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ABSTRACT

We discuss how to fit mixtures of Erlangs to censored and truncated data by
iteratively using the EM algorithm. Mixtures of Erlangs form a very versatile,
yet analytically tractable, class of distributions making them suitable for loss
modeling purposes. The effectiveness of the proposed algorithm is demonstrated
on simulated data as well as real data sets.
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1. INTRODUCTION

The class of mixtures of Erlang distributions with a common scale parameter
is very flexible in terms of the possible shapes of its members. Tijms (1994)
shows that mixtures of Erlangs are dense in the space of positive distributions
in the sense that there always exists a series of mixtures of Erlangs that weakly
converges, i.e. converges in distribution, to any positive distribution. As such,
any continuous distribution can be approximated by a mixture of Erlang distri-
butions to any accuracy. Furthermore, via direct manipulation of the Laplace
transform, a wide variety of distributions whose membership in this class is not
immediately obvious can be written as a mixture of Erlangs. The class of mix-
tures of Erlangs with a common scale is also closed under mixture, convolution
and compounding. At the same time, it is possible to work analytically with
this class leading to explicit expressions for e.g. the Laplace transform, the haz-
ard rate, a Tail-Value-at-Risk (TVAR) and stop-loss moments. A quantile or
a Value-at-Risk (VaR) can be obtained by numerically inverting the cumula-
tive distribution function. Klugman et al. (2013), Willmot and Lin (2011) and
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Willmot andWoo (2007) give an overview of these analytical and computational
properties of mixtures of Erlangs.

Mixtures of Erlang distributions have received most attention in the field of
actuarial science.Modeling data on claim sizes is crucial when pricing insurance
products. Actuarial models help insurance companies to assess the risk associ-
ated with the portfolio, to set the level of premiums (Frees and Valdez, 2008)
and reserves (Antonio and Plat, 2014), to determine optimal reinsurance levels
(Beirlant et al., 2004) or to determine capital requirements for solvency purposes
(Bolancé et al., 2012). Insurance data are often modeled using a parametric dis-
tribution such as a gamma, lognormal or Pareto distribution. The usual way
to proceed in loss modeling, pricing and reserving is to calibrate the data us-
ing several of these parametric distributions and then select, among these, the
most appropriate model based on a model selection tool (Klugman and Rioux,
2006). These classes of distributions may however not always be flexible enough
in terms of the possible shapes of their members in order to obtain a satisfying
fit (e.g. in the presence of multimodal data) and resulting models become in-
tractable when aggregating risks in an insurance portfolio or arising from mul-
tiple lines of losses. Ideally, it would be useful to have a single approach to fitting
loss models (Klugman and Rioux, 2006) with on the one hand the flexibility of
nonparametric density estimation techniques to describe the insurance losses
and on the other hand the feasibility to analytically quantify the risk. This is
exactly what the class of mixtures of Erlangs has to offer. In particular, using
these distributions in aggregate loss models leads to an analytical form of the
corresponding aggregate loss distribution, which avoids the need for simulations
to evaluate the model.

Mixture models are often used to reflect the heterogeneity in a population
consisting of multiple groups or clusters (McLachlan and Peel, 2001). In some
applications, these clusters can be physically identified and used to interpret the
fitted distributions. This is however not the approachwe follow; the components
in the mixture will not be identified with existing groups. Mixtures of Erlangs
are discussed here for their great flexibility in modeling data and should be re-
garded as a semiparametric density estimation technique. The densities in the
mixture are parametrically specified as Erlangs, whereas the associated weights
form the nonparametric part. The number of Erlangs in the mixture with non-
zero weights can be viewed as a smoothing parameter. Mixtures of Erlangs have
much of the flexibility of nonparametric approaches and furthermore allow for
tractable results.

The expectation–maximization (EM) algorithm, first introduced by Demp-
ster et al. (1977), is an iterative method used to compute maximum likelihood
(ML) estimates when the data can be viewed as being incomplete and direct
maximization of the incomplete data likelihood is either not desirable or not
possible (McLachlan and Krishnan, 2008). The EM algorithm is particularly
useful in estimating the parameters of a finite mixture. The clue is to view data
from a mixture as being incomplete since the associated component-label vec-
tors are not available (McLachlan and Peel, 2001).
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Lee and Lin (2010) iteratively use the EM algorithm (Dempster et al., 1977)
for finite mixtures to estimate the parameters of a mixture of Erlang distribu-
tions with a common scale parameter. For a specified fixed set of shapes, the E-
and M-step can be solved analytically without using any optimization method.
This makes the EM algorithm for mixtures of Erlangs a pure iterative algorithm
which is therefore simple, effective and easy to implement. The initialization is
based on Tijm’s proof of the denseness property of mixtures of Erlangs (Tijms,
1994, p. 163) which ensures good starting values and fast convergence. Since the
number of Erlangs in the mixture and the corresponding shape parameters are
pre-fixed and hence not estimated, Lee and Lin (2010) propose an adjustment
procedure to identify the “optimal” number of Erlang distributions and the “op-
timal” shape parameters of these distributions in the mixture. The authors illus-
trate the flexibility of mixtures of Erlangs by generating data from parametric
models (such as the uniform, lognormal, and generalized Pareto (GP) distri-
bution) and by approximating the underlying distribution of this sample using
a mixture of Erlangs. They further demonstrate the usefulness of mixtures of
Erlangs in the context of quantitative risk management for the insurance busi-
ness. However, modeling censored and/or truncated losses is not covered by the
approach in Lee and Lin (2010).

Inmany practical problems data are censored and/or truncated, for example,
due to the way how the data is collected or measured or by the design of the ex-
periment. Censoring entails that you only know inwhich interval an observation
of a variable lies without knowing the exact value while truncation implies that
you only observe values that lie within a given range. Interest however is in the
underlying distribution of the uncensored and untruncated data instead of the
observed censored and/or truncated data. Hence the censoring and truncation
has to be accounted for in the analysis.

Survival analysis is the most common application in which data are often
censored and truncated. A typical example is a medical study in which one fol-
lows patients over a period of time. In case the event of interest has not yet
occurred before the end of the study, the patient drops out of the study or dies
from another cause, independent of the cause of interest, the event time is right
censored. In case the event of interest is known to have occurred between two
dates, but the precise date is not known, the event time is interval censored. In
actuarial science, insurance losses are often censored and truncated due to pol-
icy modifications such as deductibles (left truncation) and policy limits (right
censoring). Left truncation is also present in life insurance where members of
pension schemes and holders of insurance contracts only enter a portfolio at a
certain adult age. Censored and truncated data occur in the context of claim
reserving as well (Antonio and Plat, 2014). Indeed, the reserving actuary wants
to predict the future development of claims when setting aside reserves at the
present moment and has to deal with claims being reported but not yet settled
(RBNS) and claims being incurred but not yet reported (IBNR). In operational
risk, data are left truncated as they are only recorded in case they exceed a cer-
tain threshold. Badescu et al. (2015) use the EM algorithm to fit the correlated
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frequencies of such left truncated operational loss data using an Erlang-based
multivariate mixed Poisson distribution.

Motivated by the large number of areas where censored and truncated data
are encountered, the objective in this paper is to develop an extension of the it-
erative EM algorithm of Lee and Lin (2010) for fitting mixtures of Erlangs with
common scale parameter to censored and truncated data. The traditional way
of dealing with (grouped and) truncated data using the EM algorithm involves
treating the unknown number of truncated observations as a random variable
and including it into the complete data vector (Dempster et al., 1977; McLach-
lan and Jones, 1988; McLachlan and Peel, 2001; McLachlan and Krishnan,
2008). We do not follow this approach and rather only include the uncensored
observations and the component-label vectors in the complete data vector as is
also done in Lee and Scott (2012). The fitting procedure is applicable to a wide
range of applications.We demonstrate its use in actuarial science and economet-
rics. Our R implementation and additional examples fromother domains such as
biostatistics are available online at www.feb.kuleuven.be/roel.verbelen.

In the following, we briefly introduce mixtures of Erlangs with a common
scale parameter in Section 2. The adjusted EM algorithm, able to deal with
censored and truncated data, is presented in Section 3. The procedures used
to initialize the parameters, to adjust the shapes of the Erlangs in the mixture
and to choose the number of components are discussed in Section 4. Examples
follow in Sections 5 and 6 concludes.

