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Abstract

In the underwriting and pricing of nonlife insurance

products, it is essential for the insurer to utilize both

policyholder information and claim history to ensure

profitability and proper risk management. In this paper,

we apply a flexible regression model with random effects,

called the Mixed Logit‐weighted Reduced Mixture‐of‐
Experts, which leverages both policyholder information

and their claim history, to categorize policyholders into

groups with similar risk profiles, and to determine a

premium that accurately captures the unobserved risks.

Estimates of model parameters and the posterior

distribution of random effects can be obtained by a

stochastic variational algorithm, which is numerically

efficient and scalable to large insurance portfolios. Our

proposed framework is shown to outperform the classical

benchmark models (Logistic and Lognormal GL(M)M) in

terms of goodness‐of‐fit to data, while offering intuitive

and interpretable characterization of policyholders' risk

profiles to adequately reflect their claim history.
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1 | INTRODUCTION

In the underwriting and pricing of nonlife insurance products, policyholders' information, or
covariates, is typically a useful indicator of their risk level. Using automobile insurance as an
example, driver's age has been empirically observed as an important factor on both accident
rates and frailties (see, e.g., Kelly & Nielson, 2006; Zhang et al., 1998). Similarly, there usually
exists certain dependence structure between claim frequency/severity and a driver's annual
mileage (the average distance driven per year), see, for example, Bailey and Simon (1960),
Vickrey (1968), Edlin (1999), and Lemaire et al. (2016). Such information is often leveraged by
the insurer to make better decisions in risk classification and ratemaking: the former categorizes
policyholders into relatively homogeneous groups with similar risk profiles, while the latter
determines a premium to be charged for insurance protection.

For new policyholders, risk classification and ratemaking are usually done on an a priori basis,
whereby only policyholder covariates are utilized. A widely used approach is to incorporate the
covariates as regressors in the Generalized Linear Models (GLMs) for modeling claim frequency and/
or severity, see, for example, McCullagh and Nelder (1989), De Jong and Heller (2008), and Ohlsson
and Johansson (2010). However, a priori risk classification and ratemaking may fail to capture certain
unmeasurable or unobserved risk factors, for example, the aggressiveness when driving, which
cannot be reflected by covariates alone (see, e.g., Antonio & Beirlant, 2007; Antonio & Valdez, 2012;
Denuit et al., 2007). These unmeasurable or unobserved risk factors are an additional source of
heterogeneity among seemingly homogeneous policyholders who have very similar (or even exactly
the same) covariate information. Still, one may reasonably assume that such latent risk factors can be
reflected by and observed from policyholders' claim history, that is, riskier policyholders tend to have
a higher number of claims and/or larger severities. As time goes by, the insurer gains additional,
up‐to‐date insights into the policyholder's risk profile by observing their claim history, including both
frequency and severity. At policy renewal, the insurer may decide to update their decision of risk
classification and ratemaking on an a posteriori basis, whereby both policyholder covariates and their
individual claim history are utilized. A widely known and used approach for a posteriori risk
classification and ratemaking is the Bonus‐Malus System (BMS), which categorizes policyholders into
risk groups with appropriate premia based on their claim counts in the previous policy year (see, e.g.,
Denuit et al., 2007; Lemaire, 1995, for an introduction to BMS).

For the sake of profitability and risk management, it is essential for the insurer to design a good
framework for a posteriori risk classification and ratemaking. As mentioned above, a priori
information alone may be insufficient to accurately capture latent, heterogeneous risks of
individual policyholders, which could lead to mispricing (i.e., overpricing safer policyholders while
underpricing riskier ones) and potentially large losses for the insurer. By combining information
from both covariates and claim history for a posteriori risk classification and ratemaking, the
insurer may be able to offer competitive pricing for low‐risk policyholders, while also appropriately
charging high‐risk policyholders so that their claims are expected to be covered to ensure the
insurer's profitability in the long run. Besides, on a portfolio level, the insurer gains additional
insights into the risk segmentation and the categorization of policyholders with similar risk profiles,
which may be particularly helpful for risk management purposes such as identifying and ceding
losses from high‐risk policyholders to avoid tail risks (see, e.g., Chapados et al., 2008).

Consequently, the problem of a posteriori risk classification and ratemaking has led to an
abundance of literature from actuarial researchers (see Section 2 for a detailed review). Due to the
inherent differences between a priori information and latent risk factors (e.g., observable vs.
unobservable, typically fixed vs. potentially time‐varying, etc.), they are usually analyzed andmodeled
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with different methodologies. While regression models have been the predominant method for
incorporating a priori information such as policyholder covariates, random/mixed effects seem to be a
popular approach for modeling heterogeneous latent risk factors which are manifested in the
policyholder's claim history. In short, latent risk factors of individual policyholders are assumed to be
random variables, rather than fixed values, generated from some unknown distribution which is
typically chosen to be normal. In contrast, policyholder information is treated as fixed effects because
they are typically known in advance and are usually fixed. In this formulation, the most important
assumption is that policyholder‐level random effects are shared across multiple policy years for the
same individual, which creates certain dependency structure between past and future claim
experiences. As a result, the claim history of policyholders can be utilized by the insurer for a
posteriori risk classification and ratemaking in the upcoming policy year. More specifically, the
problem of a posteriori risk classification and ratemaking is effectively transformed into the following
two problems to be solved simultaneously: (i) the estimation of regression coefficients of the fixed
effects, and (ii) the inference of the posterior distribution of random effects given the policyholder's
claim history. In the case of normal random effects, this is equivalent to finding the posterior mean
and standard deviation. A classical example is the addition of normal random effects into GLM
which results in the Generalized Linear Mixed Models (GLMMs), which has been widely used in
statistical problems such as longitudinal data analysis (see, e.g., Diggle et al., 2002; Fitzmaurice
et al., 2012), as well as previous works on a posteriori risk classification and ratemaking (see also
Section 2).

In this paper, we propose to apply a flexible regression modeling framework, called the
Mixed Logit‐weighted Reduced Mixture‐of‐Experts (Mixed LRMoE), to the problem of a posteriori
risk classification and ratemaking. On a high level, our work builds upon the Logit‐weighted
Reduced Mixture‐of‐Experts (LRMoE) framework which uses policyholder covariates as
regressors in a flexible and interpretable finite mixture structure for modeling insurance
losses (see Section 3.1 for an overview). The Mixed LRMoE is first introduced Fung and Tseung
(2022) to incorporate random effects into the LRMoE model. As a general modeling framework,
the Mixed LRMoE is flexible enough to resemble any complex characteristics inherited from
any mixed effects models, including the joint distribution, the regression pattern, the random
intercept, and the random slope, to an arbitrary degree of accuracy (see the discussion of
denseness in Section 3.3 and Fung & Tseung, 2022). Such theoretical flexibility renders the
Mixed LRMoE a powerful tool for modeling complex underlying structures typically observed
in insurance data sets (e.g., multimodality and heavy tails), which is essential for accurately
describing different policyholders' claim behaviors.

In the context of a posteriori risk classification and ratemaking, we propose to add policyholder‐
level random effects which are shared across different policy years. By calibrating our model on
both policyholder information and their claim history, we gain insights into the impacts of both
fixed and random effects on the distribution of claim frequency and/or severity, which are then
leveraged for a posteriori risk classification and ratemaking. While our treatment of the fixed and
random effects is similar to that in many previous works on the same problem, our proposed
methodology provides an alternative approach to this classical problem and offers additional
insights into policyholders' risk profiles given their claim history. Using a real automobile insurance
data set, we empirically investigate and compare the performance of Mixed LRMoE against various
benchmark models for the problem of a posteriori risk classification and ratemaking (see Section 5).
The Mixed LRMoE is shown to outperform the benchmark models (e.g., Logistic and Lognormal
GL(M)M) in terms of goodness‐of‐fit to data, while offering fair and interpretable risk classification
and ratemaking which adequately reflect policyholders' claim history. We also provide a brief
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discussion on the economic and business implications of applying the Mixed LRMoE model in
practice. Besides addressing the problem of a posteriori risk classification and ratemaking
from a practical perspective, we also provide technical details of a stochastic variational
Expectation–Conditional–Maximization (ECM) algorithm for the simultaneous estimation of
model parameters and inference of the posterior distribution of random effects (see Section 4),
which complements the theoretical development in Fung and Tseung (2022). The algorithm is also
numerically efficient and scalable, which greatly boosts the applicability of our proposed Mixed
LRMoE framework to large, multiyear insurance portfolio, as well as to more general modeling
problems with one or multiple random effects.

