the equity market, usu-
ally in multiple risky assets such as mutual funds, the VA liability are therefore
exposed to the market risks which cannot be diversified. Moreover, the expo-
sures can become large as the VA guarantees are long-dated liabilities that
may span decades. Insurance companies hence would need to set aside a large
amount of capital as a buffer to protect them from insolvency, limiting the
amount of their available capitals for business expansion. The recent revi-
sions in AG43/VM-21 and C3 Phase II regulations reward companies that have
clearly defined hedging strategies (CDHS) by allowing them to hold a smaller
amount of capital (CDHS credit). As a result, insurance companies are incen-
tivized to perform in-house dynamic hedging for their VA portfolios. See, for
example, Meyricke and Sherris (2014) and Varnell et al. (2019) for more dis-
cussion. According to a survey conducted by Willis Towers Watson1 in 2013,
which summarized the risk management programs by the top VA sellers in
the US, most of surveyed insurance companies perform in-house hedging on
a regular basis to manage their liability risks. In order to dynamically hedge
the total VA liability, an insurance company would need to create a hedging
portfolio consisting of the underlying assets whose positions depend on Greeks
and partial dollar Deltas in particular. In practice, these partial dollar Deltas
are normally calculated using the ‘bump and revalue’ approach, which has two
steps. In the first step, an asset returns among the simulated outer loops are
bumped upward/downward by a small amount (usually 1%); and in the second
step, the total VA liability at those shocked scenarios are calculated by rerun-
ning the nested simulation. The partial dollar Deltas are then estimated by the
differences between the total VA liabilities under different shocked scenarios.

Due to the complex structure of the nested simulation algorithm, running
the full nested simulation with a large VA portfolio can be extremely time-
consuming or even prohibitive when the numbers of risk assets, policies, inner
loops and outer loops are large. For example, if one calculates the predictive
total liability distribution at a future time point for a VA portfolio contain-
ing 100,000 policies by running a nested simulation algorithm with 1000 outer
loops and 10,000 inner loops with a computing system that can perform 5× 106

projections per second, then the total runtime will take more than 2 days.
If the quantities of interest are partial dollar Deltas of different assets, then
the total runtime will be increased by multiple times due to the ‘bump and
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revalue’ mechanism, preventing the relevant quantities to be timely calculated.
As a result, reducing the simulation runtime has become a critical issue to the
insurance companies when managing large VA portfolios.

According to the Willis Towers Watson survey, most of the practition-
ers utilized advanced IT infrastructure to accelerate the computing speed of a
nested simulation program. Parallel computing is the most commonly adopted
approach. The number of CPU cores used by the surveyed participants ranges
from 100 to 3000. In addition, some leading software vendors such as Aon
PathWise R© have incorporated high performance GPU to reduce the runtime
even further. Even with the advanced hardware, however, a full nested simula-
tion still cannot be executed in many cases due to limitations such as computer
memory. These challenges all together lead to an increasingly amount of
research on this topic. See Gan and Lin (2015), Hejazi and Jackson (2016),
Gan and Valdez (2018), Lin and Yang (2020) and references therein.

Most of these papers focused on the portfolio liability calculation. Gan
and Lin (2017) studied the calculation of the partial dollar Delta for VA port-
folios. They proposed a method such that a metamodel of the partial dollar
Delta is fitted using a set of possible future market levels. When the market is
open, the VA manager may use the fitted model to calculate the partial Dollar
Deltas in real time. The methodology proposed in Gan and Lin (2017) is able
to reduce the simulation runtime from days to hours. However, there are two
main issues in their study. Firstly, the number of inner loops generated in their
simulation is 1000, which is too low to produce accurate estimates of the VA
liabilities/partial dollar Deltas. If the number of inner loops is increased to
10,000 to reduce the estimation error, then the runtime for training the Level
1 metamodel is expected to increase 10 times. Secondly, the number of pre-
determined future market levels is 50, which is too low to well represent the
possible future scenarios, especially when multiple underlying assets are con-
sidered. Hence the Greeks at other market levels, which are estimated from the
Level 2 metamodel, may be inaccurate.

Recently in Lin and Yang (2020), we proposed a surrogate model-assisted
simulation algorithm in which different statistical models are incorporated into
the simulation program. The proposed algorithm is used to estimate the pre-
dictive total liability distribution for a large VA portfolio, when assuming a
single underlying asset. The purpose of this paper is to extend the work in Lin
and Yang (2020) in several directions. Firstly, we consider a situation where
the policyholders’ accounts are invested in multiple underlying assets, and we
study the selection of the set of representative outer loops in this situation.
Secondly, we design an algorithm to estimate not only the total VA liability
distribution but also other portfolio quantities such as partial dollar Deltas.
Lastly, we extend our algorithm to a multi-period setting and perform a profit
and loss (P&L) projection of the dynamic Delta hedging strategy. We demon-
strate the importance of the dynamic hedging in the context of VA portfolio
and illustrate how our proposed method can be used to efficiently perform the
P&L projection.
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The rest of the paper is organized as follows. In Section 2, we introduce an
efficient nested simulation algorithm for calculating the total VA liability with
multiple underlying assets. In Section 3, we first modify the proposed algo-
rithm to calculate the portfolio partial dollar Deltas, and then discuss how
to implement a dynamic hedging program to hedge total VA liabilities in a
multi-period setting using the proposed algorithm. Numerical results from sev-
eral simulation studies are presented in Section 4. In Section 5, we illustrate
how the proposed approach can be extended to handle stochastic interest rates
and to estimate other Greeks such as Rho using a multidimensional regression
method named the thin plate spline regression. We conclude the paper with
some remarks in Section 6.

2. EFFICIENT CALCULATION OF TOTAL VA LIABILITY WITH MULTIPLE
UNDERLYING ASSETS

The algorithm proposed by Lin and Yang (2020) incorporates statistical mod-
els that act as surrogate models into the nested simulation algorithm to
approximate the relationship between the simulation inputs and outputs. Two
types of models are used in the proposed algorithm: the linear model and the
spline regression model. The linear model is used to approximate the relation-
ship between the policies’ attributes and the VA liabilities along each outer
loop. Assisted with the linear model together with population sampling the-
ory, the number of policies to run the nested simulation is reduced. The spline
regression model is policy specific, and they are used to approximate the rela-
tionship between the policy’s account values and liabilities of different outer
loops. Assisted with the spline regression model together with the clustering
algorithm, the numbers of inner loops and outer loops are reduced.

In Lin and Yang (2020), a single underlying asset is assumed and the goal
of that paper is to calculate the total liability of a large VA portfolio. In this
section, we extend the algorithm to estimate the predictive total liability dis-
tribution of large VA portfolios whose policyholders’ accounts are invested in
multiple underlying assets. The first subsection covers the selection of repre-
sentative policies using a model-assisted population sampling approach. The
second subsection focuses on scenario clustering when multiple assets are con-
sidered. The last subsection introduces the spline regression model which are
used to estimate the VA liabilities of the representative policies.

2.1. Selection of representative policies through population sampling

We adopt a model-assisted population sampling framework to select a set of
representative policies, which are used to estimate the total VA liability. For
each outer loop (real-world scenario) a linear model is employed to approx-
imate the relationship between a policyholder’s attributes at the current time
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t0 and the predictive VA liability at a future time point of interest t1, (e.g.,
a week). Consider a portfolio with N policies whose predictive liability distri-
bution is calculated from a nested simulation algorithm with M outer loops.
Let Lp(s) be the predictive VA liability of policy p at t1 of outer loop s, where
p= 1, ...,N and s= 1, ...,M. Let xp,0 be the attribute vector (e.g., account value,
age, gender, guarantee type, and asset allocation) of policy p at t0. The linear
model is expressed as

Lp(s)= b′(s)xp,0 + ep(s), (2.1)

where ep(s) are assumed to be i.i.d. with mean 0 and variance σ 2
p (s). Let πp(s)

denote the first-order inclusion probability of policy p at outer loop s, which
represents the likelihood of policy p being selected as one of the representa-
tive policies. Results from Nedyalkova and Tillé (2008) state that an optimal
estimation strategy is to use πp(s)= nσp(s)/

∑N
p=1 σp(s), p= 1, ...,N, to select a

balanced sample in which
∑n

p=1 x
∗
p,0/π

∗
p (s)=

∑N
p=1 xp,0, where x

∗
p,0 and π∗

p (s),
respectively, represent the attributes and inclusion probability of the selected
policies. Further, one way to select a balanced sample is through the Cube
algorithm (Deville and Tillé, 2004), which will be introduced in Section 2.2.
Once the representative policies are selected, the total liability

∑N
p=1 Lp(s) is

then estimated by the linear estimator
∑n

p=1 L
∗
p(s)/π

∗
i (s), where n is the sample

size with n�N. L∗
p(s) and π

∗
p (s), p= 1, ..., n, respectively, are the VA liability

and the inclusion probability of the representative policies.
Since the variances σ 2

p (s), p= 1, ...,N, s= 1, ...,M, are not given as a priori
information, we proposed a two-stage procedure to select the set of represen-
tative policies. In order to make the set of representative policies outer-loop
independent, we assumed σp(s) takes a multiplicative form σp(s)= γ (s)h(xp,0).
As a result, the inclusion probability of policy p is πp(s)= nh(xp,0)/

∑N
p=1 h(xp,0).

In the first stage, we assume h(xp,0) is a constant and independent of xp,0 so that
πp(s)= n/N and select a set of policies using the Cube algorithm. In the second
stage, h(xp,0) is identified through residual diagnostic using the liabilities esti-
mated in the first stage. A new set of policies is selected again using the Cube
algorithm with the updated inclusion probabilities, πp = nh(xp,0)/

∑N
p=1 h(xp,0),

p= 1, ...,N. The resulting policies from this selection are the representative
policies whose liabilities will be used to estimate the total VA liability. We
remark here that the second stage is an improvement stage: the sets of policies
selected from the first stage can already approximate the population quantities
with high accuracy in many cases.