2. MIXTURES OF ERLANGS WITH A COMMON SCALE PARAMETER

The Erlang distribution is a positive continuous distribution with density func-
tion

f (x; r, θ) = xr−1e−x/θ

θ r (r − 1)!
for x > 0 , (1)

where r , a positive integer, is the shape parameter and θ > 0 the scale parameter
(the inverse λ = 1/θ is called the rate parameter). The cumulative distribution
function is obtained by integrating (1) by parts r times

F(x; r, θ) =
∫ x

0

zr−1e−z/θ

θ r (r − 1)!
dz = 1 −

r−1∑
n=0

e−x/θ (x/θ)n

n!
. (2)

Following Lee and Lin (2010), we consider mixtures of M Erlang distribu-
tions with common scale parameter θ > 0 and having density

f (x; α, r, θ) =
M∑
j=1

α j
xr j−1e−x/θ

θ r j (r j − 1)!
=

M∑
j=1

α j f (x; r j , θ) for x > 0 , (3)

https://doi.org/10.1017/asb.2015.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.15


FITTINGMIXTURES OF ERLANGS TO CENSORED AND TRUNCATED DATA 733

where the positive integers r = (r1, . . . , rM) with r1 < · · · < rM are the shape
parameters of the Erlang distributions and α = (α1, . . . , αM) with α j > 0 and∑M

j=1 α j = 1 are the weights used in the mixture. Similarly, the cumulative dis-
tribution function can be written as a weighted sum of terms (2) or (22).

Tijms (1994) shows that the class of mixtures of Erlang distributions with
a common scale parameter is dense in the space of distributions on R+. The
formulation of the Theorem is given in Appendix A. Lee and Lin (2010) give an
alternative proof using characteristic functions.

3. THE EM ALGORITHM FOR CENSORED AND TRUNCATED DATA

Lee and Lin (2010) formulate the EM algorithm customized for fitting mixtures
of Erlangs with a common scale parameter to complete data. In an Addendum
available online1, we work out the details of this approach using a notation in-
spired by McLachlan and Peel (2001) and Lee and Scott (2012), based on zero-
one component indicators.

Here, we construct an adjusted EM algorithm which is able to deal with
censored and truncated data. We represent a censored sample truncated to the
range [tl , tu ] by X = { (li , ui )| i = 1, . . . , n}, where tl and tu represent the lower
and upper truncation points, li and ui the lower and upper censoring points and
tl � li � ui � tu for i = 1, . . . , n. tl = 0 and tu = ∞ mean no truncation from
below and above, respectively. The censoring status is determined as follows:

Uncensored: tl � li = ui =: xi � tu

Left Censored: tl = li < ui < tu

Right Censored: tl < li < ui = tu

Interval Censored: tl < li < ui < tu

For example, when the truncation interval equals [tl , tu ] = [0, 10], an un-
censored observation at 1 gets denoted by (li , ui ) = (1, 1), an observation left
censored at 2 by (li , ui ) = (0, 2), an observation right censored at 3 by (li , ui ) =
(3, 10) and an observation censored between 4 and 5 by (li , ui ) = (4, 5). Thus,
li and ui should be seen as the lower and upper endpoints of the interval that
contains observation i .

The parameter vector to be estimated is � = (α, θ). The number of Erlangs
M in the mixture and the corresponding positive integer shapes r are fixed. The
value of M is, in most applications, however unknown and has to be inferred
from the available data, along with the shape parameters, see Section 4. The
portion of the likelihood containing the unknown parameter vector � is given
by

L(�;X ) =
∏
i∈U

f (xi ; �)

F(tu; �) − F(tl; �)

∏
i∈C

F(ui ; �) − F(li ; �)

F(tu; �) − F(tl; �)
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whereU is the subset of observations in {1, . . . , n} which are uncensored and C
is the subset of left, right and interval censored observations. In case there is no
truncation, i.e. [tl , tu ] = [0, ∞], the contribution of a left censored observation
to the likelihood equals F(ui ; �) since li = 0, of a right censored observation
1 − F(li ; �) with ui = ∞, and of an interval censored observation F(ui ; �) −
F(li ; �).

The corresponding log likelihood is

l(�;X ) =
∑
i∈U

ln

⎛⎝ M∑
j=1

α j f (xi ; r j , θ)

⎞⎠ +
∑
i∈C

ln

⎛⎝ M∑
j=1

α j
(
F(ui ; r j , θ) − F(li ; r j , θ)

)⎞⎠
− n ln

⎛⎝ M∑
j=1

α j
(
F(tu; r j , θ) − F(tl; r j , θ)

)⎞⎠ , (4)

which is difficult to optimize numerically.

3.1. Truncated mixture of Erlangs

The probability density function evaluated in an uncensored observation xi after
truncation (tl , tu) is given by

f (xi ; tl , tu, �) = f (xi ; �)

F(tu; �) − F(tl; �)

=
M∑
j=1

α j · f (xi ; r j , θ)

F(tu; �) − F(tl; �)

=
M∑
j=1

α j · F(tu; r j , θ) − F(tl; r j , θ)

F(tu; �) − F(tl; �)
· f (xi ; r j , θ)

F(tu; r j , θ) − F(tl; r j , θ)

=
M∑
j=1

β j f (xi ; tl , tu, r j , θ), (5)

for tl � xi � tu and zero otherwise. This is again a mixture with mixing weights
β j and component density functions given by, respectively

β j = α j · F(tu; r j , θ) − F(tl; r j , θ)

F(tu; �) − F(tl; �)
, (6)

and

f (xi ; tl , tu, r j , θ) = f (xi ; r j , θ)

F(tu; r j , θ) − F(tl; r j , θ)
. (7)
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The component density functions f (xi ; tl , tu, r j , θ) are truncated versions of
the original component density functions f (xi ; r j , θ). The weights β j are ob-
tained by reweighting the original weights α j by means of the probabilities of
the corresponding component to lie in the truncation interval.

3.2. Construction of the complete data vector

The EM algorithm provides a computationally easy way to fit this finite mixture
to the censored and truncated data. Themain clue is to regard the censored sam-
ple X as being incomplete since the uncensored observations x = (x1, . . . , xn)
and their associated component-indicator vectors z = (z1, . . . , zn) with

zij =
{
1 if observation xi comes from j th component density f (xi ; tl , tu, r j , θ)

0 otherwise
(8)

for i = 1, . . . , n and j = 1, . . . ,M, are not available. The component-label
vectors z1, . . . , zn are distributed according to a multinomial distribution con-
sisting of one draw on M categories with probabilities β1, . . . , βM where

P(Zi = zi ) = β
zi1
1 . . . , β

ziM
M ,

for i = 1, . . . , n with zi j equal to 0 or 1 and
∑M

j=1 zi j = 1. We write

Z1, . . . , Zn
i.i.d.∼ MultM(1, β) .

Hence, the latent variables Zi reveal which component density generated obser-
vation xi . Whereas the unconditional truncated probability density function is
given by (5), the conditional truncated probability density function of Xi given
Zi j = 1 is given by (7).

The complete data vector, Y = (x1, . . . , xn, z) = {(xi , zi )|i = 1 . . . n}, con-
tains all uncensored observations xi and their correspondingmixing component
vector zi . The log likelihood of the complete sample Y then becomes

l(�;Y) =
n∑
i=1

M∑
j=1

zi j ln
(
β j f (xi ; tl , tu, r j , θ)

)
, (9)

which has a simpler form than the incomplete log likelihood (4) as it does not
contain logarithms of sums. The EM algorithm deals with the censored and
truncated data from the mixture of Erlangs with common scale in the following
steps.

3.3. Initial step

An initial guess for � is needed to start the algorithm. The closer the start-
ing value is to the true ML estimator, the faster the algorithm will converge.
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Parameter initialization is often the sore point of an EM implementation and
the study of good initial estimates is often not feasible and disregarded.