The remainder of this paper is organized as follows. Section 2 contains a short literature review
for previous works on a posteriori risk classification and ratemaking, as well as estimation methods
for random effects models. Section 3 provides an overview of the LRMoE model and introduces the
Mixed LRMoE in the general formulation and its adaptation for the problem of a posteriori risk
classification and ratemaking. Then, Section 4 develops a stochastic variational ECM algorithm for
estimating model parameters and inferring the posterior distribution of random effects. Next,
Section 5 contains an application of our proposed framework on a real insurance data set. Finally,
Section 6 concludes with a brief discussion and outlook for future research directions. In the
Supporting Information, Appendix A contains technical details of the stochastic variational ECM
algorithm, and Appendix B presents two simulation studies which aim to numerically illustrate and
examine the proposed estimation algorithm.

2 | LITERATURE REVIEW

In this section, we review the existing literature on two fronts: the methodological development
on a posteriori risk classification and ratemaking, and various algorithms for parameter
estimation in the presence of random effects. We also briefly address how the present paper
relates to and differs from previous works.

2.1 | A posteriori risk classification and ratemaking

The use of claim history for a posteriori risk classification and ratemaking is a classical problem
which has been studied in depth in the actuarial literature. Early works in credibility theory, such
as Bühlmann (1967), Norberg (1979), and Bühlmann and Gisler (2005), assume some common
parameters underlying the distribution of insurance losses. One uses the observed claim history to
infer the posterior distribution of the parameters, which then yields the posterior distribution of
future losses given the history. As for the widely used BMS mentioned in Section 1, a
comprehensive introduction can be found in, for example, Lemaire (1995) and Denuit et al. (2007).
On the basis of the claim history (typically the number of claims in the year before policy renewal),
policyholders are (re)classified into one of a number of prespecified risk classes according to certain
transition rules, whereby each risk class corresponds to a premium relativity which reflects the
level of risk. However, classical formulations of credibility theory (e.g., greatest accuracy credibility)
and BMS (e.g., rate tables based solely on the claim counts in the previous policy year) do not
consider covariate information, which is usually deemed as important indicators of policyholders'
risk characteristics. To this end, there has been an abundance of literature that aims to apply more
sophisticated statistical models, which typically involve a regression component, to the problem of a
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posteriori risk classification and ratemaking. Most notably, random effects have been a popular
choice for modeling the temporal dependence between past and future claim behavior. For
example, many authors have considered adding random effects in GLM which results in GLMM,
see, for example, Dionne and Vanasse (1989), Dionne and Vanasse (1992), Pinquet (1998), Frangos
and Vrontos (2001), Boucher and Denuit (2006), and Antonio and Beirlant (2007), whereby the
posterior distribution of random effects given claim history is used for prediction. Another
important consideration is the dependence structure between multiple coverages which is common
in automobile insurance, see, for example, Pinquet (1998), Gómez‐Déniz et al. (2008), Boucher et al.
(2009), Gómez‐Déniz (2016), and Tzougas and di Cerchiara (2021) for using shared random effects
to model such dependence. Other researchers have also investigated the potential dependence
random effects on policyholder covariates (e.g., Boucher & Denuit, 2006, or dynamic random
effects, e.g., Bolancé et al., 2007). Besides, while some works mainly focus on claim frequency
alone, many researchers have also attempted to incorporate claim severity and its dependence
structure with frequency, for example, Ni et al. (2014), Park et al. (2018), Oh et al. (2020), and
Oh et al. (2022). Furthermore, to overcome certain restrictive assumptions in GLM, finite mixture
models have recently become popular in a posteriori risk classification and ratemaking for more
flexible and accurate modeling of claim frequency and severity, as used in Bermúdez and Karlis
(2012), Tzougas et al. (2014), Tzougas et al. (2018), and Tzougas and di Cerchiara (2021).

Similar to many papers cited above, the Mixed LRMoE model uses policyholder covariates as
fixed effects in a regression framework. The addition of random effects introduces dependence
between observations across multiple policy years of the same policyholder, from which the
posterior distribution of random effects is inferred and then utilized for a posteriori risk
classification and ratemaking. Our work also intersects with mixture model‐based approaches, such
as Tzougas and di Cerchiara (2021), in that the Mixed LRMoE model allows for more flexible and
accurate modeling of the loss distribution compared with classical regression models, such as GLM.
In the broader class of general mixture‐of‐experts (MoE) models, our work is closely related to Yau
et al. (2003), Ng and McLachlan (2007), and Ng and McLachlan (2014), where random effects are
also incorporated to account for heterogeneity observed in real data. However, the Mixed LRMoE
presented in this paper has an arguably simpler model structure.

2.2 | Estimation algorithms

Under certain assumptions such as the classical conjugate pairs of prior‐posterior distributions,
there exist closed‐form solutions for model parameters and the posterior distribution of random
effects, which also yields nice, closed‐form results for a posteriori premium, see, for example,
Chap. 13 of Klugman et al. (2012) for the Gamma‐Poisson case, and Denuit and Lu (2021) for
the Wishart‐Gamma case. However, in many moderately complex regression modeling
frameworks with random effects, parameter estimation and inference may be challenging due
to typically intractable likelihood functions. As a classical approach, one may consider applying
the Best Linear Unbiased Predictor (BLUP) procedure for obtaining the realization of random
effects, combined with Restricted/Residual Maximum Likelihood for estimating the model
parameters, see, for example, Henderson (1973), Henderson (1975), McLean et al. (1991) for
Linear Mixed Models, McGilchrist (1994) and McGilchrist and Yau (1995) for GLMMs, and Yau
et al. (2003) and Ng and McLachlan (2007) for MoE models. Alternatively, one may choose to
estimate the parameters from the marginal likelihood by numerically integrating out the
random effects using, for example, the Gauss–Hermite Quadrature (e.g., Pechon et al., 2019;
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Pinheiro & Bates, 1995) or the Laplace approximation (e.g., Breslow & Clayton, 1993;
Raudenbush et al., 2000). One may also apply Markov Chain Monte Carlo (MCMC) methods
(e.g., Booth & Hobert, 1999; Brooks et al., 2011; Zeger & Karim, 1991) for generating samples of
random effects from their posterior distribution given the observed data, based on which the
posterior of model parameters can also be obtained. A comparison of these methods for models
with random effects can be found in Browne and Draper (2006). However, the aforementioned
methods may not be suitable for the problem of a posteriori risk classification and ratemaking.
For example, when working with large insurance portfolios, it is desirable to develop an
algorithm which scales with the number of random effects and the size of data sets, which may
be difficult for numerical integration or MCMC methods. Also, it is desirable to obtain
posterior distributions, rather than point estimates, of certain quantities of interest (e.g., a
posteriori premium based on different premium principles), which are not produced by either
BLUP or numerical integration methods.

Therefore, in place of these classical methods, we opt to use variational inference (VI)
primarily for its superior speed and scalability for large insurance portfolios. Besides estimating
model parameters with computational efficiency, our stochastic variational ECM algorithm also
directly produces the approximated posterior distribution of random effects for each individual
policyholder, which is key for a posteriori risk classification and ratemaking for future policy
years. Further, while VI methods have been widely used in the machine learning community as
an alternative to computationally more expensive methods, such as MCMC (Blei et al., 2017),
there have been few use cases of VI in the actuarial literature (see, e.g., Gomes et al., 2021; Kim
et al., 2022; Kuo, 2020). We hope our paper serves as another example to showcase the potentials
of VI methods for analyzing the ever‐growing amount of data available for insurance applications.

3 | MODELING FRAMEWORK

In this section, we first give an overview of the LRMoE modeling framework, including model
formulation, theoretical properties, implementation, and application in actuarial contexts.
Then, we extend the LRMoE model with random effects to account for the temporal
dependence across different policy years. Finally, we provide some discussion on the Mixed
LRMoE specifically for the application of a posteriori risk classification and ratemaking.

3.1 | Overview of LRMoE

The LRMoE model first introduced in Fung et al. (2019b) is formulated as follows. Let xi denote
a P‐dimensional vector of covariates of policyholder i, such as demographic information and
vehicle specification. Given xi, the policyholder is classified into one of g latent risk classes by
the logit gating function

 ( )
( )

x α
α x

α x
π j g( ; ) =

exp

exp
, = 1, 2, …, ,j i

j
T

i

j
g

j
T

i′=1 ′

(1)

where αj is a vector of regression coefficients for latent class j. Within each latent class j, a
D‐dimensional vector of response variable(s) yi such as claim frequency and severity is modeled
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by an expert function y ψf ( ; )j i j , where ψj denotes the parameters of the expert function.