2.2. The Cube algorithm

The Cube algorithm, which is proposed by Deville and Tillé (2004), selects a
nearly balanced random sample for a given first-order inclusion probability
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through an iterative procedure. The algorithm contains two phases: a flight
phase and a landing phase.

Let N be the population size and each population unit is r-dimensional. In
our context, r is the dimension of the attribute vector. The flight phase itera-
tively translates the inclusion probabilities to a vector of at least (N − r) zeros
or ones. The balanced condition

∑
k∈S xk/πk = ∑

k∈U xk can be written in the
matrix form:

AS =Aπ , (2.2)

where A= (a1, a2, ..., aN) a r×N matrix and ak = xk/πk for k= 1, ...,N, and
S = (11, 12, ..., 1N)t a random column vector, where 1k = 1 or 0 indicating the
inclusion of the kth unit. Equation (2.2) implies that all balanced samples form
a subspace ofRN with dimensionN − r. Hence S can be written as π + u, where
u is in the kernel of matrix A, that is, Au= 0. From this, in each iteration of
the flight phase the inclusion probability vector is positioned randomly inside
the kernel space of A until it reaches to a point that is close to a vertex of
the N-dimensional hypercube.

There are three steps in each iteration in the flight phase. For a given
inclusion probability vector π , set π (1)= π , at iteration i= 1, 2, ..., I :

• Step 1: Randomly generate a vector u(i) in the kernel of matrix A=
(a1, a2, ..., aN). Set uk(i)= 0 if πk(i)= 0 or 1.

• Step 2: Compute λ∗
1(i) and λ

∗
2(i), the largest values among λ1(i) and λ2(i) such

that

0≤ π (i)+ λ1(i)u(i)≤ 1,

0≤ π (i)− λ2(i)u(i)≤ 1.

• Step 3: Compute π (i+ 1) as follows:

π (i+ 1)= π (i)+ λ∗
1(i)u(i) with probability

λ∗
2(i)

λ∗
1(i)+ λ∗

2(i)
,

π (i+ 1)= π (i)− λ∗
2(i)u(i) with probability

λ∗
1(i)

λ∗
1(i)+ λ∗

2(i)
.

The above three steps iterate until π(i) stops changing. In the landing phase,
each non-integer element resulting from the flight phase is adjusted to either
zero or one by linear programming. The resulting vector with only zeros and
ones gives a nearly balanced sample.

2.3. Selection of representative outer loops through scenario clustering

To further reduce the simulation runtime, Lin and Yang (2020) proposed a
clustering-based method to select a subset of outer loops which are referred to
as representative outer loops. By doing this, the nested simulation is run with
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not only a fewer number of policies but also a fewer number of outer loops. The
VA liability of a selected policy at the non-selected outer loops is then estimated
through a spline regression model which will be introduced in Section 2.4.

As mentioned in the Introduction section, Lin and Yang (2020) considered
a single underlying asset. In this paper, we extend the method for selecting
representative outer loops to a more realistic setting where the VA accounts
are invested into multiple underlying assets. In the following, we introduce
scenario clustering under the multi-asset setting.

2.3.1. The k-means clustering
Let χ = (χ 1, ..., χ n) denote a data set, where χ i ∈Rd , i= 1, ..., n, and let Ck =
{C1, ..., Ck} ⊂Rd be a partition of χ . For a given number of clusters k, the
within-cluster sum of squares (WCSS) of χ is defined as

�(χ , Ck) :=
k∑
j=1

∑
i∈Cj

||χ i − μj||2,

whereμj is the average of χ i for i ∈ Cj and || · || is the Euclidean norm. The solu-
tion to the k-means clustering is the partition C∗

k = {C∗
1 , ..., C∗

k} which minimizes
the WCSS, that is,

C∗
k = argminCk={C1,...,Ck}�(χ , Ck). (2.3)

In theory finding the optimal solution C∗
k is NP-hard even for k= 2 (see Aloise

et al., 2009). Because of this, the solution to the k-means clustering is usu-
ally obtained through a greedy iterative algorithm called the Lloyd algorithm
(Lloyd, 1982) or more widely known as the k-means algorithm. The algorithm
starts with a set of randomly initialized cluster centers: μ(0) = (μ(0)

1 , ...,μ(0)
k ), and

repeats the following two steps at iterations 1, 2, ... until there is no further
change to �(χ , Ck):
• Assignment step: Assign each data point to a cluster whose center is the

closest in terms of the squared Euclidean norm, that is,

C(t)
j = {χ i : ||χ i − μ

(t−1)
j ||2 ≤ ||χ i − μ

(t−1)
l ||2, l = 1, ..., k}.

• Update step: Recalculate the cluster centers by

μ
(t)
j =

∑
i∈C(t)

j
χi

card(C(t)
j )

.

The iterations will converge in a finite number of steps (see Arthur and
Vassilvitskii, 2006). However, due to the random initialization, the clustering
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resulted from the k-means algorithm is a local optimum. Because of this, a com-
mon practice is to run the k-means algorithm multiple times and choose the
clustering that gives the lowest WCSS.

We remark a property of the WCSS function which will be used later on:
�(χ , Ck) is a decreasing function in k for k= 1, ..., n. Intuitively as the number
of cluster increases, the degree of homogeneity among the data in each cluster
increases and the within-cluster variation becomes smaller. The proof of this
property can be found in many references, for example, Rebagliati (2013). In
the next subsection, we apply the k-means algorithm to scenario clustering.

2.3.2. Multidimensional scenario clustering using k-means
When multiple assets are considered, each outer loop is represented by a
vector containing the simulated returns of the underlying assets. Let R(s)=
(R1(s), ...,Rd(s))t be a return vector with Rk(s) representing the kth asset return
from t0 to t1 at the sth outer loop, k= 1, ..., d and s= 1, ...,M, and ωp =
(ωp,1, ...,ωp,d)t be a vector containing the asset allocation of policy p. We assume
that the policyholders are not allowed to short sell any underlying asset, that
is, ωp ∈ [0, 1]d , as it is always the case. The total return of policy p’s account
at all M outer loops is given by the vector ωt

pR= (ωt
pR(1), ...,ω

t
pR(M)). Let

Pm = {P1, ...,Pm} ⊂R be a partition of the set ωt
pR. In order to reduce the

number of outer loops, one needs to find a partition P∗
m = {P∗

1 , ...,P∗
m} that

minimizes WCSS:

�(ωt
pR,Pm) :=

m∑
j=1

Mj∑
s=1

(ωt
pR(s)− ωt

pμ(j))
2, (2.4)

where Mj = card(Pj) and μ(j) represents the mean vector of R(s) ∈Pj, j=
1, ...,m. Notice that the objective function (2.4) depends on the asset alloca-
tion vector ωp implying that clustering the total return in the multiple asset
case is policy specific. To overcome this shortcoming, we modify the clus-
tering method such that the clustering is policy independent. Define Qm =
{Q1, ...,Qm} to be a partition of (R(1), ...,R(M)). The optimal partition, in
terms of k-means clustering, is a partition Q∗

m = {Q∗
1, ...,Q∗

m} which minimizes
the following WCSS:

�(R,Qm) :=
m∑
j=1

Nj∑
s=1

||R(s)− μ(j)||2, (2.5)

where Nj = card(Qj) and μ(j) represents the mean vector of R(s) ∈Qj.

Proposition 2.1. LetQm = {Q1, ...,Qm} ⊂Rd be a partition of (R(1), ...,R(M)).
For any ωp ∈ [0, 1]d and

∑d
k=1 ωp,k = 1, �(ωt

pR,Qm)≤ ||ωp||2�(R,Qm)≤
�(R,Qm).
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Proof. Let Nj = card(Qj), and μ(j) be the average of R(s) ∈Qj for j=
1, ...,m. Applying the Cauchy–Schwarz inequality to (2.4), we find that

m∑
j=1

Nj∑
s=1

(ωt
pR(s)− ωt

pμ(j))
2 ≤ ||ωp||2

m∑
j=1

Nj∑
s=1

||R(s)− μ(j)||2

≤
m∑
j=1

Nj∑
s=1

||R(s)− μ(j)||2. (2.6)

The second inequality is followed from the fact that ||ωp||2 ≤ 1 when ωp ∈ [0, 1]d

and
∑d

k=1 ωp,k = 1. �
Proposition 2.1 implies that if we run the k-means algorithm with

(R(1), ...,R(M)) and use the resulting partition Q∗
m to cluster (ωt

pR(1), ...,
ωt
pR(M)), then the WCSS �(ωt

pR,Q∗
m) will be smaller than �(R,Q∗

m). In addi-
tion, the property mentioned at the end of Section 2.3.1 indicates that the
difference between these two WCSS is decreasing in m, the number of clus-
ters. Hence, when m is relatively large the optimal partition of (R(1), ...,R(M))
would also provide a good partition for (ωt

pR(1), ...,ω
t
pR(M)). This justifies the

policy-independent selection of representative outer loops, in which the policy-
specific asset allocations are not considered and the k-means algorithm is run
only with the simulated assets returns.