For mixtures of Erlangs however, the denseness property (see Tijms (1994)
and Appendix A) provides an excellent way of coming up with good initial es-
timates. In the initial step, we deal with the censoring and truncation in a crude
manner. We switch to an initializing dataset, denoted by d, in which we treat
the left and right censored data points as being observed, i.e. we use ui and li ,
respectively, and we replace the interval censored data points with the midpoint,
i.e. we use (li + ui )/2. Based on this initial data, we initialize the parameters θ

and α as

θ(0) = max(d)
rM

and α
(0)
j =

∑n
i=1 I

(
r j−1θ

(0) < di � r jθ(0)
)

n
,

for j = 1, . . . ,M, (10)

with r0 = 0 for notational convenience. Inspired by Tijms’s formulation of the
denseness property, the initial scale θ(0) is chosen such that θ(0)rM equals the
maximum data point and the initial weights α j for j = 1, 2, . . . ,M are set to be
the relative frequency of data points in the interval (r j−1θ

(0), r jθ(0)]. The trun-
cation is only taken into account to transform the initial values for α into the
initial values for β via (6).

3.4. E-step

In the kth iteration of the E-step, we take the conditional expectation of the
complete log likelihood (9) given the incomplete data X and using the current
estimate �(k−1) for � with

Q(�; �(k−1)) = E(l(�;Y) | X ; �(k−1))

= E

⎡⎣∑
i∈U

M∑
j=1

Zi j ln
(
β j f (xi ; tl , tu, r j , θ)

)∣∣∣∣∣∣X ; �(k−1)

⎤⎦
+ E

⎡⎣∑
i∈C

M∑
j=1

Zi j ln
(
β j f (Xi ; tl , tu, r j , θ)

)∣∣∣∣∣∣X ; �(k−1)

⎤⎦
= Qu(�; �(k−1)) + Qc(�; �(k−1)) , (11)

where Qu(�; �(k−1)) and Qc(�; �(k−1)) are the conditional expectations of the
uncensored and censored part of the complete log likelihood, respectively.
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3.4.1. Uncensored case. The truncation does not complicate the computation
of the expectation for the uncensored data as

Qu(�; �(k−1)) = E

⎡⎣∑
i∈U

M∑
j=1

Zi j ln
(
β j f (xi ; tl , tu, r j , θ)

)∣∣∣∣∣∣X ; �(k−1)

⎤⎦
=

∑
i∈U

M∑
j=1

E
[
Zi j

∣∣X ; �(k−1)] ln (
β j f (xi ; tl , tu, r j , θ)

)

=
∑
i∈U

M∑
j=1

uz(k)i j ln
(
β j f (xi ; tl , tu, r j , θ)

)

=
∑
i∈U

M∑
j=1

uz(k)i j

[
ln(β j ) + (r j − 1) ln(xi ) − xi

θ
− r j ln(θ)

− ln((r j − 1)!) − ln
(
F(tu; r j , θ) − F(tl; r j , θ)

)]
, (12)

with, for i ∈ U and j = 1, . . . ,M,

uz(k)i j = P(Zi j = 1 | xi , tl , tu; �(k−1))

= β
(k−1)
j f (xi ; tl , tu, r j , θ (k−1))∑M

m=1 β
(k−1)
m f (xi ; tl , tu, rm, θ (k−1))

(7)= β
(k−1)
j f (xi ; r j , θ (k−1))/

(
F(tu; r j , θ (k−1)) − F(tl; r j , θ (k−1))

)∑M
m=1 β

(k−1)
m f (xi ; rm, θ (k−1))/

(
F(tu; rm, θ (k−1)) − F(tl; rm, θ (k−1))

)
(6)= α

(k−1)
j f (xi ; r j , θ (k−1))∑M

m=1 α
(k−1)
m f (xi ; rm, θ (k−1))

, (13)

where we plugged in definitions (6) and (7) of the weights and components of the
truncated mixture in the last two equations in order to express this probability
in terms of the original mixing weights and mixing components. The E-step for
the uncensored part only requires the computation of the posterior probabilities
uz(k)i j that observation i belongs to the j th component in the mixture, which
remains the same in the truncated case and in the untruncated case.

3.4.2. Censored case. Denote by cz(k)i j the posterior probability that observa-
tion i belongs to the j th component in the mixture for a censored data point.
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Then

Qc(�; �(k−1)) = E

⎡⎣∑
i∈C

M∑
j=1

Zi j ln
(
β j f (Xi ; tl , tu, r j , θ)

)∣∣∣∣∣∣X ;�(k−1)

⎤⎦
=

∑
i∈C

E

⎡⎣ M∑
j=1

Zi j ln
(
β j f (Xi ; tl , tu, r j , θ)

)∣∣∣∣∣∣ li , ui , tl , tu; �(k−1)

⎤⎦
=

∑
i∈C

M∑
j=1

cz(k)
i j E

[
ln

(
β j f (Xi ; tl , tu, r j , θ)

)∣∣ Zi j = 1, li , ui , tl , tu; θ(k−1)
]

=
∑
i∈C

M∑
j=1

cz(k)
i j

[
ln(β j ) + (r j − 1)E

(
ln(Xi )

∣∣Zi j = 1, li , ui , tl , tu; θ(k−1)
)

− 1
θ
E

(
Xi

∣∣Zi j = 1, li , ui , tl , tu; θ(k−1)
) − r j ln(θ) − ln((r j − 1)!)

− ln
(
F(tu; r j , θ) − F(tl ; r j , θ)

)]
(14)

where we used the tower rule in the third equality. Again using Bayes’ rule, we
can compute these posterior probabilities, for i ∈ C and j = 1, . . . ,M, as

cz(k)
i j = P(Zi j = 1 | li , ui , tl , tu;�(k−1))

= β
(k−1)
j

(
F(ui ; tl , tu, r j , θ (k−1)) − F(li ; tl , tu, r j , θ (k−1))

)∑M
j=1 β

(k−1)
j

(
F(ui ; tl , tu, r j , θ (k−1)) − F(li ; tl , tu, r j , θ (k−1))

)
= β

(k−1)
j

(
F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))

)
/
(
F(tu; r j , θ (k−1)) − F(tl; r j , θ (k−1))

)∑M
j=1 β

(k−1)
j

(
F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))

)
/
(
F(tu; r j , θ (k−1)) − F(tl ; r j , θ (k−1))

)
(6)= α

(k−1)
j

(
F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))

)∑M
j=1 α

(k−1)
j

(
F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))

) . (15)

The expression for the posterior probability in the censored case has the same
form as in the uncensored case (13), but with the densities replaced by the prob-
abilities in between the upper and lower censoring points. The terms in (14) for
Qc(�; �(k−1)) containing E(ln(Xi )|Zi j = 1, li , ui , tl , tu; θ(k−1)) will not play a
role in the EM algorithm as they do not depend on the unknown parameter
vector �. The E-step requires the computation of the expected value of Xi con-
ditional on the censoring times and the mixing component Zi for the current
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value �(k−1) of �:

E
(
Xi

∣∣Zi j = 1, li , ui , tl , tu; θ(k−1) )
=

∫ ui

li
x

f (x; r j , θ (k−1))

F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))
dx

= r jθ(k−1)

F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))

∫ ui

li

xr j e−x/θ(k−1)(
θ(k−1)

)r j+1
r j !

dx

= r jθ(k−1)
(
F(ui ; r j + 1, θ (k−1)) − F(li ; r j + 1, θ (k−1))

)
F(ui ; r j , θ (k−1)) − F(li ; r j , θ (k−1))

,

for i ∈ C and j = 1, . . . ,M, which has a closed-form expression.

3.5. M-step

In the M-step, we maximize the expected value (11) of the complete data log
likelihood obtained in the E-step with respect to the parameter vector � overall
(β, θ) with β j > 0,

∑M
j=1 β j = 1 and θ > 0. The expressions for Qu(�; �(k−1))

and Qc(�; �(k−1)) are given in (12) and (14), respectively. The maximization
over the mixing weights β, requires the maximization of

∑
i∈U

M∑
j=1

uz(k)i j ln(β j ) +
∑
i∈C

M∑
j=1

cz(k)i j ln(β j ) ,

which can be done analogously as in the uncensored case (see Addendum on-
line). We implement the restriction

∑M
j=1 β j = 1 by setting βM = 1− ∑M−1

j=1 β j .
Setting the partial derivatives at β(k) equal to zero implies that the optimizer
satisfies

β
(k)
j =

∑
i∈U

uz(k)ij + ∑
i∈C

cz(k)i j∑
i∈U uz(k)iM + ∑

i∈C cz(k)iM

β
(k)
M , for j = 1, . . . ,M− 1 .