Consequently, the likelihood function for a portfolio of n policyholders is given by

 











α Ψ X Y x α y ψL π f( , ; , ) = ( ; ) ( ; ) ,

i

n

j

g

j i j i j
=1 =1

(2)

where α α α α= ( , , …, )
T T

g
T T

1 2 andΨ ψ ψ ψ= { , , …, }g1 2 are the model parameters to estimate given the
observed data X Y x y i n( , ) = {( , ) : = 1, 2, …, }i i . We assume conditional independence among all
dimensions in yi given the latent class j such that y ψ ψf f y( ; ) = ( ; )j i j d

D
jd id jd=1 for d D= 1, 2, …, ,

where yid is the dth dimension in yi and f jd is the expert function for yid with parameters ψjd.
The LRMoE model can be viewed as a simplification of the general MoE model (see, e.g., Jordan

& Jacobs, 1994), whereby the gating function is restricted to multiple logistic functions and the
regression on covariates in the expert functions is eliminated. It is shown in Fung et al. (2019b) that
such simplification will not reduce modeling flexibility, provided the expert functions satisfy some
mild conditions. In other words, the LRMoE model is capable of achieving the same level of
goodness‐of‐fit as the general MoE with a much simpler model structure. In the meantime, the
simplified model structure of LRMoE provides the following intuitive model interpretation in
insurance contexts. On the basis of covariates xi which are indicative of individual risk profiles,
policyholders are classified into latent risk groups by a commonly used function for classification
problems. Within the same latent group j, the individual risk profiles are naturally assumed to be
homogeneous by sharing the same expert function y ψf ( ; )j i j whose parameters are independent of

policyholder information.

Thanks to its flexibility and interpretability, the LRMoE model has been applied to many
actuarial modeling problems. Fung et al. (2019a) used it for modeling correlated claim frequencies
of two types of automobile insurance coverage, where the LRMoE mixture of Erlang Count experts
is shown to outperform the negative binomial GLM (with and without zero inflation). Fung et al.
(2022) discussed fitting LRMoE to censored and truncated data which are commonly encountered
when modeling claim severity or reporting delays. The extended model is applied to insurance
pricing with policy deductibles and prediction of incurred but not reported claims. In Fung et al.
(2022), the LRMoE is further extended to include composite or slicing expert functions which
account for multimodal and heavy‐tailed distributions. For the implementation of LRMoE,
software packages written in R (Tseung et al., 2020) and in Julia (Tseung et al., 2021) are readily
available for use, which offer a wide selection of expert functions commonly used for actuarial
modeling and utility functions for predictive analysis and model visualization.

As with many mixture models, parameter estimation for LRMoE is done using the
ECM algorithm (see, e.g., Dempster et al., 1977; McLachlan & Peel, 2004). Details of the ECM
algorithm for LRMoE can be found in the papers cited above. For Mixed LRMoE, we combine
the same ECM algorithm with VI methods to deal with intractable marginal likelihood due to
the presence of random effects, which will be presented in Section 4.

3.2 | Formulation of Mixed LRMoE

In the context of a posteriori risk classification and ratemaking, it is important to utilize
information about policyholders' claim history to make predictions for the upcoming policy years.
In effect, one takes advantage of the dependence structure in the claim history across different
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policy years generated by the same policyholder. Note that such dependence structure has not been
accounted for by the LRMoE model, due to the assumption of independence between observations
x y( , )i i as indicated by the likelihood function in Equation (2). To incorporate dependence between
observations across different policy years, we propose to add policyholder‐level random effects to
the LRMoEmodel, which results in the Mixed LRMoE model. In this subsection, we first formulate
the Mixed LRMoE in a general setting following Fung and Tseung (2022), and then discuss the
special case with only policyholder‐level random effects.

Assume each observation x y( , )i i is equipped with a vector of random effects
w w w w= ( , , …, )i i i iL1 2 , where L is the total number of levels of different random effects. For
the lth level of random effect, l L= 1, 2, …, , we assume there are in total Sl factors
w{ }l

s
s S

( )
=1,2, …, l

, and each observation i is mapped into one of these factors by a known function

⋅c ( )l such that w w w= =il i l l
s

′
( ) if c i c i s( ) = ( ′) =l l for s S= 1, 2, …, l. Equivalently, the mapping

function c i( )l can be represented by an Sl‐vector til where exactly the c i( )l th element is one and
the others are zero (see also Figure 2 for an example).

Letw w= { }l
s

l L s S
( )

=1,2, …, ; =1,2, …, l
denote the collection of random effects across all levels and all

factors, which are assumed to be independent across l and s. We also assume their distribution and
density functions are prespecified by ⋅Φ ( ) and ⋅ϕ ( ) with no extra parameters such that

 ( ) ( )Φ w ϕ ww ϕ w( ) = Φ and ( ) = ,
l

L

s

S

l l
s

l

L

s

S

l l
s

=1 =1

( )

=1 =1

( )
l l

(3)

where ⋅Φ ( )l and ⋅ϕ ( )l are, respectively, the distribution and density functions for the lth level of
random effects w{ }l

s
s S

( )
=1,2, …, l

for l L= 1, 2, …, . In general, one may specify a priori any

distribution for ⋅Φ ( ), but a common choice for random effects is the normal distribution. In this
paper, we will set each ⋅Φ ( )l to be a standard normal distribution for l L= 1, 2, …, , which
results in a multivariate standard normal distribution for ⋅Φ ( ), since all levels of the random
effects w{ }l

s
s S

( )
=1,2, …, l

are marginally standard normal and are mutually independent. More
discussions on the choice of ⋅Φ ( ) are given in Section 3.3.

Similar to the covariates xi, we assume the random effects wi influences only the gating
function. In addition, we assume there are coefficients βj, j g= 1, 2, …, , multiplied to the

random effects, which serve as scaling factors that also affect the gating functions and add to
the modeling flexibility by compensating the lack of parameters in ⋅Φ ( ). Consequently, for the
Mixed LRMoE model, the gating function, given covariates xi, realization of random effects wi,
and parameters α β( , ) is specified by

 ( )
( )

x w α β
α x β w

α x β w
π j g( , ; , ) =

exp +

exp +
, = 1, 2, …, .j i i

j
T

i j
T

i

j
g

j
T

i j
T

i′=1 ′ ′

(4)

Unlike the gating functions, the expert functions are assumed to be independent of both
the covariates xi and the random effects wi, as illustrated in Figure 1. Note this is the same
assumption used in the LRMoE model without random effects. Consequently, given the
realization of random effects w, the likelihood function of Mixed LRMoE is

 











α β Ψ X Y w x w α β y ψL π f˜( , , ; , , ) = ( , ; , ) ( ; ) ,

i

n

j

g

j i i j i j
=1 =1

(5)
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while the likelihood with random effects integrated out is given by

⋅α β Ψ X Y α β Ψ X Y w ϕ w w α β Ψ X Y wL L d L( , , ; , ) = ˜( , , ; , , ) × ( ) = ~ [ ˜( , , ; , , )],w ϕ ( )

(6)

where  wd dw= l
L

s
S

l
s

=1 =1
( )l and the subscript of the expectation operator indicates the

expectation is calculated by integrating out w with respect to ⋅ϕ ( ).
We conclude the introduction of Mixed LRMoE with a remark on its formulation and a

comparison with previous works which attempt to incorporate random effects in the general
MoE framework. In the statistical literature, Yau et al. (2003) propose a two‐component MoE
with random effects in both the logit gating function and normal experts. Ng and McLachlan
(2007) consider a similar framework but uses Bernoulli experts for a classification problem,
while Ng and McLachlan (2014) add random effects only to the expert functions. For the
application in insurance contexts, we focus on a special subclass of Mixed MoE model where
random effects only influence the latent class probabilities through the gating function,
while the expert functions are kept independent of covariates and random effects. Besides
possessing the same level of modeling flexibility (see Section 3.3), this simplified model
structure leads to an easier implementation of parameter estimation. As will be evident in
Section 4, since the estimation procedures of gating and expert functions can be separated to
some extent, the Mixed LRMoE model actually allows for more flexible choices and
combinations of expert functions which are customized to different modeling problems (see
also Section 6). By restricting the random effects to only the gating functions, we are able to
develop a unified estimation algorithm which caters for different choices and combinations
of expert functions.

3.3 | Denseness property of the Mixed LRMoE

The most important property of the Mixed LRMoE is the denseness property, which justifies the
flexibility of the proposed model in capturing a broad range of complex multilevel data
characteristics. While the theoretical result has been rigorously developed by Fung and Tseung

FIGURE 1 Model structure of a three‐class Mixed LRMoE model. The shaded boxes indicate the addition of
random effects to the original LRMoE model to account for policyholder‐level individual risks and temporal
dependence among different policy years for the same policyholder. LRMoE, Logit‐weighted Reduced Mixture‐
of‐Experts.
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(2022), we hereby briefly describe and interpret the result without extensive mathematical
treatments.