2.4. A spline regression approach to calculating VA liabilities

After running the reduced nested simulation, we obtain m pairs of predictive
account values and VA liabilities for each selected policy. In order to estimate
the VA liabilities of the selected policies at all outer loops, we used the spline
regression as a surrogate model to approximate the relationship between the
VA liabilities and the predictive account values. The main advantage of the
spline regression is its ability in capturing a wide range of nonlinear relation-
ships. The spline regression and similar approaches such as the least-squares
Monte Carlo (LSMC) method have been applied in various applications to
reduce their computational burden. For example, Hong et al. (2017) applied a
kernel smoothing approach for managing portfolio risks; Bauer and Ha (2015)
and Krah et al. (2018) applied the LSMC method to estimate the SCR under
the Solvency II framework; and Duong (2019) more recently applied the spline
regression model to estimate the SCR for life insurance companies. Although
our approach has some similarities to some of the existing approaches, we focus
on the integrated use of the spline regression model for the selection of rep-
resentative outer loops, which is justified by the statistical properties of the
penalized spline estimator.
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DenoteLp(s) andAp(s), respectively, as representative policy p’s VA liability
and account value at the future time point of interest at a generic outer loop s.
We assume the following spine regression model:

Lp(s)=
G∑
g=1

βp,gψg(Ap(s))+ εp(s), (2.7)

where εp(s)’s are i.i.d. with mean 0 and variance ν2p , and ψg( · ), g= 1, ...,G
are a set of B-splines (see De Boor, 1978). For each representative policy,
the spline model (2.7) is fitted through the penalized least-square approach
using them pairs of predictive account values and VA liabilities. The estimated
parameters are

β∗
p = argminβp=(βp,1,...,βp,G)

∑
j∈s∗

⎛
⎝Lp(j)−

G∑
g=1

βp,gψg(Ap(j))

⎞
⎠

2

+ λp

∫
R

⎛
⎜⎝

⎛
⎝ G∑

g=1

βp,gψg(x)

⎞
⎠

(q)
⎞
⎟⎠

2

dx,

where s∗ denotes the set of the representative outer loops, and λp is a smooth-
ing/tuning parameter which is normally determined by cross-validation. As a
result, the approximated predictive liability of representative policy p at an
outer loop s is L̂p(s)= ∑G

g=1 β
∗
p,gψg(Ap(s)).

3. EFFICIENT CALCULATION OF PARTIAL DOLLAR DELTAS AND
DYNAMIC HEDGING

In order to hedge the total VA liability, the insurance company needs to
construct a hedging portfolio which consists of the underlying assets. The allo-
cation of the underlying assets are determined by their Greeks and in particular
partial dollar Deltas of the total VA liability. If the hedging is performed
dynamically, then the insurance company would need to calculate the partial
dollar Deltas on a regular basis (e.g., daily or weekly) to rebalance the hedging
portfolio. In this section, we state how the proposed algorithm in Section 2 can
be used to efficiently estimate the partial dollar Deltas for large VA portfolios.

We divide this section into three subsections. In the first subsection, we use
the spline regression model to estimate partial dollar Deltas for individual VAs;
in the second subsection, the population sampling framework is used to esti-
mate partial dollar Deltas for large VA portfolios; and in the last subsection,
we integrate the proposed algorithm to estimate the total liability and the par-
tial dollar Deltas of the portfolio and to perform a P&L analysis over multiple
periods of time.
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3.1. Calculating partial dollar Deltas for individual VAs using regression spline

Again, we denote t1 the future time point of interest, say, a week. We assume a
policyholder whose VA account is invested in d underlying assets. The values
of those underlying assets at t1 and outer loop s are denoted by I1(s), ..., Id(s).
We use Lp(s) to denote the policy p’s VA liability at time t1 and outer loop s,
and �p,i(s) to denote the partial dollar Delta of policy p’s liability with respect
to asset i for i= 1, ..., d at outer loop s. Thus, we have

�p,i(s)= Ii(s)× ∂Lp(s)
∂Ii(s)

.

As mentioned in the Introduction section, in practice the partial dollar Delta is
normally calculated by the ‘bump and revalue’ method. Suppose that we want
to find the partial dollar Delta with respect to asset i. First, we ‘bump’ up and
down the asset price Ii(s) by a small amount, for example, 1% of Ii(s), and
keep the other asset prices unchanged. Next, the policy’s VA liability will be
recalculated by running multiple inner loops at the ‘bumped’ asset prices. By
denoting the recalculated VA liabilities as Li+

p (s) and Li−
p (s), respectively, the

partial dollar Delta with respect to asset i is estimated as

�p,i(s)≈
Li+
p (s)−Li−

p (s)

2%
.

Since the liabilities are recalculated through simulation, the total runtime
of finding a partial dollar Delta is roughly two times longer than that of cal-
culating the predictive total liability distribution. If the partial dollar Delta
is calculated for multiple assets, then the runtime will be significantly longer.
Moreover, the accuracy of the partial dollar Delta estimates is extremely sensi-
tive to the accuracy of the liability estimates. In some cases, the partial dollar
Delta estimate may be totally off even though the liabilities are fairly accurately
estimated. This is due to the fact that the difference between the liabilities is
usually small with the 1% change in the underlying asset price, and it is easily
dominated by the estimation error resulted from the simulation.

Here, we propose an alternative method based on the regression spline
model to calculate the partial dollar Deltas. Recall thatAp(s) denotes the policy
p’s predictive account value at t1. Let qp,i denote the number of units that pol-
icyholder p invests in asset i, i= 1, ..., d. Then Ap(s)= qp,1I1(s)+ · · · + qp,dId(s).
In Section 2.4, a spline regression model is fitted to approximate the VA lia-
bility in which L̂p(s)= ∑G

g=1 β
∗
p,gψg(Ap(s)). With this formula, the partial dollar

Delta can be estimated by

�̂p,i(s)= Ii(s)×
d

∑G
g=1 β

∗
p,gψg(Ap(s))

dAp(s)
× ∂Ap(s)
∂Ii(s)

= qp,iIi(s)×
G∑
g=1

β∗
p,g

dψg(Ap(s))
dAp(s)

.
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Since each of the basis functions ψg( · ), g= 1, ...,G, is of an analytical form,
in theory the derivatives dψg(Ap(s))

dAp(s)
, g= 1, ...,G, can be, respectively, calculated

either analytically or using finite difference, once the spline model is fitted.
The latter method is often preferred in nonparametric modeling (see https://
stat.ethz.ch/R-manual/R-devel/library/mgcv/html/mgcv-FAQ.html for the dis-
cussion by the author of the mgcv R package). In our case, the derivative is

calculated as dψg(Ap(s))
dAp(s)

≈
(
ψg(Ap(s)+ε)−ψg(Ap(s)−ε)

2ε

)
, g= 1, ...,G, with ε = 10−5. With

this method, the partial dollar Deltas are calculated based on function deriva-
tives and hence they are less sensitive to the estimation errors. Moreover, due
to the use of the regression spline rerunning, the nested simulation at shocked
scenarios for the entire VA portfolio is completely avoided. Lastly, the deriva-
tive estimator will asymptotically converge to the true derivative as the number
of training points increases (see Theorem 2.2 of Lin and Yang, 2020).

We remark that there are other widely used Monte Carlo approaches for
calculating Greeks such as the pathwise (PW) estimation approach and the
likelihood ratio (LR) estimation approach (see Glasserman, 2013). In the con-
text of VA, Cathcart et al. (2015) studied the performance of those approaches
in estimating the Greeks for VA with a GMWB rider. Even though the esti-
mation errors of the PW and the LR approaches are shown to be smaller
than those of the ‘bump and revalue’ method, significant efforts are needed
to derive the expressions for different Greek estimators. In most cases, those
expressions are complicated due to the path-dependency nature of the guar-
antees. In addition, a large number of simulation is needed in addition to the
liability calculation in order to achieve a satisfactory convergence rate. Hence,
to the best of our knowledge, the PW and LR methods or their hybrid forms
are not readily applicable to very large nonhomogeneous VA portfolios from
a computational perspective.

3.2. Partial dollar Deltas of VA portfolios

Section 3.1 shows how the spline regression can be used to estimate the par-
tial dollar Deltas for a single VA policy. When the quantities of interest are
the partial dollar Deltas of a large VA portfolio, it becomes necessary to also
reduce the number of policies run for the nested simulation. Let �i(s) be the
partial dollar Delta of the VA portfolio with respect to asset i, i= 1, ..., d, at
t1 and outer loop s. Due to linearity, the portfolio partial dollar Deltas can be
written as the summation of individual partial dollar Deltas:

�i(s)= Ii(s)×
∂

∑N
p=1 Lp(s)

∂Ii(s)
.

Hence if the total VA liability estimated by a subset of policies are fairly
accurate for any outer loop s, then the partial dollar Deltas estimated by the
same set of policies are also expected to be accurate. This implies that the same
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set of representative policies can be used to estimate both the total liability and
the partial dollar Deltas of a large VA portfolio.

After the partial dollar Delta in asset i at t1 and outer loop s are esti-
mated for each of the representative policies, the partial dollar Delta of the
VA portfolio can be estimated by the Horvitz–Thompson estimator:

�̂i(s)=
n∑

p=1

�̂p,i(s)
π∗
p

,

where π∗
p , p= 1, ..., n, are the inclusion probabilities of the representative poli-

cies. We remark that under this method the portfolio partial dollar Deltas can
be estimated in real time for any observed market condition using the fitted
spline models of the representative policies.

3.3. P&L analysis over multiple periods

The algorithms proposed in previous sections for estimating the total liability
and the partial dollar Deltas reduce the simulation time significantly, which
will be shown in Section 4. In this section, we first discuss how the proposed
algorithms can be integrated to efficiently estimate the total VA liability and
partial dollar Deltas over multiple periods of time. When the total VA liabil-
ity is dynamically hedged, the degree of uncertainty of the terminal predictive
distribution of the total VA liability is reduced. As a result, the insurance com-
pany’s required capital may be significantly reduced and in turn its profitability
increases. The amount of required capital when dynamically hedging is imple-
mented may be obtained through a P&L analysis over multiple future scenarios
and multiple periods. In the next, we provide a general framework of the P&L
analysis in the context of dynamically hedging the VA liability.

3.3.1. Efficient nested simulation over multiple periods
Figure 1 illustrates the flow of the full nested simulation algorithm over
multiple periods of time. Again, we denote t0 the initial time and s0 the initial
market information. Starting from t0, a large number of outer loops are
generated from time t0 to tT . At each time step along each outer loop, another
large number of inner loops are simulated to calculate the total VA liability
at that time step. If the partial dollar Deltas are calculated using the ‘bump
and revalue’ approach, then the total VA liability would need to be calculated
at the shocked scenarios by simulating another large numbers of inner loops
again. Due to the structure of the nested simulation algorithm calculating all
the relevant quantities is therefore extremely time-consuming. However, by
using the proposed algorithm it is possible to run the nested simulation at a
very reasonable computing cost.
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FIGURE 1: Nested simulation over multiple periods.