By the sum constraint, we have

β
(k)
M =

∑
i∈U

uz(k)iM + ∑
i∈C

cz(k)iM

n
,

and the same form also follows for j = 1, . . . ,M− 1

β
(k)
j =

∑
i∈U

uz(k)ij + ∑
i∈C

cz(k)ij

n
for j = 1, . . . ,M . (16)

The new estimate for the prior probability β j in the truncated mixture is the
average of the posterior probabilities of belonging to the j th component in the
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mixture. The optimizer indeed corresponds to a maximum since the matrix of
second order partial derivatives is negative definite matrix with a compound
symmetry structure.

In order to maximize Q(�; �(k−1)) with respect to θ , we set the first order
partial derivatives equal to zero (see Appendix B). This leads to the following
M-step equation for θ :

θ(k) =
(∑

i∈U xi + ∑
i∈C E

(
Xi

∣∣li , ui , tl , tu; θ(k−1)
))

/n − T(k)∑M
j=1 β

(k)
j r j

, (17)

with

T(k) =
M∑
j=1

β
(k)
j

(
tl
)r j e−tl/θ − (tu)r j e−tu/θ

θ r j−1(r j − 1)!
(
F(tu; r j , θ) − F(tl; r j , θ)

)
∣∣∣∣∣∣
θ=θ(k)

.

As in the uncensored case, the new estimate θ(k) in (17) for the common
scale parameter θ again has the interpretation of the samplemean divided by the
average shape parameter in the mixture, but in the formula for the sample mean,
we now take the expected value of the censored data points given the censoring
times and subtract a correction term T(k) due to the truncation. However, T(k)

in (17) depends on θ(k) and has a complicated form. Therefore, it is not possible
to find an analytical solution and we resort to a Newton-type algorithm to solve
(17) numerically using the previous value θ(k−1) as starting value.

The E- andM-steps are iterated until l(�(k);X )− l(�(k−1);X ) is sufficiently
small. The ML estimator of the original mixing weights α j for j = 1, . . . ,M
can be retrieved by inverting expression (6). This is most easily done by first
computing

α̃ j = β̂ j

F(tu; r j , θ̂ ) − F(tl; r j , θ̂ )
, for j = 1, . . . ,M,

where β̂ j and θ̂ denote the values in the final EM step, and then normalizing the
weights such that they sum to 1.

4. CHOICE OF THE SHAPE PARAMETERS AND OF THE NUMBER OF ERLANGS
IN THE MIXTURE

4.1. Initialization

We start by making an initial choice for the number of ErlangsM in the mixture
and set the shapes equal to r j = j for j = 1, 2, . . . ,M. Extending Lee and Lin
(2010)2, we introduce a spread factor s by which we multiply the shapes in order
to get a wider spread at the initial step, i.e. r j = s j for j = 1, 2, . . . ,M.
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The initialization of θ and α is based on the denseness of mixtures of Erlangs
(see Tijms (1994) and Appendix A), as explained in Section 3.3. Each weight
α j gets initialized as the relative frequency of data points in the interval corre-
sponding to the shape parameter r j . In case this interval does not contain any
data points for some j , the initial weight corresponding to the Erlang in the
mixture with shape r j will be zero and consequently the weight α j will remain
zero at each subsequent iteration. This is clear from the updating scheme (16) in
theM-step and the expressions (13) and (15) of the posterior probabilities in the
E-step. The shapes r j with initial weight α j equal to zero are therefore removed
from the mixture at the initial step.

Numerical experiments show that the iterative scheme performs well and
results in fast convergence using the above choice of initial estimates for θ and α.

4.2. Adjusting the shapes

Since the initial shape parameters are pre-fixed and hence not estimated, the
fitted mixture might be sub-optimal. Adjustment of the shape parameters is
necessary. Ideally, for a given number of Erlangs M, we want to choose opti-
mal values for the shapes. The choice of the shapes for a given M however is an
optimization problem over NM which is impossible to solve. We have to resort
to a practical procedure which explores the parameter space efficiently in order
to obtain a satisfying choice for the shapes.

After applying the EM algorithm a first time to obtain the ML estimates
corresponding to the initial choice of the shape parameters, we perform stepwise
variations of the shapes, each time refitting the scale and the weights using the
EM algorithm, and compare the log likelihoods of the results. We hereby follow
the procedure proposed by Lee and Lin (2010):

1. Run the algorithm starting from the shapes {r1, . . . , rM−1, rM + 1} with
initial scale θ and weights {β1, . . . , βM−1, βM} equal to the final estimates
of the previous execution of the EM algorithm. Repeat this step for as
long as the log likelihood improves, each time replacing the old set of
parameters by the new ones. This procedure is then applied on the (M−
1)th shape and so forth until all the shapes are treated.

2. Run the algorithm starting from the shapes {r1−1, r2, . . . , rM}with initial
scale θ and weights {β1, β2, . . . , βM} the final estimates of the previous
execution of the EM algorithm. Repeat this step for as long as the log
likelihood improves, each time replacing the old set of parameters by the
new ones. This procedure is then applied on the 2nd shape and so forth
until all the shapes are treated.

3. Repeat the loops described in the previous steps until the log likelihood
can no longer be increased.

Using this algorithm we eventually reach a local maximum of the log like-
lihood, by which we mean that the fit can no longer be improved by either in-
creasing or decreasing any of the r j .
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4.3. Reducing the number of Erlangs

Too many Erlangs in the mixture will result in an issue of overfitting, which
is always a problem in statistical modeling. A decision rule such as Akaike’s
information criterion (AIC, Akaike, 1974) or Schwartz’s Bayesian information
criterion (BIC, Schwarz, 1978) helps to decide on the value of M. Models with
smaller AIC and BIC values are preferred. Any other information criterion (IC)
or objective function could be optimized depending on the purpose for which
the model is used.

The problem of testing for the number of components is of both theoreti-
cal and practical importance and has attracted considerable attention of many
studies over the years and still is a major contemporary issue in a mixture mod-
eling context where the underlying population can be conceptualized as being
composed of a finite number of subpopulations. Since mixtures of Erlangs are
employed here as a semi-parametric density estimation technique and not as
model-based clustering, the commonly used criteria of AIC and BIC are ade-
quate for choosing the number of components (McLachlan and Peel, 2001).

We use a backward stepwise search. As mixtures of Erlangs are dense in the
space of positive continuous distributions, we start from a close-fitting mixture
of MErlangs resulting from the shape adjustment procedure described in Sec-
tion 4.2 and compute the value of the IC.We next reduce the number of Erlangs
M in the mixture by deleting the mixture component of which the shape r j has
smallest weight β j , refit the scale and weights using the EM algorithm and read-
just the shapes using the same shape adjustment procedure. If the resulting fit
with M− 1 Erlangs attains a lower value of the IC, the new parameter values
replace the old ones. We continue reducing the number of Erlangs in the mix-
ture until the value of the IC does no longer decrease by deleting an additional
mixture component.

A backward selection has the advantage of providing initial values close to
the ML estimates of the new set of shapes which greatly reduces the run time
(Lee and Lin, 2010). In contrast, by using a forward stepwise procedure it is not
clear which additional shape parameter to use and how the parameters from the
previous run can be used to provide useful information on parameter initializa-
tion.

As a guideline, we recommend to start from an initial choice for the number
of Erlangs Mand a spread s resulting in a close-fitting or even overfitting of the
data.

4.4. Compare the resulting fit using different initializing parameters

Since the log likelihood has multiple local maxima, the value of the initializing
parametersMand s can influence the result. Therefore, it is wise to compare the
final fits, after the shape adjustment procedure and reduction of the number of
Erlangs using an IC, starting from different choices for the initial number of Er-
langs M and/or the spread factor s in the initial step. Tuning of such initializing
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parameters is common in different numerical algorithms and fitting strategies
as well (Hastie et al., 2009). Specifically for the case of mixture of Erlangs, many
values for the tuning parameters M and s can lead to a satisfying resulting fit,
while using a different mixture of Erlangs representation. This is illustrated in
the first data example (Section 5.1, Table 1). In order not to limit the flexibility of
the fitting procedure, we do not prefix the value of M and s up front and do not
propose any stringent rule. The examples in Section 5 show how a small search
for these values is often sufficient to obtain satisfactory results. The freedom of
doing an even wider search is left as an option to the user.