Let Y α β Ψ XF ( ; , , ) be the joint distribution function of Y given X under the proposed
Mixed LRMoE model, which is given by

  











Y α β Ψ X x w α β y ψ ϕ w wF π F d( ; , , ) = ( , ; , ) ( ; ) × ( ) ,

i

n

j

g

j i i j i j
=1 =1

(7)

where y ψF ( ; )j i j is the distribution function of y ψf ( ; )j i j . Also, denote Y XH ( ) as the joint

distribution of Y given X under an arbitrary mixed effects model. Under some mild
regularity conditions, Fung and Tseung (2022) prove that for any target mixed effects model

Y XH ( ), there exists a sequence of model parameters α β Ψ{( , , )}s s s
s

[ ] [ ] [ ]
=1,2, … (note that the

number of latent risk classes g may increase as s increases) such that Y α β Ψ XF ( ; , , )s s s[ ] [ ] [ ]

converges in distribution to Y XH ( ) uniformly on X as → ∞s . Note that the target mixed
effects model Y XH ( ) may carry very complicated model characteristics, including but not
limited to the joint loss distribution (e.g., distributional multimodality and dependence
across business lines), the regression link (e.g., nonlinear or interactive influence of
policyholder attributes to the losses), the random intercept (e.g., latent impacts to each
policyholder), and the random slope (e.g., random effects interact with policyholder
attributes). As a result, the denseness theorem justifies the versatility of the proposed Mixed
LRMoE in simultaneously capturing all these features to an arbitrary degree of accuracy.
Moreover, the denseness theorem only requires that ⋅Φ ( ) is continuous. Hence, one has the
freedom to choose any continuous distributions for the random effects without impeding
the flexibility of the Mixed LRMoE. Motivated by the computational convenience (see
Section 4), we select ⋅Φ ( )l (Equation 3) to be a standard normal distribution, such that ⋅Φ ( )

follows a multivariate standard normal distribution.

3.4 | A posteriori risk classification and ratemaking

In Section 3.2, the Mixed LRMoE modeling framework has been introduced in its most general

form. The application of a posteriori risk classification and ratemaking is special case when L = 1,

that is, there are policyholder‐level random effects w{ }
s

s N1
( )

=1,2, …, 0
. Consequently, the sample size n

is the total number of policy year observations out of N0 unique policyholders, such that each factor

in w{ }
s

s N1
( )

=1,2, …, 0
represents the individual risk of one unique policyholder.

An illustration for one such policyholder with 3 years of claim history is shown in Figure 2.
Suppose we would like to conduct a posteriori risk classification and ratemaking for year 3 based on
the previous 2 years. The claim history is represented by two rows in the data set, that
is, x w y( , , )1 1 1 and x w y( , , )2 2 2 , while the future claim to be predicted is represented by yet another
row of data x w y( , , )3 3 3 . Since these three observations are generated by the same policyholder,
w w w w= = = ( )1 2 3 1

(1) , assuming this individual is encoded as the first unique policyholder in the
portfolio (thus the superscript for w( )1

(1) ).
Similar to many previous works such as those cited in Section 1, our paper also utilizes

random effects for modeling temporal dependence among different policy years of the same

10 | TSEUNG ET AL.
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policyholder, but we have done so in a slightly different fashion. Many previous papers have
proposed mixed models whereby the certain model parameters are shared across different
observations. For example, one may assume the claim frequency Nit of policyholder i in the tth
year follows θPoisson( )it , and then uses the observed data N t{ : = 1, 2, … }it to infer the
posterior of the intensity parameter. In contrast, our formulation of the Mixed LRMoE treats
the random effects w in a similar way as the fixed effects xi, which essentially serve as a
regressor in the gating function. Rather than imposing certain changing dynamics on model
parameters, the formulation of Mixed LRMoE actually resembles, to a large extent, classical
approaches of longitudinal data modeling with random effects, see, for example, Diggle et al.
(2002) and Fitzmaurice et al. (2012).

While the denseness property guarantees the modeling flexibility of Mixed LRMoE,
some previous works in a posteriori risk classification and ratemaking have investigated
other formulations and assumptions of random effects, for example, Boucher and Denuit
(2006) considered the potential dependence of random effects on the covariates, and
Bolancé et al. (2007) imposed temporal dynamics on the random effects. In contrast, our
proposed framework makes more simplified assumptions, that is, independence between
random effects and covariates, as well as the same realization of random effects over
different policy years. Relaxing these assumptions will lead to different interpretations of
the model at various degrees of complexity, which consequently may (or may not) result in
significantly different risk classification and ratemaking decisions. In this paper, we will
focus on the formulation of Mixed LRMoE presented in Section 3.4 and leave these model
extensions for future research.

In practice, a framework for a posteriori risk classification and ratemaking should
account for time‐varying covariates, such as the policyholder's age. Consider the example in
Figure 2 for a policyholder with 2 years of history whereby their age is increasing annually
(say, 30 and 31 years old). In the Mixed LRMoE, this policyholder's experience is
represented by two separate rows with covariates x x,1 2 and responses y y,1 2. The values for
age in x x,1 2 are correspondingly filled with 30 and 31. However, these two rows of data are
not independent, because they are describing the same policyholder (thus the same factor in
the policyholder‐level random effect). In particular, the corresponding random effects are

FIGURE 2 Example of a Mixed LRMoE model with L = 1 level of random effects on N0 unique policyholders. A
policyholder with 3 years of claim history is represented by three separate yet dependent observations in the data set,
where the dependence is modeled by sharing the same factor in the random effect w. Assuming this individual is
encoded as the first factorw1

(1), the mapping vectors are t t t= = = (1, 0, 0, …, 0)11 21 31 so thatw w w w= = = ( )1 2 3 1
(1)

are the same 1‐length vector of random effect. This can be equivalently described by the mapping function
c c c(1) = (2) = (3) = 11 1 1 . Note that some elements in the covariates xi may change over time, such as the
policyholder's age. LRMoE, Logit‐weighted Reduced Mixture‐of‐Experts.

TSEUNG ET AL. | 11

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.12436 by U

niversity O
f T

oronto L
ibraries, W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



w w w= = ( )1 2 1
(1) , where w1

(1) indicates the unobserved risks of this policyholder. When
making predictions for the upcoming policy year, we would represent the same
policyholder by yet another row of data, say with covariates x3 and random effects w3.
The age in x3 will be valued at 32, while w w= ( )3 1

(1) remains the same for the same
policyholder, which creates dependency between the past and the future. In short, our
framework treats time‐varying covariates as regular ones, whose fixed effects are reflected
by the corresponding entries in the regression coefficients α, while the temporal
dependence among claim experiences is accounted for by the random effects w.

Another practical issue in a posteriori risk classification and ratemaking is the varying
length of available claim history per policyholder, in that an insurer's portfolio rarely remains
unchanged as policyholders come in and out of the insured population. Similar to standard
mixed effects models, our framework is able to handle imbalanced data, that is, policyholders
with varying lengths of claim history. As detailed in the preceding example, policyholders with
a longer claim history will have more rows of x y( , )i i to represent their claim history, all of
which share the same policyholder‐level random effects. Naturally, a longer claim history is
desirable for obtaining more accurate posterior inference on the random effects, which may
yield better results for a posteriori risk classification and ratemaking.

4 | PARAMETER ESTIMATION

In this section, we develop a stochastic variational ECM algorithm for estimating model
parameters and for inferring the posterior distribution of random effects for Mixed LRMoE.
We first present an overview of VI methods in general, and then provide details of the
implementation for Mixed LRMoE with one single type of random effect. Discussion on
model identifiability, model selection, and generalization of this algorithm is given at the
end of this section.

4.1 | Overview of variational inference

In this subsection, we first provide an overview and motivation of VI methods. We start with
the exact posterior distribution of random effects w

∝  











p w α β Ψ X Y x w α β y ψ ϕ wπ f( ; , , , ) ( , ; , ) ( ; ) × ( ),

i

n

j

g

j i i j i j
=1 =1

(8)

which may be complicated due to the dependence on both the model parameters α β Ψ( , , )

and the observed data X Y( , ). To circumvent this numerical challenge, we assume the exact
posterior can be reasonably approximated by a variational distribution q w Θ( ; ) where Θ is
the variational parameters, which are assumed to be independent of the model parameters
and observed data. This produces a numerically more tractable lower bound of the marginal
likelihood in Equation (6), also known as the Evidence Lower Bound (ELBO) in the VI
literature. More specifically, by taking the logarithm of Equation (6), utilizing the
variational distribution, and applying Jensen's inequality, we obtain the following ELBO of
the marginal loglikelihood.

12 | TSEUNG ET AL.
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≥

≔

⋅

⋅






α β Ψ X Y α β Ψ X Y w ϕ w w

α β Ψ X Y w q w Θ w

α β Ψ X Y w ϕ w q w Θ

α β Ψ X Y w q w Θ ϕ w

α β Ψ Θ X Y

L d

L d

L

L

ℓ( , , ; , ) = log ˜( , , ; , , ) × ( )

= log ˜( , , ; , , ) × × ( ; )

~ [log ˜( , , ; , , ) + log ( ) − log ( ; )]

= ~ [log ˜( , , ; , , )] − KL[ ( ; ) ( )]

ℓ̲( , , , ; , ),

ϕ w

q w Θ

w q Θ

w q Θ

( )

( ; )

( ; )

( ; )

(9)

where q w Θ ϕ wKL[ ( ; ) ( )] is the Kullback–Leibler (KL) divergence between the variational
posterior q w Θ( ; ) and the prior ϕ w( ) of random effects.