In order to reduce the simulation runtime to make the calculation feasible,
we break the entire simulation algorithm into T pieces, where each piece is
a single-period nested simulation running from time t0 to ty, y= 1, ...,T . The
proposed algorithm with reduced number of policies and outer loops can then
be applied to each individual one-time period to calculate quantities of interest
at each future time point. The structure of the proposed algorithm is illustrated
in Figure 2, and the procedure for calculating the total VA liability and partial
dollar Deltas is given in the following:

• Step 1: Select a set of representative policies z∗ = (z∗
1, ..., z

∗
n) using the Cube

algorithm.
• Step 2: GenerateM outer loops from t0 to tT in a multi-period manner using

a real-world economic scenario generator (ESG).
• Step 3: For each time step ty, y= 1, ...,T ,

– Select a set of representative outer loops R∗
y = (R∗

y(1), ...,R
∗
y(m)) by run-

ning the k-means algorithm with the return vectors.
– Run the reduced nested simulation on the selected sets of representative

policies and representative outer loops.
– For each selected policy, fit a spline regression model to estimate its VA

liability, L̂p,y(s), and partial dollar Deltas, �̂p,i,y(s), of all outer loops s=
1, ...,M.
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FIGURE 2: Proposed nested simulation over multiple periods.

– Estimate the total VA liability and portfolio partial dollar Deltas at time
ty of all outer loops, respectively, by

N
n

n∑
p=1

L̂p,y(s),
N
n

n∑
p=1

�̂p,i,y(s).

We remark that the same set of representative policies is used to estimate
all the quantities at all time points, but the set of representative outer loops
are time dependent. To see this, consider two scenarios that are far away from
each other at time t1; the significant difference between these two scenarios will
split them into two clusters. Suppose that the two scenarios become close to
each other after time t1. In this case, they will be assigned to the same cluster at
t2. Hence the clustering of the economic scenarios will be different across time,
which implies the set of representative outer loops is time dependent.

3.3.2. P&L analysis
Let �i,y(s) and Ri,y(s), respectively, be the partial dollar Delta of the total VA
liability with respect to asset i at time ty and the total return of asset i from ty−1

to ty along outer loop s, for i= 1, ..., d, s= 1, ...,M and y= 1, ...,T . In addition,
denote By(s) the amount in the risk-free asset, and Ly(s) the total VA liability
at time ty at outer loop s. At t0, the hedging portfolio is such that the portfolio
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value is the same as the initial total VA liability, that is, L0 = ∑
i �i,0 +B0. For

simplicity, the scenario indicator s is dropped in all of the notations at t0.
From t0 to t1 (e.g., a week), the total VA liability changes from L0 to L1(s);

the amount invested in asset i changes from �i,0 to �i,0Ri,1(s), s= 1, ...,M.
Due to the change in the total liability, the amount invested in asset i needs
to be rebalanced to �i,1(s). Since the portfolio is self-financing, the rebalanc-
ing together with the interest earnings brings the value in risk-free asset to
B1(s)=B0erδt + ∑

i �i,0Ri,1(s)− ∑
i �i,1(s) at t1, where r is the annualized risk-

free rate compounded continuously and δt is the length of the time interval
measured in year (e.g., δt = 1/52 representing a week).

The above procedure is repeated for all periods, and the value of the hedg-
ing portfolio at time ty along outer loop s is given by

∑
i �i,y(s)+By(s). The

terminal P&L at the end of the entire period is the difference between the value
of the hedging portfolio (before rebalancing) and the total VA liability at tT .
More precisely, the distribution of the terminal P&L random variable is∑

i

�i,T−1(s)Ri,T (s)+BT−1(s)erδt −LT (s), s= 1, ...,M.

The corresponding estimated P&L distribution can be obtained by replacing
�i,T−1,BT−1(s) and LT (s) by their estimated values calculated using the algo-
rithm in Sections 2 and 3. The relevant risk metrics such as the VaR or CVaR
at significant level α of the loss distribution can then be obtained from the
estimated terminal P&L distribution.

4. NUMERICAL STUDIES

Several numerical studies on the proposed algorithm are now conducted in this
section. In the first subsection, we introduce a multivariate regime-switching
lognormal (RSLN) model to be used as the real-world and the risk-neutral
ESGs in the nested simulation algorithm. For illustration purposes, we cre-
ate a synthetic VA portfolio containing 100,000 policies whose attributes are
given in the second subsection. In the third subsection, the predictive total
liability distribution and the partial dollar Deltas of the synthetic VA port-
folio are calculated using both the full nested simulation and the proposed
algorithm. Results are compared in terms of the approximation accuracy and
the algorithm runtime. In the last subsection, we implement a dynamic hedg-
ing program with the proposed algorithm to hedge the total liability for the
synthetic VA portfolio over multiple time periods and conduct a P&L analysis.

4.1. Multivariate RSLN model

We use the multivariate RSLN model as the ESG for both inner-loop
and outer-loop simulations. This model has been used to describe the joint
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dynamics of a set of correlated assets in many papers such as Ng and Li (2013)
and Chen and Yang (2011). We remark that our proposed algorithm does not
assume any specific model for the ESG and it works for a wide range of models.
In the following, we first specify the model and then demonstrate the scenario
clustering in the multiple asset setting using the k-means algorithm.

4.1.1. Model specification
We consider a case where the policyholders’ account values are invested in
three assets: two risky assets and the money market which earns a risk-free
rate. We assume the joint dynamics of the two risky assets, S1,t and S2,t, follow
a bivariate RSLN model under the real-world measure:{

dS1,t =μG
1,tS1,tdt+ σG

1,tS1,tdWP
1,t,

dS2,t =μG
2,tS2,tdt+ σG

2,tS2,tdWP
2,t.

(4.1)

Parameters that have superscript G are regime dependent. Since the market
is incomplete in the regime-switching framework, the risk-neutral measure is
not unique. Ng and Li (2013) used the Esscher transform to find an equivalent
risk-neutral measure under which all risky assets earn the risk-free rate, r, on
average. The assets volatilities and the regime-specified parameters such as the
transition probabilities remain unchanged under the risk-neutral measure. This
method for finding a risk-neutral measure has also been used in other studies,
for example, Bollen (1998). Hence, the joint dynamics under the risk-neutral
measure are {

dS1,t = rS1,tdt+ σG
1,tS1,tdW

Q

1,t,

dS2,t = rS2,tdt+ σG
2,tS2,tdW

Q

2,t.
(4.2)

For the numerical implementation, we adopt the parameters given in Ng
and Li (2013) which are fitted using the weekly S&P500 and S&P600 indices
data. The S&P500 index is calculated based on the returns of 500 large-cap US
companies; and the S&P600 index, on the other hand, is based on the returns
of 600 small-cap US companies. These two indices together give investors a
relatively high exposure to the entire US equity market. We denote R1,t,R2,t

the weekly total returns of the S&P500 index and S&P600 index from t− 1
52 to

t for t= 1/52, 2/52, .... The weekly joint dynamics of the two indices under the
real-world measure P in the first regime is{

lnR1,t = 0.003710+ aP1,t,

lnR2,t = 0.002915+ aP2,t,
(4.3)

where the innovation terms (aP1,t, a
P
2,t)

′, t= 1/52, 2/52, ..., follows a bivariate
normal distribution under P with zero means, standard deviations of 0.009145
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and 0.006098, and a correlation of 0.8115. The dynamics under the second
regime is {

lnR1,t = 0.001010+ bP1,t,

lnR2,t = 0.000340+ bP2,t,
(4.4)

where (bP1,t, b
P
2,t)

′ follows a bivariate normal distribution under P with zero
means, standard deviations of 0.01697 and 0.01411, and a correlation of
0.8115. The innovation terms are assumed independent between regimes. The
transition probabilities are p12 = 0.035248 and p21 = 0.029042. In addition, we
assume a risk-free rate of 2% per year which is equivalent to 0.0385 % per week.

4.1.2. Scenario clustering
In Section 2.3, we introduced a policy-independent method for selecting the
representative outer loops, in which the k-means algorithm is run with the
simulated return vectors. We stated in Proposition 2.1 that if the number
of representative outer loops is relatively large (e.g., around 100), then this
approach would produce a good partition for the policy’s total return regard-
less of the asset allocation. In the following, we will demonstrate this through
several examples.

We generate 1000 outer loops from t0 = 0 to t1 = 1/52 (a week) using
the multivariate regime-switching model (4.3) and (4.4). Let R= (R(1), ...,
R(1000)), where R(s)= (R1(s),R2(s),Rf )t denotes the simulated asset returns at
outer loop s whose elements are the returns of the S&P500 index, the S&P600
index and the risk-free asset. Let ωp = (ωp,1,ωp,2,ωp,f )t be the asset allocation
of policy p, such that the total returns of this policy’s account value from t0 to
t1 = 1/52 is ωt

pR.
There are four subfigures in Figure 3: each corresponds to a generic asset

allocation which is given in the title. To demonstrate there are three curves in
each subfigure: the black curve corresponds to the function ||ωp||2�(R,Q∗

m)
against different m, where m= 5, 10, ..., 250 and �(R,Q∗

m) are the WCSS
obtained by running the k-means algorithm with R and Q∗

m are the resulted
partitions; the red curve corresponds to the function �(ωt

pR,Q∗
m) which are

the WCSS of ωt
pR with partition Q∗

m; and the blue curve corresponds to the
function �(ωt

pR,P∗
m) which are the WCSS obtained by running the k-means

algorithm with ωt
pR andP∗

m are the resulted partitions.
The results in Proposition 2.1 can be clearly observed from Figure 3: as the

number of cluster increases, the difference between using Q∗
m and using P∗

m
to partition the total returns ωt

pR becomes smaller. Furthermore, it is worth
to note that the WCSS curves are not monotonically decreased in m. This is
due to the fact that clusterings obtained from the k-means algorithm are local
optima.

