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ABSTRACT

The Erlang mixture model has been widely used in modeling insurance losses
due to its desirable distributional properties. In this paper, we consider the
problem of efficient estimation of the Erlang mixture model. We present a new
thresholding penalty function and a corresponding EM algorithm to estimate
model parameters and to determine the order of the mixture. Using simulation
studies and a real data application, we demonstrate the efficiency of the EM
algorithm.
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1. INTRODUCTION

In this paper, we consider the estimation of a (univariate) Erlang mixture model
with density:

h(x; α, γ, θ) =
m∑
j=1

α j
xγ j−1e−x�θ

θγ j (γ j − 1)!
, x > 0, (1.1)

where θ > 0 is a common scale parameter, γ = (γ1, γ2, . . . , γm) with γ1 < γ2 <

· · · < γm are the integer shape parameters, and α = (α1, . . . , αm) are the mixing
weights.

The Erlang mixture has been widely used to model insurance losses. In
insurance ruin theory, when insurance loss severity is modeled using an Erlang
mixture, many quantities of interest such as the probability of infinite ruin,
the Laplace transform of the time of ruin random variable may be expressed
analytically. See Lin and Willmot (2000), Tsai and Willmot (2002), Landriault
and Willmot (2009), Barges et al. (2013), and references therein. More recently
the focus of using an Erlang mixture model in insurance is on fitting the model
to real insurance loss data. Using an Erlang mixture model to fit insurance loss
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data is very appealing due to many of its desirable distributional properties. The
distribution function and moments have an analytical form. As a result, risk
measures such as value-at-risk (VaR) and tail VaR (TVaR) can be calculated
easily. Any positive distribution can be approximated by an Erlang mixture to
any given accuracy in the sense of weak convergence (Tijms approximation;
See Tijms (2003)), especially in the situation that data exhibits multi-modal
behavior. Further, there is a stable and fast expectation-maximization (EM)
algorithm that can fit an Erlang mixture to data. Also, the Erlang mixture
is weakly identifiable in the sense of Teicher (1963), i.e. two Erlang mixtures
of form (1.1) are equal if and only if their scale parameter, weights and
shape parameters are equal, respectively. The identifiability ensures that the
EM algorithm converges to a unique distribution. See Lee and Lin (2010),
Cossette et al. (2012), Cossette et al. (2013), Porth et al. (2014), Verbelen et al.
(2015a) and references therein. In particular, Verbelen et al. (2015a) apply
an Erlang mixture to censored and truncated insurance data and use the
model to calculate the net premium of reinsurance contracts. More recently,
a multivariate version of the Erlang mixture model (1.1) was proposed in Lee
and Lin (2012). The multivariate model not only inherits most of the desirable
distributional properties but also offers a non-copula approach for dependence
modeling. Also see Hashorva and Ratovomirija (2015), Verbelen, Antonio and
Claeskens (2015), Willmot and Woo (2015), and Badescu et al. (2015).

Although a fast EM algorithm is available for the estimation of the model
parameters, i.e. the common scale parameter and mixing weights, the shape pa-
rameter of each of theErlang components is not estimated by theEMalgorithm.
In order to include all possible Erlang distributions for component selection,
one must start a large number of components in an Erlang mixture when run-
ning the EM algorithm. Over-fitting could be an issue in this situation. Tomain-
tain goodness of fit and avoid over-fitting at the same time, an ad hoc method
for shape parameter selection and BIC are used. See Lee and Lin (2010) and
Verbelen et al. (2015a). Several issues arise. First, the ad hoc method requires
repeated runs of the EM algorithm, which can be computationally burdensome.
Second, the chosen shape parameters are often suboptimal in terms of the order
of the mixture (see the discussions in Section 4 of this paper). Also using BIC
often results in a poor fit of a model to the sparse right tail of the data, a major
shortcoming in insurance loss modeling and risk measure calculation. Finally,
statistical properties of the corresponding estimators cannot be obtained under
the ad hoc approach.

Using penalty functions such as the L1 penalty in Lasso (Tibshirani (1996))
and the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li
(2001)) are popular in regression analysis, especially for sparse GLMs. The ap-
plication of the latter to a likelihood can produce a sparse set of non-zero un-
biased coefficients in a linear model and hence reduce model complexity. Due
to some similarities between linear models and mixture models, this approach
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may be applicable to mixture modeling. Chen and Khalili (2008) applied the
approach to the estimation of a finite Gaussian mixture. They developed a new
penalty function based on the SCAD penalty and showed that the resulting
estimators for the order of the mixture and its mixing weights are consistent.
Motivated by Chen and Khalili (2008), in this paper we propose a new penalty
function, termed as iSCAD, for the estimation of the Erlang mixture (1.1). The
modification is due to the fact that the penalty in Chen and Khalili (2008) is
not applicable in our situation. We show in the later sections that the aforemen-
tioned issues can be resolved satisfactorily. In a separate paper, Yin and Lin
(2016), we prove that the corresponding estimators based on our approach are
consistent.