Instead of directly maximizing the marginal likelihood in Equation (6), we aim to maximize the
ELBO α β Ψ Θ X Yℓ( , , , ; , ) in Equation (9), hoping that the optimal parameters which maximize
this lower bound are close to the true optimal parameters which maximize the actual loglikelihood.
The main advantage is the tractability of the approximate posterior of random effects w, which is
essentially specified by parametersΘ independent of all the other model parameters and observed
data. As will be evident in Section 4.2, sampling from the approximated posterior is easier and
faster than MCMC methods, since the latter works with a more complex exact posterior and
typically requires a burn‐in period. This may offer significant numerical efficiency, especially in
high‐dimensional cases where there are many types of random effects and each type of random
effect has many levels. Meanwhile, the obvious trade‐off is obtaining only the approximated
solutions to the estimated model parameters and the approximated posterior distributions of the
random effects. While the goodness of approximation and convergence properties for VI remain an
open problem (see, e.g., Blei et al., 2017), our numerical simulations in Supporting Information
Appendix B and real data analysis in Section 5 show promising results. This may serve as an
empirical evidence for applying VI methods to insurance problems where an approximated
solution may be acceptable in the presence of large data sets.

For VI, one needs to specify a family of parametric distributions for the approximated
posterior q w Θ( ; ). In this paper, we follow standard practices and use the mean‐field
variational family, whereby the posterior of latent variables, that is, random effects w, is a
factorized multivariate normal distribution. More specifically, we assume the posterior of wl

s( ) is
a normal distribution with mean μl

s( ) and standard deviation σ l
s( ) for s S= 1, 2, …, l and

l L= 1, 2, …, , which are independent across all levels l and all factors s. Mathematically,












( ) ( )
( )q w Θ

π σ σ
w μ( ; ) =

1

2

exp −
1

2
− .

l

L

s

S

l
s

l
s

l
s

l
s

=1 =1 ( ) 2 ( ) 2
( ) ( ) 2l

(10)

For notational convenience, we writeΘ μ Σ= {( , )}l l l L=1,2, …, , where μ μ μ μ= ( , , …, )l l l l
S T(1) (2) ( )l

is the posterior mean vector and Σ σ σ σ= diag(( ) , ( ) , …, ( ) )l l l l
S(1) 2 (2) 2 ( ) 2
l the diagonal covariance

matrix for the lth level of random effect.

When L = 1, given the factorization of likelihood across s S= 1, 2, …, 1, different factors of the
same level of random effect are in fact independent, both in the prior and the posterior distribution.
Hence, in our application of the Mixed LRMoE with only policyholder‐level random effects, the
only source of error of VI is the approximation of the exact posterior by a normal distribution.
However, when there are multiple types of random effects, especially in the case of certain
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dependence structures (e.g., multiple crossed random effects), the independence assumption in the
mean‐field variational family may create an additional source of error of approximation.

4.2 | A stochastic variational ECM algorithm

With the approach of VI and the choice of the mean‐field variational family q w Θ( ; ), we now
develop a stochastic variational ECM algorithm for estimating the model parameters α β Ψ( , , ),
as well as inferring the posterior of random effects w represented by the variational parameters
Θ μ Σ= {( , )}l l l L=1,2, …, .

On a high level, our estimation algorithm proceeds in an iterative manner which seeks to
conditionally maximize the ELBO in Equation (9) with respect to one set of parameters while
keeping others fixed. Consequently, the algorithm will ultimately arrive at a local optimum for the
ELBO of the marginal loglikelihood. First, we initialize the model parameters α β Ψ( , , ) using
the clusterized method of moments, similar to, for example, Gui et al. (2018). Meanwhile, the
variational parameters Θ can be initialized such that μ 0=l and Σ I=l for l L= 1, 2, …, (i.e.,
assuming a multivariate standard normal distribution), which is consistent with standard practices
in the VI literature. Then, our algorithm iterates through the following steps until convergence. A
detailed description of these steps can be found in Supporting Information Appendix A.1.

E‐Step: At iteration t + 1, given the current model parameters α β Ψ( , , )t t t( ) ( ) ( ) and
variational parameters Θ μ Σ= {( , )}

t
l
t

l
t

l L
( ) ( ) ( )

=1,2, …,
, we calculate the expectation of the

complete‐data ELBO, which results in the objective function α β Ψ Θ X YQ ( , , , ; , )t( +1) .

CM‐Steps:

(i) Given the current values of the variational parametersΘ t( ) , we conditionally maximize the
objective function in α β Ψ( , , )t t t( +1) ( +1) ( +1) .

(ii) Given the updated α β Ψ( , , )t t t( +1) ( +1) ( +1) , find the updated variational parameters
Θ μ Σ= {( , )}

t
l
t

l
t

l L
( +1) ( +1) ( +1)

=1,2, …,
by optimizing the complete‐data ELBO.

In addition to the estimated model parameters α β Ψ( ˆ , ˆ, ˆ ), our algorithm also yields the
variational parametersΘ μ Σˆ = {( ˆ , ˆ )}l l l L=1,2, …, which completely specify the approximated posterior
distribution of random effects w. For illustration purposes, Supporting Information Appendix B
contains two simulation studies which show our proposed algorithm can recover both model
parameters and the realizations of random effects to a reasonable degree. For applications such as a
posteriori risk classification and ratemaking, despite no closed‐form formulas for various quantities
of interests such as the posterior mean of response yi (see also Section 5), their approximated values
can be efficiently calculated by sampling from the variational posterior distribution which is
assumed to be multivariate normal. Note the approximated posterior distribution of yi still retains a
similar mixture structure as Equation (7), whereby the integration is now with respect to the
approximated posterior of q w( ) rather than the prior ϕ w( ).

4.3 | Model identifiability and selection

As with many mixture models, certain restrictions are imposed for the Mixed LRMoE to be
identifiable when conducting parameter estimation. To avoid label‐switching between latent
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components (see, e.g., Fung et al., 2019a; Jiang & Tanner, 1999), we fix α 0=g and β 0=g as

vectors of zeros, so the last latent class serves as a reference class. In addition, we fix β 1=1 as a
vector of ones to avoid arbitrary scaling of magnitude and switching of positive and negative
signs of the random effects w. Consequently, we need to estimate the coefficients β multiplied
to the random effects only when there are at least three latent classes (see the examples in
Supporting Information Appendix B).

Model selection when parameters are estimated using VI remains an open problem in
general. One may accept the ELBO as a good approximation of the marginal likelihood and use
it as the basis of model selection, but this has not been justified in theory (Blei et al., 2017).
Other approaches include sequential selection (Sato, 2001), cross validation (Nott et al., 2012),
and Generalized Evidence Bounds (Chen et al., 2018). For the purpose of this paper, we take a
more practical approach by using the standard train‐test split and examining the approximated
loglikelihood and ELBO on the test set to obtain a conservative gauge of goodness‐of‐fit.
Examples are given in the real data analysis in Section 5.

5 | REAL DATA ANALYSIS

In this section, we apply the Mixed LRMoE model to a real automobile insurance data set for a
posteriori risk classification and ratemaking, and then compare its performance with a number
of benchmark models. More specifically, we will investigate whether the Mixed LRMoE model
can outperform benchmark models like Logistic and Lognormal GL(M)M and LRMoE without
random effects in terms of goodness‐of‐fit. We will also investigate whether the Mixed LRMoE
produces reasonable results for a posteriori risk classification and ratemaking, that is,
policyholders who made claims in the past should generally be considered riskier and should
be assigned a higher a posteriori premium.

5.1 | Description of data

The data set contains the Bodily Injury (BI) claim history of 76,049 unique policyholders from
policy years 2014 to 2019 (330,781 records in total) of a major North American automobile
insurer.

Since we are only working with a one‐dimensional response, it will be represented by yi in
this section. The description of available covariates xi and the summary statistics of the
response yi are given in Table 1. We observe the loss distribution has significant zero inflation
and a heavy tail in certain policy years. There also seems to be an increasing trend of claim
severity over the years, in addition to varying degrees of skewness and kurtosis. The empirical
distribution of positive losses is also plotted in Figure 3, which shows slightly different shapes
across policy years.