In order to quantitatively measure the performance of using Q∗
m to parti-

tion ωt
pR for different ωp’s, we calculate the fraction of the explained variance,
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FIGURE 3: Scenario clustering for different asset allocations.

which is defined as the ratio of the between-cluster variation to the total
variation of the data. In the VA context, this ratio is given by

1− �(ωt
pR,Q∗

m)∑1000
s=1 (ωt

pR(s)− ωt
pμ)2

, (4.5)

where μ is the mean vector of all simulated returns R(s), s= 1, ..., 1000. The
larger this ratio is, the higher proportion of the total variance is explained by
clustering and the higher similarity among data within each cluster. In the
extreme case where m equals to the total number of data points, this ratio
becomes one, as each cluster contains a single datum so there is no within-
cluster variations. The idea of using this measurement to attest the effectiveness
of clustering can be dated back to Thorndike (1953). Ketchen and Shook (1996)
discussed using this ratio to determine the number of clusters in the context of
the k-means clustering.
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FIGURE 4: Explained variance of different asset allocations.

In Figure 4, we plot several explained variance curves against the number
of clusters. Each curve corresponds to (4.5) with a randomly generated asset
allocation. The red dashed line is the 95% explained ratio. It can be seen in
our setting that 100 clusters (i.e., 100 representative outer loops) would pro-
duce a variance explained ratio of at least 95% for almost all asset allocations.
Hence, in practice this measurement and corresponding analysis may be used
to determine the number of representative outer loops.

4.2. A synthetic VA portfolio

We now create a synthetic VA portfolio containing 100,000 policies whose
attributes and the corresponding distributions are given in Table 1. The
attribute variables and their distributions are similar to the one we used in Lin
and Yang (2020), which are designed according to the Society of Actuaries
(SOA) and LIMRA 2015 Study on Variable Annuities.2 In addition to the
demographic information, each policy is assigned a random asset allocation.
The possible values of the asset weights and their distributions are given in the
bottom three rows of Table 1.

4.3. Efficient VA liability calculation for individual policies

In this subsection, we use two generic but typical VA policies as examples to
validate the use of the spline regression approach introduced in Section 2.4 and
to demonstrate its efficiency. The attributes of the two policies are given in the
following:
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TABLE 1

PORTFOLIO ATTRIBUTES AND DISTRIBUTIONS.

Attribute Value Distribution

Gender Male, Female Uniform
Policyholder’s age 45–85 Uniform
Maturity 10–25 years
Guarantee type GMDB GMWB: 15% among 45–60

GMDB+GMAB 30% among 61–70
GMDB+GMWB 30% among 71–80

20% among 81–85
GMAB: 50% among 45–60
30% among 61–70
15% among 71–80
5% among 81–85

Annual withdrawal rate 1/Maturity –
Account value $10,000, 20,000, ... , 500,000 40% between 10,000 and

50,000
50% between 50,000 and

250,000
10% above 250,000

Withdrawal benefit base Initial account value –
Death benefit base Initial account value –
Death benefit guarantee design Ratcheting or roll-up Uniform

Roll-up rate 1–5%
Accumulation benefit Initial account value –
Accumulation benefit guarantee Ratcheting or roll-up

design
Roll-up rate 1–5% Uniform

Mortality table 1996 IAM –
Asset allocation:
– Risk-free asset 40%, 45%, ..., 60% Uniform
– S&P 500 0, 5%, ..., 60% Uniform
– S&P 600 The remaining weight –

• VA1: gender = female, age = 58, initial account value = $370,000, term of
maturity = 20 years, GMDB (roll up 2% per year) + GMMB (roll up 2%
per year), asset allocation = (0.25, 0.3, 0.45).

• VA2: gender = male, age = 68, initial account value = $ 90,000, term of
maturity = 24 years, GMDB (ratchet) + GMWB (withdraw rate = 1/24 per
year), asset allocation = (0.15, 0.25, 0.6).

The two subfigures at the top and the bottom of Figure 5 correspond to
VA1 and VA2, respectively. The two subfigures on the left are scatterplots of
the predicted account values and the VA liabilities in a year, which are calcu-
lated from 1000 inner loops, at the 100 representative outer loops. From these
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FIGURE 5: Spline regression for VA policies with three underlying assets.

scatterplots, the relationship between the predicted account values and liabil-
ities can be well captured by smooth curves. The two subfigures on the right
of Figure 5 show the predicted VA liabilities which are calculated from 10,000
inner loops of the two generic policies at all outer loops, and the VA liabilities
that are approximated by the spline regression model. It can be seen that the
spline model is able to provide good approximations to the VA liabilities for
different cases.

4.4. Predictive total VA liability distribution and partial dollar Deltas

In this section, the performance of the proposed algorithm is illustrated, in
which the predictive distribution and the partial dollar Deltas of the total VA
liability, for the periods of 12 weeks and 24 weeks, respectively, are calculated
using both the full nested simulation and the proposed algorithm. The pro-
posed algorithm will be run with two settings: the numbers of inner loops and
outer loops are 1000 and 100 in both settings but the number of representative
policies are 2000 and 4000, respectively.

Suppose that θ , θ̂ are one of the statistics of the predictive total VA liability
distribution in Table 2, obtained from the full simulation and the proposed
algorithm, respectively. The statistics are compared in terms of their abso-

lute percentage errors
∣∣∣ θ̂−θ
θ

∣∣∣ . The results in Table 2 show that the proposed

algorithm is able to accurately approximate the predictive total VA liability
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TABLE 2

ABSOLUTE PERCENTAGE ERRORS OF THE TOTAL VA LIABILITY ESTIMATES.

np = 2000 np = 4000

26 weeks (%) 52 weeks (%) 26 weeks (%) 52 weeks (%)

Mean 1.38 0.50 0.55 0.03
VaR(90) 1.53 0.77 0.80 0.04
CVaR(90) 1.37 0.63 0.50 0.26
VaR(95) 1.83 0.65 0.73 0.14
CVaR(95) 1.31 1.01 0.64 0.59
VaR(99) 0.94 0.89 0.72 0.42
CVaR(99) 0.95 1.88 0.61 1.85

TABLE 3

COMPARISON OF RUNTIME.

Full nested simulation Proposed algorithm
Number of policies 100,000 2000 4000
Number of outer loops 1000 100 100
Number of inner loops 10,000 1000 1000
Scenario selection – 0.01(s) 0.01(s)
Policy selection – 0.5(s) 2(s)
Reduced nested simulation – 300(s) 500(s)
Spline fitting – 30(s) 50(s)
Full simulation 2(d) – –
Total running time 2(d) 5.5(m) 9(m)

distribution. Comparing the errors between the two settings, the one with 4000
representative policies gives smaller approximation errors in general.

The simulation inputs and runtimes are provided in Table 3. Both of the
full nested simulation algorithm and the proposed algorithm are implemented
in R by parallel computing with 30 CPU cores (Intel R©Xeon R©CPU E7-8891 v2
@3.20GHz). The selection of the representative outer loops and the represen-
tative policies take almost no time to executive. The majority of the runtime
of the proposed algorithm comes from running the reduced nested simulation.
The fitting of the spline regression takes certain amount of runtime; however,
it is less than 1 min even with 4000 policies.

Next, the proposed algorithm is used to calculate the partial dollar Deltas
of the total VA liability with respect to the S&P500 and S&P600 indices. Again,
the proposed algorithm is run with two settings with 2000 and 4000 repre-
sentative polices. For consistency and illustration purposes, we calculate and
compare the partial dollar Deltas of the VA portfolio in 26 and 52 weeks,
respectively. In Table 4, two error measures of the estimated partial dollar
Deltas for the two indices are reported: the average percentage error (APE)
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TABLE 4

ESTIMATION ERRORS OF THE PARTIAL DOLLAR DELTAS.

np = 2000 np = 4000

26 weeks 52 weeks 26 weeks 52 weeks

S&P500 S&P600 S&P500 S&P600 S&P500 S&P600 S&P500 S&P600
(%) (%) (%) (%) (%) (%) (%) (%)

APE −0.36 0.32 −0.42 0.30 −0.88 0.54 −0.44 0.24
AAPE 4.87 3.43 5.38 3.63 3.88 1.95 5.14 2.26
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and the average absolute percentage error (AAPE) whose definitions are given
in the following:

APEi = 1
M

M∑
s=1

�̂i(s)−�i(s)
�i(s)

,

AAPEi = 1
M

M∑
s=1

∣∣∣∣∣�̂i(s)−�i(s)
�i(s)

∣∣∣∣∣ ,
where �i and �̂i are the partial dollar Deltas with respect to asset i obtained
from the full nested simulation and the proposed algorithm. In our study, i=
1, 2 andM = 1000.

The aforementioned errors of the partial dollar Deltas estimates are
reported in Table 4. From the numerical results, the proposed algorithm pro-
duces close estimates to the partial dollar Deltas. Again, the algorithm with
4000 representative policies in general produce smaller estimation errors com-
paring to the setting with 2000 representative policies. The runtime of using
the full nested simulation to calculate the partial dollar Deltas takes days due
to the ‘bump and revalue’ mechanism, while the time of using the proposed
algorithm to calculate the partial dollar Deltas are the same as those reported
in Table 3 since rerunning the nested simulation at the ‘bumped’ scenarios are
avoided.

The results in Table 4 are estimated using policies that are selected with πp =
n/N, p= 1, ...,N. As mentioned in Section 2.1, a second-stage selection with
unequal inclusion probabilities could be used to reduce the standard error of
the partial dollar Delta estimates. In the following, we will apply this two-stage
procedure to the estimation of partial dollar Deltas.