5. EXAMPLES

The usefulness of the proposed fitting procedure is demonstrated using several
examples. A first example involves simulated data from a bimodal distribution
which we censor and truncate allowing us to compare the original density and
the entire uncensored and untruncated sample to the fitted mixture of Erlangs.
The second example illustrates the use of mixtures of Erlangs to represent right-
censored unemployment durations. In the third example, we illustrate the use of
mixtures of Erlangs in actuarial science in the context of loss modeling. We fit
a mixture of Erlang distribution to truncated claim size data and demonstrate
how the fitted mixture can be used to analytically price reinsurance contracts. In
the final example, we generate data from aGPdistribution to explore limitations
in modeling heavy-tailed distributions. The examples can be replicated using the
R code and datasets available on ourwebsite3. Additional examples can be found
there as well.

5.1. Simulated censored and truncated bimodal data

We generate a random sample of 5,000 observations from the bimodal mixture
of gamma distributions with density function given by

fu(x) = 0.4 f (x; r = 5, θ = 0.5) + 0.6 f (x; r = 10, θ = 1) . (18)

Next, we truncate the data by rejecting all observations beneath the 5% sample
quantile or above the 95% sample quantile. The remaining 4,500 data points
are subsequently being right censored by generating 4,500 observations from
another mixture of gamma distributions with density function

frc(x) = p f (x; r = 5, θ = 2/3) + (1 − p) f (x; r = 9, θ = 1.25) , (19)

with p = 0.4. The resulting data set is composed of 2,595 uncensored and 1,905
right censored data points, and is used to calibrate the Erlang mixture, keeping
the lower and upper truncation into account.

https://doi.org/10.1017/asb.2015.15 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.15


744 R. VERBELEN, L. GONG, K. ANTONIO, A. BADESCU AND S. LIN

TABLE 1

DEMONSTRATION OF INITIALIZATION AND FITTING PROCEDURE ON THE DATA GENERATED FROM (18).
STARTING POINT IS A MIXTURE OF 10 ERLANGS. THE INITIAL SPREAD FACTOR s RANGES FROM 1 TO 10.

THE SUPERSCRIPTS IN THE LAST TWO COLUMNS REPRESENT THE PREFERENCE ORDER ACCORDING TO THAT
INFORMATION CRITERIUM.

s r α θ AIC BIC

1 3; 12 0.46; 0.54 0.83 13961.095 13993.151

2 4; 14; 18 0.44; 0.34; 0.22 0.63 13956.312 14001.193

3 6; 15; 23; 31 0.39; 0.12; 0.35; 0.15 0.41 13959.513 14017.224

4 5; 15; 21 0.42; 0.20; 0.38 0.51 13955.611 14000.502

5 9; 15; 29; 43; 58 0.23; 0.17; 0.14; 0.31; 0.15 0.22 13961.034 14031.565

6 8; 14; 29; 43; 59 0.21; 0.20; 0.15; 0.31; 0.13 0.22 13962.636 14033.166

7 14; 23; 34; 45; 58; 74; 96 0.20; 0.17; 0.05; 0.07; 0.14; 0.24; 0.13 0.13 13970.2510 14066.4210

8 10; 16; 24; 40; 55; 69; 89 0.12; 0.18; 0.11; 0.10; 0.16; 0.21; 0.12 0.15 13966.948 14063.118

9 11; 18; 28; 46; 63; 79; 101 0.11; 0.19; 0.11; 0.10; 0.17; 0.21; 0.11 0.13 13969.239 14065.419

10 13; 21; 32; 50; 67; 84; 107 0.14; 0.18; 0.09; 0.10; 0.17; 0.21; 0.11 0.12 13966.637 14062.817

TABLE 2

PARAMETER ESTIMATES OF THE MIXTURE OF 3 ERLANGS FITTED TO THE CENSORED AND TRUNCATED
DATA WITH UNDERLYING DENSITY (18).

r j α j θ

5 0.4206869 0.5081993
15 0.2018598
21 0.3774533

Using the automatic search from Section 4.4, we start from M= 10 Erlangs
in the mixture and let the spread factor s used in the initial step range from 1
to 10. AIC is used to decide upon the number of Erlangs to use in the mixture
as explained in Section 4.3. The right censored data points are treated as be-
ing observed at the initialization in (10). The different values of the initializing
spread all lead to a different final Erlang mixture, which are reported in Table 1.
This illustrates the importance of varying the initial spread. Based on the AIC
and BIC values (and plots of the fits not shown here), the different models all
represent the data quite well.

The lowest AIC value was reached using spread factor s = 4 with a corre-
sponding mixture of 3 Erlangs. The parameter estimates of this final model are
given in Table 2.

In order to verify the goodness-of-fit, wemight consider analytical tests such
as the Kolmogorov–Smirnov test. However, the form of the test statistic and
the corresponding distribution is not at all obvious in a censored and trun-
cated setting. For the case of power-law distributions, Clauset et al. (2009) used
Kolmogorov–Smirnov tests to evaluate whether the hypothesized distribution
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FIGURE 1: Graphical comparison of the density of the fitted mixture of 3 Erlangs, the true underlying density
(18) and the histogram of the generated data before censoring and truncation (left) and of the truncated

density of the fitted mixture of 3 Erlangs, the true truncated density and the histogram of the generated data
after truncated and before censoring (right).

adequately describes the tail. Dufour and Maag (1978) modify the form of the
test statistic to allow for truncated and censored data. Guilbaud (1988) derive an
exact Kolmogorov–Smirnov test for left-truncated and/or right-censored data.
In an actuarial context, Chernobai et al. (2014) discuss goodness-of-fit tests for
left-truncated loss samples. We mainly focus on graphical goodness-of fit eval-
uation in this paper.

A graphical comparison of the fitted distribution and the originally gener-
ated data can be found in Figure 1. We compare the fitted mixture of Erlangs
density to the true density (18) and a histogram of all 5,000 generated data
points before truncation and censoring in the left plot in Figure 1. The right
plot in Figure 1 compares the truncated mixture of Erlangs density to the true
truncated density and a histogram of the 4,500 data points after truncation and
before censoring. The fitted mixture of Erlangs density shows to be a very close
approximation of the true density. Varying the spread from 1 to 10 in the initial
mixture of 10 Erlangs is sufficient to obtain a satisfactory result, so there is no
need to increase the number of Erlangs in the initial step.

In actuarial practice, loss data can sometimes be ofmultimodal nature due to
the fact that the property and casualty losses often come from multiple sources.
Clearly, using standard parametric distributions will result in unsatisfactory ap-
proximations as they are incapable of reflecting the multimodal characteristic.
Moreover, applying straightforward estimation techniques may lead to non-
convergence issues due to the censoring and truncation. On the contrary, con-
vergence is guaranteed in the presented EM algorithm for mixtures of Erlangs
and captures the bimodality of the data very flexibly.