Within the period of 2014–2019, the lengths of policyholders' available claim history vary
from 1 year (new contracts) to 6 years (multiple renewals). For the purpose of this section, we
will limit ourselves to a subset of policyholders with at least 3 years of claim history, whereby
the last available year will be used as a holdout testing set and all preceding years will be used
as a training set for model fitting. This filtering step will ensure all policyholders have at least
some history (2 years at a minimum) for inferring the distribution of random effects. In a
preliminary analysis whereby we use a train‐test split based on calendar years (i.e., 2014–2017/
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2018 for training and 2018/2019 for testing), the differences in loss distributions (both
frequency and severity) across the years make it very difficult to gauge and compare model
performances. Our train‐test split based on policyholder‐level history will also smooth out some
of the distributional differences across calendar years. Furthermore, 20% of the policyholders
from the training period are randomly selected as the validation set for selecting the number of
components in the (Mixed) LRMoE model. In the end, there are 203,579/50,831/75,742

TABLE 1 Overview of real data set.

Covariate Range Description

xi0 1 Intercept. Baseline for Female drivers and Rural region.

xi1 {0, 1} Indicator for Male drivers. Mean is 0.47.

xi2 [16, 99] Driver's age. Mean is 64 and median is 66.

xi3 [0, 27] Vehicle age. Mean is 6.5 and median is 6.

xi4 [9.35, 12.82] Natural logarithm of vehicle price. Mean is 10.28 and median is 10.28.

xi5 [1, 99] Vehicle's collision rating (an indicator of risk). Mean is 26 and median is 27.

xi6 {0, 1} Indicator for policies issued in the Capital. Mean is 0.09.

xi7 {0, 1} Indicator for policies issued in Urban region. Mean is 0.75.

Response yi Claim severity

Year Claim rate Mean SD Lower Quart. Median Upper Quart. Skewness Kurtosis

2014 0.0260 10,440 44,715 1355 2688 5667 11 146

2015 0.0247 13,395 57,044 1409 2992 6345 10 120

2016 0.0264 12,363 78,032 1648 3334 6769 19 420

2017 0.0269 11,469 65,311 1719 3471 7175 24 684

2018 0.0248 9,910 38,639 1993 3819 7975 18 397

2019 0.0161 13,194 80,346 2361 4977 8750 22 547

Overall 0.0244 11,723 62,364 1699 3425 7019 21 570

FIGURE 3 Histogram and fitted density of positive claim distribution. (Left) Empirical density of positive
losses by policy year. (Middle/right) Training/testing set. Only GLMM–GLMM is shown because all the benchmark
models yield very similar results. BI, Bodily Injury; GLMM, Generalized Linear Mixed Model; LRMoE, Logit‐
weighted Reduced Mixture‐of‐Experts. [Color figure can be viewed at wileyonlinelibrary.com]
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two‐year contracts, or 60,594/15,148/75,742 unique policyholders, in the training/validation/
testing set, respectively. Overall, 34%/22%/18%/26% of the policyholders have 3/4/5/6 years of
claim history before the train‐test split, while 11%/12%/13%/64% of the testing set are contracts
from year 2016/2017/2018/2019, respectively.

For illustration purposes, we will model the total amount of loss per year. As a benchmark,
we will consider various combinations of GLM and GLMM against which we compare the
proposed Mixed LRMoE model. For these benchmark models, we assume independence
between claim frequency and severity. We use a probability mass xδ ( )i i at zero for no
occurrence of claims and a continuous distribution xg y( )i i i for the total loss amount given
there is at least one claim. Consequently, using I y{ =0}i

and I y{ >0}i
as indicators for the occurrence

of claims, the distribution of total loss of policyholder i is given by

 x x x xf y δ I δ g y I i n( ) = ( ) × + (1 − ( )) ( ) × , = 1, 2, …, .i i i i y i i id i i y{ =0} { >0}i i
(11)

where both xδ ( )i i and xg y( )i i i may be modeled by either GLM or GLMM. In the case of
GLMM, we will add policyholder‐level random effects with 60,594 levels which corresponds
to the number of unique policyholders in the training data set. For the claim probability,
we use the standard Logistic GL(M)M with the logit link function. For the claim severity, we
choose the Lognormal GL(M)M with the log link function which shows the best fit to data
after some initial experimentation.

For the models to investigate, we will consider (mixed) LRMoE with zero‐inflated (ZI)
Lognormal expert functions. With the expert functions fixed, we only need to select the number
of latent components for both LRMoE and Mixed LRMoE. We have selected a five‐component
LRMoE and a five‐component Mixed LRMoE based on the Akaike Information Criterion (AIC)
calculated on the validation data set.

5.2 | Goodness‐of‐fit

The fitted loglikelihood values of all benchmark models are summarized in Table 2.
As expected, on the training set, the GLMM–GLMM model produces the highest loglikelihood
since the policyholder‐level random effects are used twice. The combinations of GLMM–GLM
and GLM–GLMM offer worse fit to data, followed by the GLM–GLM model without any
random effects. Meanwhile, all benchmark models perform very similarly on the testing set.
Table 3 summarizes the fitting results of the (Mixed) LRMoE models. We see that the Mixed

TABLE 2 Benchmark models for real data analysis.

Claim Log of Number of Training Testing

Benchmark probability claim severity parameters loglik AIC loglik AIC

GLM–GLM Logistic GLM Normal GLM 16 −75,084 150,199 −22,314 44,660

GLM–GLMM Logistic GLM Normal GLMM 17 −74,700 149,434 −22,317 44,668

GLMM–GLM Logistic GLMM Normal GLM 17 −73,995 148,023 −22,304 44,641

GLMM–GLMM Logistic GLMM Normal GLMM 18 −73,611 147,258 −22,306 44,648

Abbreviations: AIC, Akaike Information Criterion; GLM, Generalized Linear Model; GLMM, Generalized Linear Mixed Model.
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LRMoE model offer much better fit to data in terms of loglikelihood on training and testing
data sets, and outperforms the LRMoE model without random effects. This demonstrates the
flexibility of Mixed LRMoE as well as the advantage of incorporating policyholder‐level random
effects for more accurate modeling of the loss distribution. As for penalization on model
complexity, the AIC values are included for all model candidates in the tables, which also
demonstrates the outperformance of the Mixed LRMoE model. Even though the Mixed LRMoE
model has a more complex structure in terms of the number of parameters, as will be evident in
Section 5.3, this added model complexity greatly improves a posteriori risk classification and
ratemaking, which is the ultimate goal in this context.

Besides loglikelihood values, we also look at how each model candidate fits the probability
of claim and the distribution of positive losses. For the probability of claim, all model
candidates offer very similar fitting performance. On the training period, all models are able to
fit the observed claim probability 0.0255 to the fourth decimal place. However, on the testing
period where the observed claim probability is 0.0196, all models candidates have produced a
slightly higher prediction, ranging from 0.0248 to 0.0253 (or +26% to +29% of relative error),
which can be attributed particularly to the lower claim frequency in year 2019 as observed in
Table 1. Meanwhile, the (Mixed) LRMoE models have provided a better fit to the distribution of
positive losses, as indicated by Figure 3 which compares the fitted densities against the
empirical distribution. Most notably, the (Mixed) LRMoE models have successfully captured
the multimodality in the distribution of positive losses, while GLM and GLMM only fit a
unimodal density to the entire distribution of positive losses, and the LRMoE model without
random effects fits slightly worse on smaller claims. Even though our data processing
procedures have mixed up different calendar years for the testing period, note there still seems

TABLE 3 (Mixed) LRMoE models for real data analysis.

Number of Training Validation Testing

g parameters loglik AIC loglik AIC loglik AIC

LRMoE

2 14 −74,905 149,839 −19,449 38,925 −22,226 44,481

3 25 −74,774 149,599 −19,415 38,880 −22,183 44,417

4 36 −74,712 149,495 −19,403 38,877 −22,173 44,419

5 47 −74,614 149,323 −19,389 38,873 −22,169 44,432

6 58 −74,578 149,272 −19,386 38,888 −22,169 44,453

7 69 −74,555 149,248 −19,381 38,899 −22,173 44,483

Mixed LRMoE

2 14 −73,479 146,985 −19,458 38,944 −22,210 44,448

3 26 −72,918 145,889 −19,408 38,868 −22,161 44,374

4 38 −73,844 147,763 −19,397 38,870 −22,153 44,382

5 50 −73,285 146,670 −19,380 38,860 −22,153 44,406

6 62 −72,718 145,559 −19,374 38,873 −22,160 44,444

7 74 −72,561 145,270 −19,379 38,906 −22,153 44,455

Abbreviations: AIC, Akaike Information Criterion; LRMoE, Logit‐weighted Reduced Mixture‐of‐Experts.
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to be some distributional shift from the training to the testing period (most notably due to year
2019), so the estimated density curves from all model candidates appear to be slightly off to
the left.