Similar to model (2.1), we assume the following linear model between the
partial dollar Deltas and the policy attributes at time 0:

�p,i(s)= ϕ′(s)xp,0 + εp(s), (4.6)

where E(εp(s))= 0, var(εp(s))= ς 2
p (s), and i= 1, 2 correspond the partial dollar

Delta of S&P500 index and S&P600 index, respectively. The goal is to identify
a form for the residual standard deviation ςp(s). As proposed in Lin and Yang
(2020), we assume a separable form for ςp(s), where ςp(s)= �(s)l(xp,0). With
this assumption, an optimal strategy is to select a balanced sample with πp =
nl(xp,0)/

∑N
p=1 l(xp,0), p= 1, ...,N. We refer the interest readers to Lin and Yang

(2020) for the detail of the two-stage selection procedure.
According to the residual diagnostics, we find the residual variations are

associated to the initial account value the most and they become significantly
more uniform after the residuals are standardized by a power function of the
initial account value. This finding can be justified intuitively as the VA liability
of policies with larger account values tend to be more sensitive to the under-
lying assets’ movements, and the deviation from the fitted value to the true
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TABLE 5

COMPARISON OF THE PARTIAL DOLLAR DELTA ESTIMATES.

S&P500 S&P600

Scenario 1 w/o second-stage w/ second-stage w/o second-stage w/ second-stage
Mean −721, 467 −728, 577 −725, 312 −727, 776
Standard
deviation

24,728 22,495 30,124 20,879

CV 3.42% 3.09% 4.15% 2.87%
Scenario 2 w/o second-stage w/ second-stage w/o second-stage w/ second-stage
Mean −714, 450 −720, 567 −719, 709 −721, 244
Standard
deviation

23,447 21,060 29,203 20,172

CV 3.28% 2.92% 4.06% 2.80%
Scenario 3 w/o second-stage w/ second-stage w/o second-stage w/ second-stage
Mean −690, 761 −694, 744 −698, 237 −698, 210
Standard
deviation

20,827 18,416 27,454 18,897

CV 3.02% 2.65% 3.93% 2.71%

value is likely to be large as well. In particular, we identify l(xp,0)=A1/5
p,0 and

use πp = nA1/5
p,0 /

∑N
p=1 A

1/5
p,0 , p= 1, ...,N, to select the second-stage representative

policies.
In order to compare the standard errors of the partial dollar Delta estimates

with and without the second-stage selection, we randomly select 50 balanced
samples where each contains 4000 policies to estimate the partial dollar Delta
of both indices in 26 weeks. The mean, standard errors and the coefficient
of variation (cv) of the estimates are reported in Table 5 for three randomly
selected scenarios. Both of the mean and standard deviation numbers are in
thousands.

From the reported numbers, the mean estimates are very close between the
two estimation methods. This is expected as the Horvitz–Thompson estimator
is design-unbiased regardless of the inclusion probabilities. However, the stan-
dard deviations of the partial dollar Deltas estimated using the second-stage
representative policies are indeed smaller. With the second-stage representa-
tive policies, the standard deviations of the estimates are reduced by around
10% and 30% for the S&P500 and S&P600 indices, respectively.

Finally, we remark that the use of the second-stage selection may be
context-specific. If the goal is to estimate portfolio-level quantities of inter-
est in one period, then incorporating the second stage may be beneficial to
increase the confidence level in the estimates. However, when using the pro-
posed algorithms for more complicated valuations such as the P&L analysis
(Section 4.5), performing residual diagnostics may not be economical for all
future time points and quantities of interest. In such cases, one may use the
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FIGURE 6: P&L distributions with different rebalance frequencies.

same inclusion probability and run the proposed algorithm multiple times in
order to reduce the estimates’ standard errors.

4.5. P&L analysis

In this subsection, we implement a dynamic hedging program with the pro-
posed algorithm to hedge the total VA liability of the synthetic portfolio
presented in Section 4.2 over a year (52 weeks). The proposed algorithm is
run with 100 selected representative outer loops, 1000 inner loops and 2000
selected representative policies. Three hedging strategies are applied and com-
pared: static hedging which means no rebalancing occurs since the beginning,
semiannually dynamic hedging which has one rebalancing occurs at the 26th
week and weekly dynamic hedging.

Following the proposed method in Section 3.3, we break the entire period
into several time intervals depending on the rebalancing frequency to calcu-
late the partial dollar Deltas. We conduct the P&L analysis, which are essential
for calculating the capital requirements, for the three aforementioned hedging
strategies. In Figure 6, the P&L distributions of the three hedging strategies
are shown. The horizontal axis represents the P&L of the total portfolio in a
year, with positive values representing profits and negative values representing
losses. The left (right) subfigure compares the P&L distribution of the static
hedging strategy to that of the semiannually (weekly) hedging strategy. As
expected, the P&L distributions of the dynamic hedging strategies are more
concentrated around zero and have a lighter left tail comparing to that of the
static hedging strategy. This implies that the insurance company will have a
lower probability of suffering a significant loss from their VA block.
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TABLE 6

SUMMARY STATISTICS OF THE P&L DISTRIBUTIONS.

Static(S) Semiannually(SA) Weekly(W)
(000’s) (000’s) S/SA (000’s) SA/W

VaR(95) 75,936 33,269 2.28 1759 18.91
CVaR(95) 152,208 75,204 2.02 11,998 6.27
VaR(97.5) 121,170 56,080 2.16 8261 6.79
CVaR(97.5) 207,699 106,958 1.94 18,838 5.68
VaR(99) 197,928 82,695 2.39 18,231 4.54
CVaR(99) 273,183 163,514 1.67 28,380 5.76

In order to quantify the tail risk, we report several summary statistics of
the P&L distributions in Table 6. In the fourth and the fifth columns, we pro-
vide the ratios of the risk measure between two different hedging strategies. On
average the semiannually dynamic hedging strategy halves the risk measures
and the weekly dynamic hedging strategy reduces those measures even further.
As a result, the insurance company will have a significant capital requirement
reduction if the dynamic hedging strategy is implemented.

4.6. Robustness of the proposed algorithm

The results in the previous subsections are obtained from a single run of the
proposed algorithm. Due to the randomness in the sampling procedure, the sets
of representative policies and representative outer loops will be different in dif-
ferent runs. This creates a sampling risk to the proposed algorithm. Therefore,
it is important to examine the robustness of the performance of the proposed
algorithm with respect to different sets of selected representative policies and
representative outer loops.

Due to the prohibitive computing time, it is impossible to implement the
full nested simulation to test the accuracy and the robustness of the algorithm.
Instead we illustrate the robustness of the proposed algorithm by running it
50 times over 52 weeks, an approach similar to bootstrapping. It will be tested
with the two settings given in Section 4.4: the number of representative outer
loops is 100 under both settings and the number of representative policies are
2000 and 4000, respectively. Each time the algorithm is run, the quantities of
interest will be estimated using different sets of representative policies and rep-
resentative outer loops. The idea here is similar to that of the cross-validation
where a model is tested multiple times with different sets of training and test-
ing data sets. If the proposed algorithm is robust with respect to different sets
of selected inputs, then one would expect similar estimated quantities over the
entire period from different runs.

The results are presented in Figures 7 and 8, where each figure corresponds
to a generic real-world economic scenario (outer loop) over the 24-week period.
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FIGURE 7: Estimates of different quantities from different runs (Scenario 1).

FIGURE 8: Estimates of different quantities from different runs (Scenario 2).
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The top and bottom three subfigures in each figure correspond to the settings
of 2000 and 4000 representative policies, respectively. The subfigures in each
row, from the left to the right, display 50 curves of the estimated partial dollar
Delta with respect to the S&P 500 index, the S&P 600 index and the estimated
total VA liability. The red dashed curves are the mean trajectories of the 50
estimated curves shifted upward and downward by 5%.

Looking at the subfigures, the estimated total liability curves from differ-
ent simulation runs are almost parallel to each other. In addition, most of the
estimated liability curves fall inside the 5% band (5% up and 5% down) of the
mean curve, implying the algorithm is robust in estimating the total liability
under both settings.

On the other hand, the estimated partial dollar Deltas curves are relatively
more volatile. This may be due to the fact that the partial dollar Deltas are
second-order quantities whose estimation errors are more sensitive than those
of the liability estimates. Nonetheless, the estimated partial dollar Deltas curves
of each scenario show the same overall trend throughout the time, and they in
general go against the total liability movements. Comparing the estimated par-
tial dollar Deltas curves between the two settings, the ones that are estimated
from 4000 representative policies clearly fall in a narrower band and the major-
ity of those estimated curves are away from the mean curves by less than 5%.

We remark that the runtime of a single simulation over 52 weeks using the
proposed algorithm with 2000 representative policies is around 2.2 h, and that
with 4000 representative policies takes about 3.6 h. With this scale of runtime,
the insurance company can not only perform frequent rebalance of the hedging
portfolio, but can also perform long-term valuation to assess existing hedg-
ing strategy on a regular basis. If more advanced computing system is used,
then the total runtime will be further reduced. Under this situation, the insur-
ance company may perform the reduced simulation algorithm multiple times
and use the averages from the multiple runs as the estimates for the quantities
of interest, which in theory contain less estimation errors. In Appendix A.1,
we demonstrate the efficiency of our method using another example with five
underlying assets.

5. FURTHER EXTENSION

In this section, we show how our proposed approach may be used to incorpo-
rate stochastic interest rates and to calculate other Greeks. For illustration, We
now assume that the stochastic short rate follows the Vasicek model and the
Greek to calculate is Rho. The extension involves a more general form of the
penalized spline regression model: the thin plate spline regression model.

5.1. A RSLN–Vasicek model

As in Section 4.1.1, we consider that policyholders’ accounts are invested into
three assets: two risky assets and the money market, and the two risky assets

https://doi.org/10.1017/asb.2020.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2020.26


944 X.S. LIN AND S. YANG

follow the system of stochastic differential equations (4.1). Now, instead of
assuming a constant interest rate, we assume that the short interest rate rt
follows a Vasicek model under the real-world measure:

drt = κP(μP
r − rt)dt+ σrdWP

r,t. (5.1)

In order to transit the interest rate dynamics from the real-world measure P

to the risk-neutral measure Q, we apply an affine transformation such that
dWQ

r,t = dWP
r,t + (λ0 + λ1rt)dt. This approach of transition between measures

has been used inmost finance literature. See Dai and Singleton (2003) for exam-
ple. As a result, the joint dynamics of the three assets under the risk-neutral
measure are ⎧⎪⎪⎨

⎪⎪⎩
dS1,t = rtS1,tdt+ σG

1,tS1,tdW
Q

1,t,

dS2,t = rtS2,tdt+ σG
2,tS2,tdW

Q

2,t,

drt = κQ(μQ
r − rt)dt+ σrdW

Q
r,t,

(5.2)

where κQ = κP + σrλ1 and μQ
r = κPμP

r −σrλ0
κP+σrλ1 .