Next, we investigate the sensitivity with respect to the level of censoring in
the data. To that end, we fix the data generated from (18), truncate them at
the 5% and 95% sample quantile and vary the value of the mixing weight p
in the density (19) of the right censoring distribution from 0 to 1 by 0.1. Let
f (x) and F(x) denote the true density and distribution function and f̂ (x) and
F̂(x) the estimated mixture of Erlangs density and distribution function. We
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TABLE 3

RESULTS OF THE SENSITIVITY ANALYSIS WITH RESPECT TO THE LEVEL OF CENSORING. FOR EACH VALUE OF
p IN THE RIGHT CENSORING DISTRIBUTION (19), WE GENERATE 100 CENSORING SAMPLES AND REPORT THE
AVERAGE CENSORING LEVEL AND AVERAGE PERFORMANCE MEASURES OF THE BEST-FITTING MIXTURES OF

ERLANG DISTRIBUTIONS.

p censoring % L1 L2 L1
t L2

t

0.0 0.2172 0.0862 0.0227 0.0266 0.0097
0.1 0.2695 0.0594 0.0170 0.0280 0.0099
0.2 0.3224 0.0740 0.0197 0.0278 0.0099
0.3 0.3753 0.0864 0.0226 0.0309 0.0109
0.4 0.4289 0.1438 0.0343 0.0329 0.0114
0.5 0.4806 0.1129 0.0277 0.0367 0.0126
0.6 0.5330 0.0905 0.0235 0.0412 0.0140
0.7 0.5844 0.1527 0.0349 0.0465 0.0157
0.8 0.6383 0.1597 0.0377 0.0594 0.0199
0.9 0.6903 0.1787 0.0416 0.0705 0.0236
1.0 0.7426 0.5156 0.1199 0.2276 0.0997

measure the performance of both the underlying and the truncated mixture of
Erlangs density estimator in approximating the underlying and the truncated
true density by calculating the L1 and L2 norms:

L1 =
∫ ∞

0

∣∣ f̂ (x) − f (x)
∣∣ dx L1

t =
∫ tu

tl

∣∣∣∣ f̂ (x)

F̂(tu) − F̂(tl)
− f (x)
F(tu) − F(tl)

∣∣∣∣ dx
L2 =

(∫ ∞

0

(
f̂ (x) − f (x)

)2
dx

)1/2

L2
t =

(∫ tu

tl

(
f̂ (x)

F̂(tu) − F̂(tl)
− f (x)
F(tu) − F(tl)

)2

dx

)1/2

For each value of p in the right censoring distribution (19), we generate 100
censoring samples of size 4,500 and each time fit an Erlang mixture to the right
censored dataset using the automatic search starting from M = 10 Erlangs in
the mixture and letting the initial spread s vary from 1 to 10. The averages of
the performancemeasures over the 100 best-fitting resultingmixtures are shown
in Table 3. The L1 and L2 norms over the truncation interval deteriorate when
increasing the censoring level, but remain quite low. This reveals that the perfor-
mance of the estimator remains excellent when the level of censoring increases,
except at the highest level where the estimated Erlang mixture is still bimodal
but the second mode and the tail of the true density are underestimated. The L1

and L2 norms over the entire positive real line do not run as parallel with the
censoring level as the truncated versions. Note in this context the limitations
of accurately estimating the density outside of the truncation interval, since no
data has been observed in that region. One should hence not rely on probability
statements made using the fitted Erlang mixture outside of the data range.
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TABLE 4

PARAMETER ESTIMATES OF THE MIXTURE OF 8 ERLANGS FITTED TO THE RIGHT-CENSORED
UNEMPLOYMENT DATA.

r j α j θ

8 0.10563305 0.1477264
17 0.09443584
33 0.08578746
50 0.09099055
73 0.04273362
99 0.14814091

135 0.07546787
199 0.35681069

5.2. Unemployment duration

We examine the economic data from the January Current Population Survey’s
Displaced Workers Supplements (DWS) for the years 1986, 1988, 1990, and
1992 which was first analyzed in McCall (1996). A thorough discussion of this
dataset is available in Cameron and Trivedi (2005). The variable under consid-
eration is unemployment duration (spell) or more accurately joblessness du-
ration, measured in two-week intervals. All other covariates in the dataset are
ignored in the analysis. Following Cameron and Trivedi (2005), a spell is con-
sidered complete if the person is re-employed at a full-time job (CENSOR1 = 1)
and right-censored otherwise (CENSOR1 = 0). This results in 1,073 uncensored
data points and 2,270 right censored data points.

The parameter estimates of the Erlang mixture, obtained by using the au-
tomatic search procedure starting from M = 10 Erlangs in the mixture with
spread factor s in the initial step ranging from 1 to 10, are given in Table 4. AIC
is again used to decide upon the number of Erlangs in the mixture and the right
censored data points are treated as being observed at initialization. The lowest
AIC value was obtained with a mixture of 8 Erlangs. This optimal choice of
shapes was reached using spread factor s = 10.

The Kaplan–Meier estimator (Kaplan and Meier, 1958), also known as the
product limit estimator, is the standard non-parametric estimator of the sur-
vival function in case of right censored data. The resulting survival curve is a
step function with jumps at the observed event times of which the size not only
depends on the number of events observed at each event time, but also on the
pattern of the censored observations prior to that event time. In order to graph-
ically evaluate the fit, we compare the Kaplan–Meier survival curve, along with
95% confidence bounds, to the survival function of the estimated Erlang mix-
ture in Figure 2. Marks are added on the Kaplan–Meier estimate to indicate
censoring times. The fitted survival function provides a smooth fit of the data,
closely resembling the non-parametric estimate.

As an illustration, we also compare our approach to two commonly used
parametric models, the GP distribution and the generalized beta distribution of
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FIGURE 2: Graphical comparison of the survival function of the fitted mixture of 8 Erlangs and the
Kaplan–Meier estimator with 95% confidence bounds for the right-censored unemployment data.

TABLE 5

COMPARISON OF INFORMATION CRITERIA FOR THE DIFFERENT MODELS FITTED TO THE RIGHT-CENSORED
UNEMPLOYMENT DATA.

Model AIC BIC

Mixtures of Erlangs 8066.281 8170.230
Generalized Pareto (GP) 8733.718 8745.947
Generalized beta 2 (GB2) 8280.168 8304.627

the second kind (GB2). In Figure 2, we see how mixtures of Erlangs offer much
more flexibility and lead to a more appropriate fit for these data at the cost of
requiring more parameters. However, AIC and BIC strongly prefer the mixture
of Erlangs approach, see Table 5.

5.3. Secura Re, Belgian insurance data

The Secura Re dataset discussed in Beirlant et al. (2004) contains 371 auto-
mobile claims from 1988 until 2001 gathered from several European insurance
companies. The data are uncensored, but left truncated at 1, 200, 000 since a
claim is only reported to the reinsurer if the claim size is at least as large as
1, 200, 000 euro. The sizes of the claims are corrected among others for infla-
tion. Based on these observations, the reinsurer wants to calibrate a model in
order to price reinsurance contracts.

The search procedure using AIC prefers a mixture of only two Erlangs with
shapes 5 and 16. The parameter estimates of this best-fitting mixture are shown
in Table 6. In Figure 3 (left) we compare the histogram of the truncated data to
the fitted truncated density. Figure 3 (right) illustrates that the truncated survival
function of the mixture of two Erlangs perfectly coincides with the Kaplan–
Meier estimate.
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TABLE 6

PARAMETER ESTIMATES OF THE MIXTURE OF 2 ERLANGS FITTED TO THE LEFT-TRUNCATED CLAIM SIZES IN
THE SECURA RE DATASET.

r j α j θ

5 0.97103229 360096.1
16 0.02896771
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FIGURE 3: Graphical comparison of the truncated density of the fitted mixture of 2 Erlangs and the
histogram of the left-truncated claim sizes (left) and of the truncated survival function and the Kaplan–Meier

estimator with 95% confidence bounds (right) for the Secura Re dataset.
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FIGURE 4: QQ-plot of the empirical quantiles and the quantiles of the fitted mixture of 2 Erlangs with
identity line (left) and log-log plot of the empirical truncated survival function and the truncated survival

function of the fitted Erlang mixture (right) for the Secura Re dataset.

In Figure 4, we validate the fit in the tail by plotting the QQ-plot on the left
and the log-log plot of the empirical truncated survival function (black dots)
and the truncated survival function of the best-fitting Erlang mixture (red line)
on the right. Both figures show how the mixture of only two Erlangs achieves a
adequate approximation in the tail.

Following Beirlant et al. (2004), we use the calibrated Erlang mixture to
price an excess-of-loss (XL) reinsurance contract, where the reinsurer pays for
the claim amount in excess of a given limit. The net premium �(R) of such a
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TABLE 7

NON-PARAMETRIC, HILL, GP AND MIXTURE OF ERLANGS-BASED ESTIMATES FOR �(R).