This paper is organized as follows, In Section 2, some distributional prop-
erties including VaR and TVaR are presented and discussed. In Section 3, we
introduce the iSCAD penalty and present an EM algorithm for the iSCAD pe-
nalized likelihood. Two simulation studies are conducted in Section 4 to illus-
trate how to apply the EM algorithm and to demonstrate the efficiency of the
EM algorithm by comparing it with the existing estimation methods. In Sec-
tion 5, we apply the EM algorithm to medical insurance claims in the Society
of Actuaries’ Large Claims Database. A brief conclusion is given in the final
section.

2. LEFT-TRUNCATED DISTRIBUTION AND RISK MEASURES

Insurance loss/claim data are mostly left truncated with known truncation
points (in the form of a deductible or retention limit). See the data sets in Beir-
lant et al. (2006) and Verbelen et al. (2015a). Hence model fitting is essentially
fitting a model to left-truncated data and to estimate the model parameters ac-
cordingly. In this section, we provide the analytic expressions of the left trun-
cated distribution of (1.1) and the two risk measures, the VaR and TVaR, to be
used in the later sections.

For the notational simplicity, we denote an Erlang density as

f (x; γ, θ) = xγ−1e−x�θ

θγ (γ − 1)!
.

Its survival function is given by

F(x; γ, θ) =
γ−1∑
k=0

e−x/θ (x/θ)k

k!
.
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Let l be a truncation point. Thus, the density of left-truncated Erlang mixture
is

h(x; l, α, γ, θ) = h(x; α, γ, θ)

H(l; α, γ, θ)
=

m∑
j=1

α j
f (x; γ j , θ)

H(l; α, γ, θ)

=
m∑
j=1

α j
F(l; γ j , θ)

H(l; α, γ, θ)

f (x; γ j , θ)

F(l; γ j , θ)

=
m∑
j=1

π j f (x; l, γ j , θ), x > l, (2.1)

where H(x; α, γ, θ) is the survival function of h(x; α, γ, θ), π j = α j
F(l;γ j ,θ)

H(l;α,γ,θ)
,

and f (x; l, γ j , θ) = f (x;γ j ,θ)

F(l;γ j ,θ)
. We remark that H(x; α, γ, θ) may be expressed in

terms of Erlang densities explicitly. See Lee and Lin (2010).
Obviously, (2.1) is a mixture of left-truncated Erlangs with truncation point

l and its survival function is given by

H(x; l, α, γ, θ) =
m∑
j=1

π j
F(x; γ j , θ)

F(l; γ j , θ)
, x ≥ l. (2.2)

VaR and TVaR are two commonly used risk measures that estimate how much
an insurance/investment portfolio might lose in a time period. Given a security
level p, VaR is a probability of ruin measure and is defined as the 100p-th per-
centile of the loss distribution of the portfolio. TVaR is a cost of ruin measure
and is defined as the expected loss given that the loss is greater than the corre-
sponding VaR.

In order to calculate risk measures VaR and TVaR based on truncated
data, we re-express the left-truncated survival function (2.2) in terms of Erlang
densities:

H(x; l, α, γ, θ) = θ

H(l; α, γ, θ)

γm∑
j=1

Qj f (x; j, θ), x ≥ l, (2.3)

where Qj = ∑γm
k= j α

∗
k, j = 1, . . . , γm, in which α∗

k = α j if k = γ j and α∗
k = 0

otherwise. The derivation is almost identical to that in Lee and Lin (2010) and
is omitted here.

Value at risk at security level p, VaRp, can be calculated by solving the fol-
lowing equation for x:

θ

H(l; α, γ, θ)

γm∑
j=1

Qj f (x; j, θ) = 1 − p. (2.4)
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Similarly, when the loss random variable X follows the Erlang mixture (1.1),
the stop-loss premium or the net premium of the excess of loss (in the context
of re-insurance) at retention level R> l may be written as

E((X− R)+|X > l) = θ2

H(l; α, γ, θ)

γm∑
j=1

Q∗
j f (R; j, θ) (2.5)

where Q∗
j = ∑γm

k= j Qk, j = 1, . . . , γm.
Tail VaR at security level p, TVaRp, is given by

TVaRp = E(X |X > VaRp) = θ2

H(VaRp; α, γ, θ)

γm∑
j=1

Q∗
j f (VaRp; j, θ)+VaRp.