5.3 | Risk classification and ratemaking

For insurance pricing purposes, it is crucial that policyholders' claim history is adequately
incorporated in the calculation of premium at policy renewal. In short, higher risks, as reflected
by the occurrence of claim and/or higher claim amounts, should lead to a higher a posteriori
premium. In this subsection, we compare the model performance in terms of a posteriori risk
classification and ratemaking.

For risk classification, the latent classes in (Mixed) LRMoE models can be naturally
interpreted as different clusters of policyholders based on their risk profile. To compare how
risk classification is affected by claim history, we categorize all policyholders into two groups:
those with at least one claim and those without any claim during the training period, and
summarize their latent class probabilities in Table 4. Most notably, with the addition of random
effects, the Mixed LRMoE models are able to strongly distinguish risky policyholders who have
at least one claim in the past, by assigning almost a much higher probability to the riskiest
latent class. Meanwhile, the LRMoE model without random effects only suggests a slight
increase in the risky class probability based solely on covariate information, given the
independence assumption for observations across different policy years.

Different decisions in a posteriori risk classification will also lead to differences in
ratemaking. For a posteriori ratemaking, we calculate the premium for policy renewals in the
testing period based on the posterior distribution given the claim history in the training period.

TABLE 4 Comparison of latent classes and the predicted probabilities by claim history.

LRMoE Mixed LRMoE

Risk level Class Mean SD Class Mean SD

Low 1 0.87 15.59 1 0.00 0.00

2 5.52 189.64 2 1.68 11.03

Medium 3 128.56 686.58 3 11.56 157.36

High 4 830.20 18,512.30 4 732.83 1532.26

5 1168.66 4689.53 5 1958.62 9756.57

LRMoE Mixed LRMoE

Risk level No Yes No Yes

Low 0.5580 0.5321 0.5216 0.4546

Medium 0.1779 0.1867 0.3213 0.3063

High 0.2641 0.2812 0.1571 0.2391

Note: The first table summarizes the mean and standard deviation of the response by latent class, and we have manually
categorized them into three risk levels. The second table compares the predicted latent class probabilities for different groups of
policyholders by their claim history (No: no claim during the training period; Yes: at least one claim during the training period),
calculated from different models.

Abbreviation: LRMoE, Logit‐weighted Reduced Mixture‐of‐Experts.
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For illustration purposes, we only consider the pure premium which is equal to the probability
of claim multiplied by the expected positive mean loss amount.

On a higher level, we investigate all policyholders based on the same grouping (with and
without claims in the training period). The distributions of the predicted posterior premium are
shown in Figure 4 for all model candidates. For models without random effects, that is,
GLM–GLM and LRMoE, the predicted distributions of posterior premium for the two groups
appear to be highly overlapping, which indicates that fixed effects alone cannot distinguish
policyholders based on claim history. For benchmark models with random effects, namely,
GLM–GLMM, GLMM–GLM, and GLMM–GLMM, there appear to be some differences between
the two groups, whereby some policyholders with claim history will have a higher predicted
premium. Most notably, the Mixed LRMoE model shows much larger differences between the
distributions of predicted premium, which better captures the riskiness of policyholders
reflected by their claim history.

On a more detailed level, Table 5 summarizes the predicted posterior premium, based on
the two groups above in addition to the relative size of incurred total losses. We observe that the
Mixed LRMoE model, as well as benchmark GLMM–GLM and GLMM–GLMM, heavily
penalizes policyholders who have at least one claim, as shown by the additional premium
loadings.

For both a posteriori risk classification and ratemaking discussed above, we have primarily
focused on differentiating policyholders based on the occurrence of claims and the claim sizes
when applicable, whereby the Mixed LRMoE model is shown to have effectively incorporated
such information. However, we can still observe the effects of a priori information, that is,
policyholder covariates, when determining the a posteriori premium. Most notably, in Figure 4,
there is a good level of overlap between the histograms of the predicted premium for people
with and without claim history, even for all model candidates with random effects. For
example, certain policyholders with claim history (lower end of the orange histogram) would
still be charged a lower premium than some policyholders without claim history (upper end of

FIGURE 4 Histogram of predicted posterior premium based on different models. Top row, from left to
right: GLM–GLM, GLM–GLMM, GLMM–GLM, and GLMM–GLMM. Bottom row, from left to right: LRMoE
and Mixed LRMoE. AIC, Akaike Information Criterion; BI, Bodily Injury; GLM, Generalized Linear
Model; GLMM, Generalized Linear Mixed Model. [Color figure can be viewed at wileyonlinelibrary.com]
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the blue histogram), which should be attributed to covariates such as the inherent risk level of
certain age groups or the collision rating of a particular group of vehicles.

5.4 | Gini Index

Next, we examine the model performance using the Gini Index as a measurement of adequacy
for insurance risk scoring (see, e.g., Frees et al., 2011). We first plot the Ordered Lorenz Curve
in Figure 5 for both the training and testing sets, where the x‐axis represents the cumulative
percentage of premium and y‐axis represents the cumulative percentage of the incurred losses

FIGURE 5 Comparison of the Ordered Lorenz Curves generated from various model candidates. (Left/
right) Training/testing set. GLM, Generalized Linear Model; GLMM, Generalized Linear Mixed Model; LRMoE,
Logit‐weighted Reduced Mixture‐of‐Experts. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Average of predicted posterior premium based on policyholders' claim history.

Claim indicator Claim size

Model No Yes Small Medium Large

GLM–GLM 249 300 (21%) 283 (14%) 293 (18%) 324 (30%)

GLM–GLMM 229 277 (21%) 234 (2%) 269 (18%) 329 (44%)

GLMM–GLM 247 367 (49%) 347 (40%) 359 (45%) 396 (61%)

GLMM–GLMM 227 340 (50%) 287 (26%) 330 (45%) 403 (77%)

LRMoE 273 295 (8%) 288 (6%) 292 (7%) 304 (12%)

Mixed LRMoE 204 353 (73%) 321 (58%) 337 (65%) 401 (97%)

Note: The cutoff points for positive claim sizes are the 33% and 67% percentiles of its distribution. Percentages in brackets
indicate the additional premium loadings compared with policyholders without any claim history, that is, Claim
Indicator =No.

Abbreviations: GLM, Generalized Linear Model; GLMM, Generalized Linear Mixed Model; LRMoE, Logit‐weighted Reduced
Mixture‐of‐Experts.
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during the training or testing period, In the training set, the Mixed LRMoE model produces an
Ordered Lorenz Curve farthest away from the 45° Line of Equality which represents a null
model where all policyholders are assigned the same premium. This indicates the Mixed
LRMoE yields the highest degree of differentiation of policyholders based on their relative
riskiness. Meanwhile, in the testing set, it may be difficult to visually compare the model
candidates. Hence, we rely on the Gini Index, calculated as twice the area between the Ordered
Lorenz Curve and the Line of Equality, as a measurement of model performance for
comparison.

We implement a bootstrapping procedure to obtain the exact distributions and comparisons
of Gini Index values (see also Corollary 3 of Frees et al., 2011, for an asymptotic version). More
specifically, we obtain 10,000 bootstrapped samples of the training and testing sets, from which
the Ordered Lorenz Curves are produced and the corresponding Gini Index values are
calculated. We note the potential correlation of Gini Index values produced by all model
candidates, since they are all regression models based on the same set of covariates.
Consequently, broadly similar policyholders (e.g., low‐risk vs. high‐risk) will be assigned
similar premium values. The difference in performance will stem from a finer differentiation
within broadly similar policyholders (e.g., high‐risk vs. higher‐risk), by better capturing the
nonlinear regression relationship and/or the latent, unobserved risks. Table 6 summarizes the
bootstrapped Gini Index values of all model candidates, as well as the pairwise comparisons of
their differences based on both two‐sided and one‐sided tests against zero.

In the training set, all model candidates are significantly better than the null model, which
is not surprising. The GLMM–GLMM model is the best among the benchmark models, and it
also outperforms the LRMoE model by capturing unobserved policyholder‐level risks with
random effects. The proposed Mixed LRMoE model performs the best, showing a significant
margin of outperformance against all other model candidates.

In the testing set, all model candidates are also better than the null. However, when
comparing against each other, they perform quite similarly whereby most of the two‐sided tests
yield insignificant results at p = 0.20. If one is interested in determining the outperformance of
one model against another, a one‐sided test of the positivity of the difference in Gini Index
values may also be appropriate. Under this test, the GLMM–GLM model is the best among all
benchmark models, while the Mixed LRMoE model may still be considered better than all
others by producing a higher Gini Index at least 86% of the time.

A data drift in year 2019 has been previously noted in Table 1 and Figure 3, which
comprises 64% of the testing set. To this end, we further compare the model performance by
bootstrapping the testing set by policy years 2016–2018 and year 2019. In the former
experiment, the proposed Mixed LRMoE offers superior outperformance, assuming the testing
set is generated from a distribution similar to years 2016–2018. In the latter, the margin of
outperformance by Mixed LRMoE becomes less significant due to the sudden change of loss
distribution. However, such unprecedented data drift is outside the scope of what statistical and
predictive models can address based on historical data only.