R Non-Parametric Hill GP Mixture of Erlangs

3,000,000 161,728.1 163,367.4 166,619.6 163,987.7
3,500,000 108,837.2 108,227.2 111,610.4 110,118.5
4,000,000 74,696.3 75,581.4 79,219.0 77,747.6
4,500,000 53,312.3 55,065.8 58,714.1 55,746.3
5,000,000 35,888.0 41,481.6 45,001.6 39,451.6
7,500,000 1,074.5 13,944.5 16,393.3 4,018.6

10,000,000 0.0 6,434.0 8,087.8 159.6

contract with retention level R> 1, 200, 000 is given by

�(R) = E((X− R)+ | X > 1, 200, 000),

where X denotes the claim size and (·)+ = max(·, 0). In case X follows amixture
ofMErlang distributions, where we assume without loss of generality ri = i for
i = 1, . . . ,M, the net premium is

�(R) = θe−R/θ

1 − F(1, 200, 000; α, r, θ)

M−1∑
n=0

(
M−1∑
k=n

Ak

)
(R/θ)n

n!

= θ2

1 − F(1, 200, 000; α, r, θ)

M∑
n=1

(
M−1∑
k=n−1

Ak

)
f (R; n, θ) , (20)

with Ak = ∑M
j=k+1 α j for k = 0, . . . ,M− 1. The derivation of this property can

be reconstructed using Willmot and Woo (2007) or Klugman et al. (2013). In
Table 7, we compare the non-parametric, Hill and GP based estimates of �(R)

for the Secura Re dataset from Table 6.1 in Beirlant et al. (2004) to the estimates
obtained using formula (20). The maximum claim size observed in the dataset
equals 7, 898, 639which is the only data point onwhich the non-parametric esti-
mate of the net premium with retention level R= 7, 500, 000 is based. The non-
parametric estimate corresponding to retention level R = 10, 000, 000 is hence
zero. The fitted Erlang mixture allows us to estimate the net premium using
intrinsically all data points, but postulates a lighter tail compared to the Pareto-
type alternatives since Erlang mixtures have an asymptotically exponential tail
(Neuts, 1981, p. 62). Both the estimates based on the extreme value methodol-
ogy and those based on the Erlang mixture keep pace with the non-parametric
ones, but at the high-end of the sample range, the estimators differ strongly, as
implied by the different tail behavior of the three approaches. The reinsurance
actuary should carefully investigate the right tail behavior of the data in order
to choose his approach.

Besidesmodeling the tail of the claim size distribution above a certain thresh-
old, Beirlant et al. (2004) also estimate a global statistical model to describe the
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TABLE 8

NON-PARAMETRIC, EXP-PAR AND MIXTURE OF ERLANGS-BASED ESTIMATES FOR �(R).

R Non-Parametric Exp-Par Mixture of Erlangs

1,250,000 981,238.0 944,217.8 981,483.1
1,500,000 760,637.6 734,371.6 760,912.9
1,750,000 583,403.6 571,314.1 582,920.1
2,000,000 445,329.8 444,275.5 444,466.6
2,250,000 340,853.2 344,965.2 339,821.4
2,500,000 263,052.7 267,000.7 262,314.6

whole range of all possible claim outcomes for the Secura Re dataset. This is
needed when trying to estimate �(R) for values of R smaller than the threshold
above which the extreme value distribution is fit. Based on themean excess func-
tion, the authors propose the use of a mixture of an exponential and a Pareto
distribution (Exp-Par). Instead of having to use this body-tail approach (a form
a splicing, see Klugman et al. (2012)) explicitly, the implemented shape adjust-
ment and reduction techniques when fitting the Erlang mixture have guided us
to a mixture with two components of which the first one represents the body of
the distribution and the second represents the tail. The fitting procedure for Er-
lang mixtures is able to make this choice implicitly in a data driven way, leading
to a close representation of the data. In Table 8, we compare the estimated net
premiums from Table 6.2 in Beirlant et al. (2004) obtained using the Exp-Par
model to the non-parametric and mixture of Erlangs estimates. The estimates
based on the fitted Erlang mixture follow the non-parametric ones more closely
than those obtained using the Exp-Par model.

Note that when R = 1, 200, 000, the net premium equals the mean excess
loss E(X − R | X > R), which is called the mean residual lifetime in survival
context. Klugman et al. (2013) show that the distribution of the excess loss or
residual lifetime is again a mixture of M Erlangs with the same scale θ and
different weights which we can compute analytically:

α∗
j =

∑M− j
n=0 αn+ j f (R; n + 1, θ)∑M−1
n=0 An f (R; n + 1, θ)

, for j = 1, . . . ,M .

5.4. Simulated generalized Pareto data

When modeling claim sizes, the insurer or reinsurer is often confronted with
heavy tailed distributions. To safeguard the company against extreme losses that
might jeopardize their solvency, an accurate description of the upper tail of the
claim size distribution is of utmost importance. In order to explore the limits of
Erlang mixtures in approximating heavy-tailed distribution using the presented
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method, we consider the GP distribution with density

fX(x; μ, σ, ξ) = 1
σ

(
1 + ξ(x− μ)

σ

)(
− 1

ξ
−1

)
, for x � μ . (21)

with location μ > 0, scale σ > 0 and shape ξ > 0. The GP family is known
for its tail thickness and is used for insurance branches with a high probability
of large claims, such as liability insurance. The shape parameter coincides with
the extreme value index (EVI) and determines the heaviness of the tail (Beirlant
et al., 2004). The higher the value of the EVI, the heavier the tail. The variance is
finite for ξ < 1/2 and the mean is finite for ξ < 1. In general is the kth moment
finite for ξ < 1/k. When modeling the Secura Re data of the previous example
using Pareto-type modeling, Beirlant et al. (2004) estimate the corresponding
EVI around 0.3.Using the presentedmethod, wewere able to obtain a very good
approximation in the tail with a mixture of Erlangs. We now want to illustrate
what happens when the EVI further increases, by generating 1,000 observations
from a GP distribution with location μ = 10, scale σ = 2 and shape ξ = 1. In
this extreme setting, the EVI equals 1 and none of the moments exist. Location
μ = 10 implies that the distribution is left truncated at 10.

In order to obtain a decent approximation of this sample, the initial values
of the number of Erlangs M and the spread s become even more important.
Due to the fact that the data is very skew and heavy-tailed, the maximum in
the dataset is extremely high, i.e. max(x) = 10636.49, and many of the initial
shape parameters in the mixture will get a corresponding weight equal to zero.
To ensure that we start our calibration procedure with sufficient non-zero shape
parameters, we decided – after some exploratory choices for M and s – to try
all combinations of spread s between 1 and 10 and initial number of Erlangs

M =
⌈
max(x)

i

⌉
for i = 1, . . . , 10, leading to initial mixtures with 30 to 85 non-

zero weight Erlang components. The best-fitting Erlang mixture according to

AIC was obtained starting from M=
⌈
max(x)

7

⌉
= 1520 and s = 4, correspond-

ing to a mixture of 34 non-zero weight Erlang components at the initial step.
The parameter estimates of the final mixture of 16 Erlangs, after the shape ad-
justment procedure and the reduction of the number of Erlangs based on AIC,
are given in Table 9.

The underlying untruncated mixture contains 16 components and is dom-
inated by an Erlang distribution with shape 2, modeling the main bulk of the
data, whereas the approximation of the tail requires a combination of 15 Erlangs
with shapes ranging from 13 to 7964. A graphical comparison of the fitted Er-
langmixture and the underlying true distribution up to the 95% sample quantile
is shown in Figure 5. The QQ-plot in Figure 6 (left) shows that this mixture
does a great job in fitting the sample in the tail. However, the log-log plot of
the empirical truncated survival function and the truncated survival function of
the best-fitting Erlang mixture in Figure 6 (right) reveals that this approxima-
tion is obtained by letting separate Erlang components with a very small weight
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TABLE 9

PARAMETER ESTIMATES OF THE MIXTURE OF 16 ERLANGS FITTED TO THE SIMULATED GENERALIZED
PARETO DATA.

r j α j θ

2 0.9973387302 1.334924
13 0.0016914393
20 0.0002066144
28 0.0003513364
47 0.0001826860
74 0.0000809294

120 0.0000458669
163 0.0000079065
211 0.0000286491
286 0.0000073181
488 0.0000073471
613 0.0000219147

3,338 0.0000073155
4,472 0.0000073155
6,307 0.0000073155
7,964 0.0000073155
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FIGURE 5: Graphical comparison of the truncated density of the fitted mixture of 16 Erlangs and the
histogram (left) and of the truncated survival function and the Kaplan–Meier estimator with 95% confidence

bounds (right) for the simulated generalized Pareto data up to the 95% empirical quantile.

coincide with the largest data points that lie very far apart. Moreover, all mo-
ments of a finite mixture of Erlangs are finite whereas the expected value of the
underlying distribution is infinite. We thus conclude that in this extreme setting
with EVI equal to 1, the fitted finite mixture of Erlang distributions follows the
observed dataset closely, but is not able to extrapolate the heaviness in the tail
in comparison to the extreme value methodology based on the Fisher–Tippett–
Gnedenko theorem.
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FIGURE 6: QQ-plot of the empirical quantiles and the quantiles of the fitted mixture of 16 Erlangs with
identity line (left) and log-log plot of the empirical truncated survival function and the truncated survival

function of the fitted Erlang mixture (right) for the simulated generalized Pareto data.