(2.6)

3. iSCAD AND ASSOCIATED EM ALGORITHM

There are a number of similarities between a generalized linear model and a
mixture model due to their linear structure. An effective way to increase sparsity
and accuracy of a GLM in variable selection is to use a thresholding penalty.
See Donoho and Johnstone (1994), Fan and Li (2001) and references therein.
This idea is applicable to mixture modeling to select component distributions in
a mixture model. Onemay use a thresholding penalty to penalize a likelihood of
the mixture model in such a way that any weight estimate below a given thresh-
old is reset to zero. As a result, the order of a mixture model is minimized. The
SCAD penalty proposed in Fan and Li (2001) stands out from other forms of
penalty mainly due to its three desirable properties in estimation: unbiasedness,
continuity and sparsity. Borrowing the idea from the SCAD penalty, Chen and
Khalili (2008) introduce a new penalty function, called MSCAD, to determine
the order and mixing distribution of Gaussian mixtures as the MSCAD allows
the EM algorithm to cluster and merge component distributions. However, the
MSCAD is not applicable to Erlang mixtures as the shape parameter of an Er-
lang is an integer which makes merging two Erlang distributions impossible.

In this section, we propose a new thresholding penalty function termed as
iSCAD, which is a function of individual weights of a to-be-estimated Erlang
mixture. The iSCAD penalty function for each weight π j is defined as

Pε,λ(π j ) = λ{ln aλ + ε

ε
+ a2λ2

2
− aλ
aλ + ε

}I(π j > aλ)

+ λ{ln π j + ε

ε
− π2

j

2
+ (aλ − 1

aλ + ε
)π j }I(π j ≤ aλ),

(3.1)

where I(·) is the indicator function; λ serves as a tuning/thresholding parameter
such that when an estimated weight is below λ, it is set to be 0. The plot of an
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FIGURE 1: Plot of iSCAD penalty with λ = 0.2 and ε = 0.09.

iSCADpenalty is given in Figure 1. To apply the iSCADpenalty to a likelihood,
we assume that λ is a function of n with conditions: λ → 0, nλ → ∞, as n →
∞. The conditions ensure that the order estimator is consistent (Yin and Lin
(2016)). In general, we let λ = C(m)√

n , where C(m) is a decreasing function of
the order m; a = m

m−λ
> 1 to ensure that the estimator π̂ j of π j is continuous;

parameter ε > 0, ε → 0, as n → ∞, to ensure that the range of π j includes 0.
The choice of λ and ε will be discussed later in this section and Section 4.

It is clear that the first derivative of the iSCAD penalty function with respect
to π j is

P′
ε,λ(π j ) = λ{ 1

π j + ε
− π j + (aλ − 1

aλ + ε
)}I(π j ≤ aλ)

= λ(aλ − π j ){1 + 1
(π j + ε)(aλ + ε)

}I(π j ≤ aλ).

(3.2)

Hence, Pε,λ(π j ) and P′
ε,λ(π j ) are continuous in π j .Moreover, Pε,λ(π j ) is increas-

ing in π j with Pε,λ(0) = 0. P′
ε,λ(π j ) is decreasing in π j with P′

ε,λ(1) = 0. The last
property also implies that iSCAD is concave.

The tuning parameter will ensure the sparsity of the mixture as it serves as a
lower bound of the mixing weights. This property is crucial to avoid over-fitting
and tomaintain fitting accuracy at the same time.Moreover, the structure of the
iSCAD penalty and its derivative will result in the unbiasedness and continuity
in estimation of the mixing distribution as will be seen later in this section. The
consistency of the estimator of the order of a mixture is always a challenging
problem. We provide a lengthy proof to show that the estimator of the order
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of the Erlang mixture under the iSCAD penalty is consistent in Yin and Lin
(2016).

In the remainder of this section, we present an EM algorithm to maximize
the penalized likelihood of an Erlang mixture. With the iSCAD penalty, the
algorithm is able to estimate both the order of the mixture and the mixing dis-
tribution, and to induce sparsity of the model.

Suppose that X = (X1, . . . , Xn) is a random sample of size n from a
sparse Erlang mixture with density h(x; l, γ, φ) = ∑m

j=1 π j f (x; l, γ j , θ). Let
x = (x1, . . . , xn) be its left-truncated observations. The parameters in the model
that is to be estimated are φ = (π1, . . . , πm, θ).