5.5 | Comparison of individual policyholders

Apart from the analysis on a portfolio level, we also investigate the model performance on a
policyholder level. In particular, we examine pairs of policyholders with similar covariates but
different claim experiences, to investigate how the model candidates determine the a posteriori
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premium for individual policyholders. For brevity, we only retain GLMM–GLMM as the
benchmark and compare it with the (Mixed) LRMoE models.

We consider three pairs of policyholders A A( , )1 2 , B B( , )1 2 , and C C( , )1 2 , whereby each pair of
policyholders share the exact same covariates but different claim experiences and all of them
have 6 years of full history from 2014 to 2019. A1 and A2 are both 65‐year‐old male, drive a
7‐year‐old vehicle worth of $40,100 with a collision rating of 33, and purchased their policies in
the Urban region. B1 and B2 are both 35‐year‐old female, drive a 6‐year‐old vehicle worth of
$29,400 with a collision rating of 32, and purchased their policies in the Urban region.C1 andC2
are both 40‐year‐old male, drive an 8‐year‐old vehicle worth of $24,800 with a collision rating of
29, and purchased their policies in the Urban region. As for the claim history during 2014–2018,
A1, B1, and C1 have no claims, while A2, B2, and C2 have a total claim amount of $850, $1950,
and $5704, respectively. Given that 97.9% of policyholders have no claims at all (see Table 1),
these positive claims lie at the very tail of the overall loss distribution, withC2 being close to the
99% percentile. From an a posteriori perspective, A2, B2, and C2 should be considered
increasingly riskier than their counterparts.

For these selected policyholders, Table 7 summarizes their a posteriori pure premium
values. Since the LRMoE model does not incorporate claim history, each pair of A A( , )1 2 ,
B B( , )1 2 , and C C( , )1 2 is given the same premium value which is not reasonable. In contrast, all
other models with random effects have produced higher a posteriori premium for A2, B2, and
C2, since their claim experiences during the training period are indicative of latent
heterogeneous risks unobservable from covariates alone. Most notably, the Mixed LRMoE
model has posed very large penalties for policyholders B2 andC2, whose a posteriori premium is
more than double that of a comparable policyholder without any claim history.

In addition, Figure 6 illustrates their a posteriori predictive distribution for the positive
losses of these selected policyholders. For A2, B2, and C2 who have made claims in the past and
should be considered riskier, the Mixed LRMoE model has assigned more probability masses
on the positive losses, as indicated by the elevated density functions compared with their safer
counterparts. Most notably, the Mixed LRMoE model has produced much heavier tails for B2
and C2 than those produced by other model candidates, which contributes to the drastic
increase in the corresponding a posteriori pure premium compared with B1 and C1.

5.6 | Economic and business implications

In the preceding subsections, we have illustrated how the proposed Mixed LRMoE outperforms
the benchmark models by providing a superior fit to data, producing reasonable results for a

TABLE 7 A posteriori pure premium values for sample policyholders.

Policyholder A1 A2 B1 B2 C1 C2

GLMM–GLMM 228 269 359 420 286 408

LRMoE 282 282 337 337 309 309

Mixed LRMoE 225 247 277 566 249 535

Note: The pairs (A1,A2), (B1, B2), and (C1, C2) have the same covariates. During the training period, A1, B1, and C1 have no
claims, while A1/B2/C1 has a total claim amount of $850, $1950, and $5704, respectively. From an a posteriori perspective, A2,
B2, and C2 should be considered increasingly riskier than their counterparts.
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posteriori risk classification and ratemaking, and adequately differentiating riskier policy-
holders from safer ones based on their claim history. Now we briefly discuss the economic and
business implications of the potential application of the Mixed LRMoE model in practice.

As mentioned in Section 1, a well‐designed framework for a posteriori risk classification
and ratemaking is crucial for the insurer's profitability and risk management. With a better fit
to empirically observed data shown in Section 5.2, the Mixed LRMoE can provide a more
accurate description of the overall loss distribution, which lays the foundation for risk
classification and ratemaking. Compared with benchmark models such as GLM and GLMM,
our proposed model is flexible enough to capture complex data structures such as
multimodality and heavy tails, which is particularly helpful for modeling extreme losses
generated by risky policyholders. This is also illustrated by the a posteriori risk classification
and ratemaking results in Sections 5.3 and 5.5, whereby riskier policyholders with large claims
in the past are subject to a much higher posterior premium at policy renewal, while some safer
policyholders are rewarded by a lower premium. Consequently, by capturing latent risks
manifested in the claim history, policyholders are more appropriately priced (rather than
mispriced) according to the Mixed LRMoE model, which results in better risk segmentation as
indicated by the improved Gini Index values in Section 5.4. All these advantages of the Mixed
LRMoE model will help increase the insurer's profitability and ensure better risk management.

However, in Section 5.3, certain risky policyholders with large claims in the past are very
aggressively penalized by the Mixed LRMoE model, as illustrated by the drastic increase in the
a posteriori pure premium. From a practical perspective, the insurer can undoubtedly expect

FIGURE 6 A posteriori predictive distributions for positive losses for sample policyholders. Top row, from
left to right: A1, B1, and C1. Bottom row, from left to right: A2, B2, and C2. Since the LRMoE model does not
consider claim history, the corresponding density functions are the same for each pair of A A( , )1 2 , B B( , )1 2 , and
C C( , )1 2 , and may be viewed as a reference to compare the top and bottom rows. GLM, Generalized Linear
Model; GLMM, Generalized Linear Mixed Model; LRMoE, Logit‐weighted Reduced Mixture‐of‐Experts. [Color
figure can be viewed at wileyonlinelibrary.com]
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nonrenewal of insurance policies from some of these riskier policyholders. While such
nonrenewals will lead to a decrease in premium income (all else held constant), it also comes
with the advantage of reduced risk exposures especially in the tail. In the meantime, safer
policyholders are rewarded with potential decreases renewal premium, which increases the
likelihood of customer retention and could contribute further to the insurer's profitability, since
these policyholders are less likely to incur losses after all. Consequently, this may lead to long‐
term changes in the composition of the insurer's portfolio, as the proportions of safe and risky
policyholders are likely to change after a few years, assuming risky policyholders with claim
history gradually drop out. While the insurer should constantly monitor their portfolio
structure, especially after implementing a new model (whether the Mixed LRMoE or any model
in general), we leave the detailed investigation and discussion on such long‐term impacts for
future research. We also recognize that ours is only an illustrative application of the Mixed
LRMoE model for research purposes. In practice, another potential challenge is to properly
communicate the a posteriori premium values to policyholders and other stakeholders,
especially when policyholders have similar covariates but different claim experiences, as shown
by the examples in Section 5.5. This may also have legal and regulatory implications, as well as
interesting academic discussions on the fairness of insurance pricing, but we will leave these
issues for future research.

6 | CONCLUSION

In this paper, we have proposed to incorporate policyholder‐level random effects in a flexible
regression framework, called the Mixed LRMoE, which is then applied to the problem of a
posteriori risk classification and ratemaking. Although the addition of random effects has resulted
in an intractable marginal likelihood function of the model, we have developed a stochastic
variational ECM algorithm for efficient estimation of model parameters and inference of the
posterior of random effects, which are crucial for updating policyholders' risk profile based on their
claim history. Our numerical simulation and real data analysis have demonstrated the potentials of
Mixed LRMoE as a powerful tool for more accurate insurance loss modeling and better a posteriori
insurance risk classification and ratemaking. While our current work has already shown promising
results in an illustrative example, some practical issues remain to be addressed in future research
(see Section 5.6). From a technical and modeling perspective, one may consider the following
extensions and directions for future work.

• In the current formulation of Mixed LRMoE, all past policy years are equally weighted by
sharing the same realization of random effects. A more realistic and general approach is to
apply a weighting scheme whereby recent claims are more influential in determining the
posterior premium.

• We have taken the approach of modeling the total incurred loss as a mixture of ZI
distributions, whereby the dependence between claim frequency and severity is not explicitly
specified. An interesting extension is to incorporate such dependence in the (Mixed) LRMoE
modeling framework.

• As observed in our numerical study, the shift of loss distributions over different policy years
presents another challenge to a posteriori risk classification and ratemaking. This opens up
potential research opportunities for modeling frameworks which account for, for example,
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temporal trends of claim probability, inflation of claim severity, and more generally, a change
of the overall loss distribution.

• While our estimation algorithm enjoys numerical efficiency and has been shown to yield
reasonable results both in simulation and real data analysis, it could be worthwhile to
investigate the theoretical properties, such as approximation errors and rate of convergence,
of VI methods in the class of MoE models as well as the Mixed LRMoE.
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