For simplicity, we assume that dWP
r,t (dW

Q
r,t) is independent of dWP

1,t (dW
Q

1,t)
and dWP

2,t (dW
Q

2,t), and the parameters in the Vasicek model are the same under
both regimes in each risk measure. Realistically speaking, these innovation
terms should be correlated and the parameterization should be different in
different regimes. However, adding these complications should not affect the
performance of our surrogate modeling method.

For the numerical implementation, again we let the two risky assets be
the S&P500 and the S&P600 indices. The model parameters are provided in
Section 4.1.1. For the Vasicek model, we set κP = 0.8,μP = 0.02, σr = 0.1 and
λ0 = 0.01, λ1 = 0.5, which lead to the risk-neutral parameters being κQ = 0.85
and μQ = 0.01764.

5.2. Thin plate spline regression

The thin plate spline regression is a tool to approximate multivariate functions.
It is the extension of the penalized spline regression model in the multidimen-
sional case. Similar to the penalized regression spline model, the thin plate
spline regression is very flexible in capturing different nonlinear relationships
between the predictor variables and the response variable. In the following, we
adapt the notation in Section 5.5 of Wood (2017).

Consider a multivariate model

yi = g(xi)+ εi,

where xi is of d dimensions, and εi, for i= 1, ..., n, are independent error terms
with mean zero. The thin plate smoothing spline, denoted by f̂ , is an estimator
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of g that minimizes the following objective function:

||y− f ||2 + λJmd(f ), (5.3)

where y= (y1, ..., yn)′ denotes the observed response variables, f =
(f (x1), ..., f (xn))′ are the function values evaluated at the observed pre-
dictors, λ is the smoothing parameter which controls the smoothness of the
fitted surface and Jmd(f ) is the penalty term which is given by

Jmd(f )=
∫ ∑

ν1+...+νd=m

m!
ν1!...νd !

(
∂mf

∂xν11 ...∂x
νd
d

)2

dx1...dxd . (5.4)

It can be seen that the penalized spline regression model corresponds to the
case where d = 1 and m= 2. The solution to (5.3) is the thin plate smoothing
spline estimator which takes the following form:

f̂ (x)=
n∑
i=1

δiηmd(||x− xi||)+
M∑
j=1

αjφj(x), (5.5)

where δi, i= 1, ..., n, and αj, j= 1, ...,M, are the estimated coefficients; the
parameter δ satisfies the constraint φ′δ = 0with the (i, j) entry of matrix φ being
φij = φj(xi); and theM = (m+d−1

d

)
basis functions φi are linear independent poly-

nomials of degree less than m, and they span the space of functions whose Jmd
values equal zero. For instance, if m= d = 2, then the three polynomial basis
functions are φ1(x)= 1, φ2(x)= x1 and φ3(x)= x2. Further, functions ηmd are
defined as

ηmd(r)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(− 1)m+1+d/2

22m−1π d/2(m− 1)!(m− d/2)!r
2m−d log (r), for even d,

�(d/2−m)
22mπ d/2(m− 1)!r

2m−d , for odd d.

It can be seen that the thin plate smoothing spline estimator contains two parts:
the first part

∑n
i=1 δiηmd(||x− xi||) can be thought as ‘wiggliness’ part which

tries to interpolate the data and the second part
∑M

j=1 αjφj(x) can be thought as
the smoothing part which controls the smoothness of the fitted function since
its Jmd value is zero.

As mentioned in Wood (2017), the thin plate smoothing spline estimator
has many desired properties except the high computational cost. The latter
is due to the expression (5.5) in which the number of parameters equals to
the number of data points (there are M linear constraints in φ′δ = 0). This
motivates the invention of the thin plate spline regression (Wood, 2017).

The idea of the thin plate spline regression is to keep the smoothing term∑M
j=1 αjφj(x) in the estimator while it truncates the first part

∑n
i=1 δiηmd(||x−

xi||) by extracting the principal components of matrix E where Eij =
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ηmd(||xi − xj||). This procedure can be implemented efficiently using the
Lanczos iteration. For more technical details, please refer to Wood (2017).

5.3. Estimating Rho from the thin plate spline regression model

Since the account value and the interest rate are measured in different units, we
scale both variables to their z-scores prior to the fitting. In particular, given
a data set θ = (θ1, ..., θn), the z-score of element θj, j= 1, ..., n, is defined as
zj = (θj − θ̄ )/σ (θ ), where θ̄ and σ (θ), respectively, denote the mean and the
standard deviation of θ . This standardization approach has commonly been
used to avoid numerical instability issue, for example, Gan and Lin (2015). In
fact, this step is essential because the thin plate spline regression is an isotropic
smoothing approach, which assumes a unit change in one variable is equivalent
to a unit change in another variable.

For illustration purpose, we consider a case where the quantities of inter-
est are in a year (t= 1). Let Lp(s),Ap(s) again denote the VA liability and
account value of policy p at t= 1 at outer loop s. Furthermore, we denote xAp(s)
and xi(s) as the standardized account value and interest rate, respectively. We
assume the following model between Lp(s) and xp(s)= (xAp(s), xi(s)):

Lp(s)= g(xp(s))+ εs, (5.6)

where g is fitted by the thin plate spline regression. Next we illustrate the per-
formance of the thin plate regression model in fitting the VA liabilities using
some generic and typical VA policies:

• VA5: gender = female, age = 59, initial account value = $30,000, term of
maturity = 13 years, GMDB (roll up 3% per year) + GMWB (withdraw rate
= 1/13 per year), asset allocation = (0.35, 0.1, 0.55). That is, the weights of
S&P500, S&P600 and the money market are 0.35, 0.1 and 0.55, respectively.

• VA6: gender = female, age = 57, initial account value = $20,000, term of
maturity = 22 years, GMDB (roll up 3% per year) + GMMB (roll up 2% per
year), asset allocation = (0.55, 0, 0.45).

• VA7: gender = male, age = 41, initial account value = $40,000, term of matu-
rity = 25 years, GMDB (roll up 1% per year) + GMMB (ratcheting), asset
allocation = (0.35, 0.25, 0.4).

• VA8: gender = male, age = 40, initial account value = $50,000, term of matu-
rity = 23 years, GMDB (ratcheting) + GMMB (roll up 1% per year), asset
allocation = (0.25, 0.35, 0.4).

The following are the simulation configurations for calculating the Rhos
under the two methods: full simulation and thin plate regression approach:

• Full simulation: 2000 outer loops, 10,000 inner loops, three runs at +10/-
10bps on interest rates and a base case scenario in order to calculate Rhos
and the VA liabilities.
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• Thin plate spline regression: 200 selected outer loops (selected by applying
scenario clustering on R(s)= (R1(s),R2(s), i(s)), where R1(s),R2(s) and i(s)
are the cumulative returns of the S&P 500, S&P 600 indices and the interest
rate at t= 1 at outer loop s), 10,000 inner loops and one-time run for the
base case scenario at the selected outer loops to obtain the VA liabilities
to fit the model. The Rhos are calculated using the fitted thin plate spline
regression model by plugging in the +10/–10bps adjusted interest rates. For
the thin plate spline regression, we set m= 5 to prevent the fitted surface
from oscillating too much in the domain.

As described above, the inner loops for the thin plate regression approach
are run for only a 10th of the entire outer loops. In addition, the ‘bump and
revalue’ method for calculating Rhos is completely avoided. The simulation
time is therefore shortened for around 30 times for each individual VA policies.

In Figure 9, we show the performance of the thin plate regression model in
approximating the VA liabilities. Each row of these figures corresponds to an
example VA listed above. The first subfigure from the left shows the selected
training data points which are used to fit the thin plate regression model (black)
and the estimated VA liabilities from the fitted model at all outer loops (red).
The second subfigure compares the simulated VA liabilities (black) and the
estimated ones (red) at all outer loops. It can be seen that the simulated VA lia-
bilities almost lie on a surface with 10,000 inner loops simulated at each outer
loop. This finding justifies the use of the thin plate regression approach. For
better visualization, the third subfigure is the second one looking along the y-
axis (‘standardized interest rate’). It is clear that the fitted VA liabilities (red)
form a smooth surface and the simulated ones (black) are distributed around
the fitted surface. Lastly, the fourth subfigure is the QQ-plots between the sim-
ulated liabilities and the fitted ones, which clearly indicate a good performance
of the model.

On the other hand, Figure 10 shows four QQ-plots between the simulated
Rhos, which are calculated using the ‘bump and revalue’ method, and the esti-
mated Rhos, which are calculated using the thin plate spline regression model.
Again, the data points are distributed around the reference line. However, the
estimation errors for the Rhos are in general larger than those of the liabil-
ity estimates. This is expected since the Rhos are estimated directly from the
derivatives of the fitted surface which in theory contain more estimation errors
because they are second-order quantities.

Several estimation errors are reported in Table 7. The definition of the APE
and the AAPE are given in Section 4.4. From the numerical results, the relative
errors of the liability estimates are very small while those of the Rho estimates
are comparably larger, which is expected due to the aforementioned reason. In
addition, we found that the estimation errors tend to increase as the guarantee
becomesmore complicated. Finally, we remark that there is a trade-off between
the number of training points (or simulation time) and the estimation errors.
We experimented the method using 300, 400 and 500 representative outer loops
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FIGURE 9: Thin plate spline regression fitting results.

FIGURE 10: Estimated Rho versus simulated Rho.
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TABLE 7

ESTIMATION ERRORS OF THE VA LIABILITIES AND RHOS.