We begin with a “large”model that includes all possible Erlang components:

h0(x; l, γ0, φ) =
M∑
j=1

π j f (x; l, γ 0
j , θ).

In general, we initially set γ 0
j = j for all j and M is chosen such that θ(0)M is

greater than or equal to the largest sample point, where θ(0) is the initial scale
parameter in the EM algorithm.

The log-likelihood function is

�n(φ) =
n∑
i=1

ln(h0(xi ; l, γ0, φ)) =
n∑
i=1

ln(

M∑
j=1

π j f (xi ; l, γ 0
j , θ)). (3.3)

The log-likelihood function with iSCAD penalty is then given by

�n,P(φ) = �n(φ) − n
M∑
j=1

Pε,λ(π j ). (3.4)

To apply an EM algorithm, a standard approach is to introduce the following
unobservable component-indicator random vectors: Z = (Z1, . . . , Zn), where
Zi = (Zi j |i = 1, . . . , n, j = 1, . . . ,M), with

Zi j =
{
1 if observation xi comes from j th component density f (xi ; γ 0

j , θ)

0 otherwise.
(3.5)

The log-likelihood function of the complete sample (x, Z) is then

�n(φ; x, Z) =
n∑
i=1

M∑
j=1

Zi j ln(π j f (xi ; l, γ 0
j , θ)). (3.6)
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The log-likelihood function of the complete data (x, Z) with iSCAD penalty is

�n,P(φ; x, Z) = �n(φ; x, Z) − n
M∑
j=1

Pε,λ(π j ). (3.7)

Suppose that we have completed the kth iteration in the EM algorithm with
estimates φ(k) = (π

(k)
1 , . . . , π

(k)
M , θ (k)). Then the E-Step and the M-Step can be

obtained as follows.

E-step:

Q(φ | φ(k)) = E(�n,P(φ; x, Z)|x, φ(k))

=
n∑
i=1

M∑
j=1

[ln(π j ) − xi
θ

− γ 0
j ln(θ)

− F(l; γ 0
j , θ)]q(γ 0

j | xi , φ(k)) − n
M∑
j=1

Pε,λ(π j ),

(3.8)

where q(γ 0
j | xi , φ(k)) is the probability of the observation xi coming from the

j th component:

q(γ 0
j | xi , φ(k)) = π

(k)
j f (xi ; l, γ 0

j , θ
(k))∑M

j=1 π
(k)
j f (xi ; l, γ 0

j , θ
(k))

. (3.9)

M-step: The MLE of π j , j = 1, . . . ,M and θ can be obtained as

φ̂
(k+1) = argmax

φ

{Q(φ | φ(k))}.

Denote q̄(k)
j �

∑n
i=1 q(γ 0

j |xi ,φ(k))

n . The Lagrange method leads to an explicit expres-
sion of the (k+ 1)st estimate of π j

π̂
(k+1)
j = q̄(k)

j I(q̄(k)
j > aλ) + M

λ
(q̄(k)

j − λ)+ I(q̄
(k)
j ≤ aλ). (3.10)

It follows from the first term of formula (3.10) that the estimator for a mixing
weight is unbiased when it is bounded away from zero and from the second
term that the sparsity is achieved as λ serves as a lower bound for all the mixing
weights. It is straightforward to verify that with a = M

M−λ
, the estimates are

continuous in x.
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The (k+ 1)st estimate of the scale parameter θ is given by

θ̂ (k+1) =
1
n

∑n
i=1 xi − t(k)∑M
j=1 γ 0

j q̄
(k)
j

, (3.11)

where

t(k) =
M∑
j=1

q̄(k)
j

lγ
0
j e−l/θ

θγ 0
j −1(γ 0

j − 1)! F(l; γ 0
j , θ)

∣∣∣∣∣∣
θ=θ(k)

. (3.12)

The derivation is almost identical to that in Verbelen et al. (2015a).
The iteration of the EM-steps continues until |Q(φ(k)) − Q(φ(k−1))| is below

a pre-specified error bound. Let θ̂ and π̂ j ’s be the estimated values in the final
EM step and the estimate of the order of mixture

m̂ = #{π̂ j |π̂ j 
= 0, j = 1, . . . ,M}.
For notational cleanness, we rename the shape parameters γ̂ = {γ 0

j |π̂ j 
= 0, j =
1, . . . ,M} as γ̂ = (γ̂1, . . . , γ̂m̂) in the increasing order and the corresponding
mixing weights π̂ = (π̂1, . . . , π̂m̂). Finally, the estimates of the original weight
parameters α̂ = (α̂1, . . . , α̂m̂) are obtained as

α̂ j = c
π̂ j

F(l; γ̂ j , θ̂ )
(3.13)

where c is a normalizing constant such that
∑m̂

j=1 α̂ j = 1.
We remark that in order to achieve the required goodness of fit, the above

EM algorithm needs to be applied iteratively a few times with increasing values
of the tuning parameter. See Section 4 for more details.