6. DISCUSSION

We extend the Lee and Lin (2010) EM algorithm for fitting mixtures of Erlangs
with a common scale parameter to censored and truncated data. The EM algo-
rithm able to deal with censored and truncated data remains a simple iterative
algorithm. The initialization of the parameters can be done in a similar way as in
Lee and Lin (2010) based on the denseness property (Tijms, 1994) and provides
close starting values making the algorithm converge fast. The shape adjustment
procedure explores the parameter space in a clever way such that, when adjust-
ing and reducing the shapes, the previous estimates for the scale and the weights
provide a very close approximation to the ML estimates corresponding to the
new set of shapes, which greatly reduces the run time. Extending Lee and Lin
(2010), we suggest the use of a spread factor to achieve a wider spread for the
shapes at the initial step. We recommend comparing the resulting fits starting
from different initial values obtained by varying the spread factor and changing
the initial number of Erlangs.

We implement the fitting procedure in R and show how mixtures of Erlangs
can be used to adequately represent any univariate distribution in a wide variety
of applications where data is allowed to be censored and truncated. We focus in
the paper on the domain of actuarial science, where claim severity data is often
censored and truncated due to policy modifications such as deductibles and pol-
icy limits. The use of mixtures of Erlangs offers on the one hand the flexibility
of nonparametric density estimation techniques to describe the insurance losses
and on the other hand the feasibility to analytically quantify the risk. The ex-
amples on several simulated and real datasets illustrate the effectiveness of our
proposed algorithm and demonstrate the approximation strength of mixtures
of Erlangs.

Future researchmay explore incorporating regressor variables in themixture
of Erlangs with common scale and introducing the flexibility of this approach in
a regression context. We detected some limitations of mixtures of Erlangs in ap-
proximating heavy-tailed distributions and suggest combining ourmethodology
with the extreme value methodology using a body-tail approach (Pigeon and
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Denuit, 2011; Lee et al., 2012). Adjusting the EM algorithm tailored to the class
of multivariate mixtures of Erlangs, introduced by Lee and Lin (2012), to the
case of censored and truncated data is another appealing extension.
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NOTES

1. See www.feb.kuleuven.be/roel.verbelen
2. We acknowledge the help of Simon Lee who suggested this approach in personal communi-

cation.
3. www.feb.kuleuven.be/roel.verbelen. The R code contains the procedures discussed in sec-

tion 4. An illustration is provided for the first example we consider.
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APPENDIX A DENSENESS

Theorem A.1 (Tijms (1994)). The class of mixtures of Erlang distributions with
a common scale parameter is dense in the space of distributions on R+. More
specifically, let F(x) be the cumulative distribution function of a positive random
variable. Define the following cumulative distribution function of a mixture of Er-
lang distributions with a common scale parameter θ > 0,

F(x; θ) =
∞∑
j=1

α j (θ)F(x; j, θ) ,

where F(x; j, θ) denotes the cumulative distribution function of an Erlang distri-
bution with shape j and scale θ ,

F(x; j, θ) = 1 −
j−1∑
n=0

e−x/θ (x/θ)n

n!
,

and the mixing weights are given by

α j (θ) = F( jθ) − F(( j − 1)θ), for j = 1, 2, . . . .

Then
lim
θ→0

F(x; θ) = F(x) ,

for each point x at which F(·) is continuous.

APPENDIX B PARTIAL DERIVATIVE OF Q

We first introduce the lower incomplete gamma function

γ (s, x) =
∫ x

0
zs−1e−zdz ,

by which we can write the cumulative distribution function of an Erlang distri-
bution as

F(x; r, θ) =
∫ x

0

zr−1e−z/θ

θ r (r − 1)!
dz = 1

(r − 1)!

∫ x/θ

0
ur−1e−udu = γ (r, x/θ)

(r − 1)!
. (22)
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In order to maximize Q(�; �(k−1)) with respect to θ , we set the first order
partial derivative at θ(k) equal to zero

∂Q(�; �(k−1))

∂θ

∣∣∣∣∣
θ=θ(k)

=
∑
i∈U

M∑
j=1

uz(k)
i j

(
xi
θ 2

− r j
θ

−
∂

∂θ

[
F(tu; r j , θ) − F(tl ; r j , θ)

]
F(tu; r j , θ) − F(tl ; r j , θ)

)

∑
i∈C

M∑
j=1

cz(k)
i j

(
E

(
Xi

∣∣Zi j = 1, li , ui , tl , tu; θ(k−1)
)

θ 2
− r j

θ

−
∂

∂θ

[
F(tu; r j , θ) − F(tl; r j , θ)

]
F(tu; r j , θ) − F(tl; r j , θ)

)∣∣∣∣∣
θ=θ(k)

(22)= 1
θ 2

∑
i∈U

⎛⎝ M∑
j=1

uz(k)
i j

⎞⎠ xi + 1
θ 2

∑
i∈C

⎛⎝ M∑
j=1

cz(k)
i j E

(
Xi

∣∣Zi j = 1, li , ui , tl , tu; θ(k−1)
)⎞⎠

−n
θ

M∑
j=1

(∑
i∈U

uz(k)
i j + ∑

i∈C
cz(k)
i j

n

)
r j

−
∑
i∈U

M∑
j=1

uz(k)
i j

∂

∂θ

(
γ (r j , tu/θ) − γ (r j , tl/θ)

)
(r j − 1)!

(
F(tu; r j , θ) − F(tl ; r j , θ)

)
−

∑
i∈C

M∑
j=1

cz(k)
i j

∂

∂θ

(
γ (r j , tu/θ) − γ (r j , tl/θ)

)
(r j − 1)!

(
F(tu; r j , θ) − F(tl; r j , θ)

)
∣∣∣∣∣∣
θ=θ(k)

(16)= 1
θ 2

∑
i∈U

xi + 1
θ 2

∑
i∈C

E
(
Xi

∣∣li , ui , tl , tu; θ(k−1)
) − n

θ

M∑
j=1

β
(k)
j r j

−
∑
i∈U

M∑
j=1

uz(k)
i j

tl/θ2
(
tl/θ

)r j−1
e−tl /θ − tu/θ2 (tu/θ)r j−1 e−tu/θ

(r j − 1)!
(
F(tu; r j , θ) − F(tl ; r j , θ)

)
−

∑
i∈C

M∑
j=1

cz(k)
i j

tl/θ2
(
tl/θ

)r j−1
e−tl /θ − tu/θ2 (tu/θ)r j−1 e−tu/θ

(r j − 1)!
(
F(tu; r j , θ) − F(tl ; r j , θ)

)
∣∣∣∣∣∣
θ=θ(k)

= 1
θ 2

∑
i∈U

xi + 1
θ 2

∑
i∈C

E
(
Xi

∣∣li , ui , tl , tu; θ(k−1)
) − n

θ

M∑
j=1

β
(k)
j r j

− n
θ 2

M∑
j=1

β
(k)
j

(
tl
)r j e−tl /θ − (tu)r j e−tu/θ

θ r j−1(r j − 1)!
(
F(tu; r j , θ) − F(tl; r j , θ)

)
∣∣∣∣∣∣
θ=θ(k)

= 0 ,

where we used expression (22) of the cumulative distribution of an Erlang.
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