VA5 (%) VA6 (%) VA7 (%) VA8 (%)

Liab APE 0.0222 −0.0582 −0.0471 0.0570
Liab AAPE 0.8782 0.8800 1.0892 1.5530
Rho APE 0.6147 1.1112 −1.9851 3.0870
Rho AAPE 2.2539 2.0516 4.6393 5.8700

out of 2000, and we observed that the estimation errors in general decrease,
although not significantly, in the number of representative outer loops among
all cases.

Due to the inclusion of the Vasicek model, the inner loops need to be regen-
erated at each outer loop with a new set of initial values (asset levels, interest
rate, etc). Hence, the simulation time for each individual policy is increased sig-
nificantly. From our experiment, for each VA policy the runtime for a nested
simulation with 2000 outer loops and 10,000 inner loops takes approximately
3 h.3 This implies that the calculation of Rho for the entire outer loops will
take around 6 h using the ‘bump and revalue’ method for each individual VA
policy. Because of this, high performing computing hardware such as GPU is
required in order to perform the full simulation and assess the performance of
the proposed approach. However, the multiple of speed increasing from the
proposed approach is invariant across different computing systems (e.g., with
2% representative policies and the previous mentioned simulation parameters,
the runtime reduction would be 50× 30= 1500 times).

6. CONCLUDING REMARKS

For insurance companies that are managing large VA portfolios, hedging
against the market risk is critical to ensure solvency. The complexity of the
guarantee payoffs and the SoS nature of the nested simulation algorithm make
the dynamic hedging of large VA portfolios almost impossible in reality, espe-
cially when there are multiple underlying assets. In this paper, we apply a
surrogate model-assisted nested simulation framework to efficiently calculate
the total VA liability and the partial dollar Deltas for large VA portfolios with
multiple underlying assets over multiple time periods. The proposed algorithm
is implemented in order to perform a P&L analysis for a large synthetic VA
portfolio over a 1-year period, from which the importance and effectiveness of
the dynamic hedging strategy are demonstrated. From the numerical results, a
weekly dynamic hedging strategy can reduce various risk measures of the pre-
dictive total VA liability distribution by half from those of the static hedging
strategy. In addition to illustrate the efficiency of the proposed algorithm, we
demonstrate its robustness by running the algorithm multiple times to estimate
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various quantities. Results show that the majority of the estimated values fall
into the range of 5% around the means; the total liability estimates are more
robust than the partial dollar Delta estimates and the robustness generally
increases with the number of representative policies.

We also extend the spline regression to thin plate spline regression to esti-
mate Rho for individual VA policies under a stochastic interest rate setting.
The results show the efficiency of our approach and they may lead to various
future research directions. One of the future research topics could be incorpo-
rating more risk factors such as stochastic volatility into the model. However,
as the number of risk factors increases, the model fitting may be limited due to
the curse of dimensionality. In this case, some dimension reduction tools could
be used to reduce the number of predictors in the surrogate models. For exam-
ple, Cheng et al. (2019) applied the transfer learning to extract the key features
for each policy in order to perform clustering. Similar method may be applied
to risk factors to identify the principal risk factors. On the other hand, the pro-
posed method may be applied to calculate other quantities of interest such as
portfolio VaR and CVaR. In these cases, the spline/thin plate spline regression
may be applied with different response variables.

NOTES

1. Infographic: Variable Annuity Hedging Survey (2013). Retrieved from https://www.
towerswatson.com/en/Insights/Newsletters/Americas/americas-insights/2013/Insights-Variable-
Annuity-Hedging-Survey.

2. Variable Annuity Guaranteed Benefits Utilization (2015). Retrieved from https://
www.soa.org/globalassets/assets/files/resources/research-report/2018/variable-annuity-guaranteed
-utilization.pdf.

3. Run in parallel using the doSNOW package in R with 30 CPU cores (Intel R©Xeon R©CPU
E7-8891 v2 @3.20GHz).
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APPENDIX A

A.1. A case study with five underlying assets

In this Appendix, we apply our proposed algorithm to another simulation study in which five
underlying assets are invested as VA policyholders typically choose more than two mutual
funds. In order to do this, we assign each policy in the synthetic portfolio (Section 4.2)
a random asset allocation through fund mapping (Gan and Valdez, 2017). We conduct the
P&L analysis for the VA portfolio under different hedging strategies over 26 weeks, in which
the portfolio total liabilities and partial dollar Deltas are estimated through the efficient
nested simulation algorithm. Regarding the configuration of the efficient algorithm, we use
4000 representative policies and 200 (out of 1000) representative outer loops.
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TABLE A1

FUND MAPPING OF 10 INVESTMENT FUNDS.

Fund US large US small Intl equity Fixed income Money market

1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 0.6 0.4 0 0 0
7 0.5 0 0.5 0 0
8 0.5 0 0 0.5 0
9 0 0.3 0.7 0 0
10 0.2 0.2 0.2 0.2 0.2

A.2. Fund mapping

In practice, the policyholders may be able to choose which assets to invest from a large pool
of investable funds. This makes the hedging of the VA portfolio extremely difficult. In order
to implement the hedging program, the insurance company normally maps the underlying
investable funds to a smaller set of funds (see Gan and Valdez, 2017). This can be done by
regressing the returns of an underlying fund to those of the small set of funds.

We adapt the fundmapping strategy used in Gan and Valdez (2017) to generate the asset
allocation for all policies in the synthetic portfolio. We assume there are 10 investable funds
can be chosen by the policyholders and these 10 funds are mapped to 5 index funds: US
large, US small, International equity, Fixed income and Money market. The fund mapping
is given in Table A1.

To generate an asset allocation, we first generate a random number r from 1 to 10,
then r funds are randomly picked from the 10 funds and the asset allocation is obtained
by averaging the mapping coefficients of the selected funds. For example, suppose we have
r= 3 and the three chosen funds are fund 1, 2 and 10. Then the asset allocation of the five
funds is (0.4, 0.4, 0.2/3, 0.2/3, 0.2/3). In theory, there are up to 210 possible asset allocations
based on the 10 mapped funds given in Table A1.

A.3. Economic scenario generator

The joint dynamic of the five index funds are assumed to follow a multivariate RSLNmodel
(see Section 4.1.1). The parameters of the model are given in Table A2.

A.4. Spline modeling

In this subsection, we justify the use of the spline regression model for the five asset case.
Similar to Section 2.4, we use two generic VA policies whose attributes including asset
allocations are provided in the following:
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TABLE A2

PARAMETRIC ASSUMPTION OF THE ESG.

Fixed Money
US large US small Intl equity income market

Weekly drift (R1) 0.2134% 0.2563% 0.1604% 0.0879% 0.0508%
Weekly drift (R2) −0.0565% −0.0977% −0.1481% 0.0879% 0.0508%
Weekly vol (R1) 1.5254% 2.0039% 1.7451% 0.4341% 0.0901%
Weekly vol (R2) 3.0578% 4.0091% 3.4918% 0.4341% 0.0901%
Correlation
US large 1
US small 0.8068 1
Intl equity 0.7906 0.7025 1
Fixed income −0.1028 −0.1887 −0.1027 1
Money market 0.0226 −0.0215 −0.0007 0.1559 1
Transition prob. pR1→R2= 0.05 pR2→R1= 0.05

• VA3: gender = female, age = 55, initial account value = $120,000, term of maturity =
23 years, GMDB (roll up 2% per year) + GMWB (withdraw rate = 1/23 per year), asset
allocation = (0.275, 0.1, 0.125, 0.25, 0.25)

• VA4: gender = male, age = 65, initial account value = $150,000, term of maturity = 20
years, GMDB (ratchet), asset allocation = (0.30, 0.26, 0.34, 0.1, 0)

Figure A1 demonstrates the effectiveness of the spline regression model in the five assets
case. Again, the two subfigures on the left support the use of smooth curves to approximate
the relationship between the predicted account values and liabilities. The two subfigures on
the right show that the fitted spline models can approximate the VA liabilities with high
accuracy.

A.5. P&L analysis

We compare the P&L distribution of three strategies: static hedging, quarterly hedging
(rebalance at the 13th week) and weekly hedging (see Figure A2). The overall observation
is consistent with that in Figure 6. As the hedging becomes more frequent, the P&L
distribution becomes more spiked. The risk metrics and reduction ratios for the five asset
case are reported in Table A3. Due to the modeling assumption, the notional amounts and
reduction ratios are different from those in Table 6. However, similar to what is observed
from Table 6, all of the risk metrics have been reduced significantly when moving from
static hedging to dynamic hedging.

A.6. Robustness test

Similar to the robustness study presented in Section 4.6, here we run the proposed nested
simulation to estimate the total portfolio liabilities and partial dollar Deltas 20 times over
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TABLE A3

SUMMARY STATISTICS OF THE P&L DISTRIBUTIONS.

Static(S) Quarterly(Q) Weekly(W)
(000’s) (000’s) S/Q (000’s) Q/W

VaR(95) 4502 1564 2.88 564 2.77
CVaR(95) 5513 2507 2.20 960 2.61
VaR(97.5) 5140 2049 2.51 904 2.27
CVaR(97.5) 6234 3215 1.93 1238 2.60
VaR(99) 6092 3221 1.89 1209 2.66
CVaR(99) 7270 4340 1.68 1545 2.81

FIGURE A1: Spline regression for VA policies with five underlying assets.

26-week period to demonstrate the robustness of the algorithm for the five assets case. Two
generic real-world scenarios are used for illustration purpose. The overall observation is
consistent with that in Sectoin 4.6; the liability trajectories are almost parallel to each other
across different simulation runs while the partial dollar Delta paths are more wiggly. Most
of the curves, however, fall in the 5% range around the mean curves (see Figures A3 and A4).
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FIGURE A2: P&L distributions with different rebalance frequencies.

FIGURE A3: Estimates of different quantities from different runs (Scenario 1).
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FIGURE A4: Estimates of different quantities from different runs (Scenario 2).
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