4. SIMULATION STUDIES

In this section, we examine the goodness of fit and efficiency of the EM algo-
rithm in Section 3 through simulation studies. In particular, we pay close atten-
tion to how the EM algorithm determines the order of an Erlang mixture when
dealing with various simulated data.

In the statistical literature, the order of a mixture is often determined using
a BIC type penalty. See Yakowitz and Spragins (1968), Kass and Wasserman
(1995), Keribin (2000) and references therein. In Lee and Lin (2010) and Verbe-
len et al. (2015a), BIC is also used to determine the order of an Erlang mixture.
In the former, an EM algorithm with BIC penalty is applied without adjusting
the shape parameters of the Erlang mixture, which is similar to the approach
in this paper except the use of different penalties (BIC vs. iSCAD). The latter
applies the EM algorithm repeatedly and every time the shape parameters are
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TABLE 1

COMPARISON OF PARAMETER ESTIMATES γ, α, θ , BIC AND RUNTIME.

Method m γ α θ BIC Total Runtime

Model 7
(8,20,40,65,
95,130,170)

(0.143, 0.143, 0.143, 0.143,
0.143, 0.143, 0.143)

1 – –

I 7
(8,20,40,65,
95,133,172)

(0.131, 0.146, 0.138, 0.151,
0.152, 0.135, 0.147)

0.98517 25,745.39 5.04 mins

II 7
(9,21,42,68,
100,137,179)

(0.136, 0.141, 0.138, 0.152,
0.149, 0.133, 0.151)

0.94364 25,744.23 90.6 mins

III 7
(8,21,40,65,
95,131,172)

(0.144,0.137, 0.136, 0.151,
0.148, 0.134, 0.151)

0.98582 25,721.77 3.92 mins

adjusted in a systematical way. In following examples, we compare numerical
results from these three approaches. We refer to the approach in Lee and Lin
(2010) as Method I, that in Verbelen et al. (2015a) as Method II and ours as
Method III.

Example 4.1. In this example, data are generated from an Erlang mixture
with equally weighted seven components. The shape parameters are γ =
(8, 20, 40, 65, 95, 130, 170) and the scale parameter θ = 1. The weights α j =
1/7 = 0.143, j = 1, . . . , 7. 2,500 data points (n = 2,500) are generated assum-
ing a left truncation of l = 1. The purpose of this example is to examine the
quality of estimation given that there is a large number of modes, as well as the
computing time. We start with a “large” over-fitting model of 207 components
(i.e.M= 207 and γ 0

j = j, j = 1, 2, . . . ,M) as described in Section 3. The Tijms
approximation is used for the initial estimates for all three methods.

In this example, the tuning parameter λ takes the form of λ = c(1+√
m)

m3/2
√
n

or C(m) = c( 1
m + 1

m3/2 ), with c = 30 and ε = λ3/2. The choice of the
value of ε in connection with λ is to ensure the consistency of the estimators,
which is discussed in Yin and Lin (2016). We then apply the EM algorithm
five times consecutively with the estimates from the previous application be-

ing the initial estimates of the following application: M = 207
Ti jm′s Approx.−−−−−−−−→

(m̂ = 196, λ = 0.00328)
1st Appl.−−−−→ (m̂2 = 45, λ2 = 0.01532)

2nd Appl.−−−−→ (m̂3 =
22, λ3 = 0.03309)

3rd Appl.−−−−→ (m̂4 = 15, λ4 = 0.05033)
4th Appl.−−−−→ (m̂5 = 11, λ5 =

0.07099)
5th Appl.−−−−→ m̂ = 7.

Table 1 presents the estimation results from the three methods.
As shown in Table 1, all the three methods work well in estimating the

weights and the order of the mixture. Because adjusting the shape parameters
requires a large number of applications of the EM algorithm, Method II has a
significantly longer runtime. To confirm the goodness of fit, Figure 2 shows the
three fitted densities and the true density.
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FIGURE 2: Graphical comparison of the densities of the fitted mixtures by Method I, II and III, the true
density, and the histogram of the sample. (Color online)

FIGURE 3: Q–Q plots of the fitted model by Methods I, II and III. (Color online)

The Q–Q plots in Figure 3 show that Method I gives slightly poor body (as
expected), the fit to the tail by Method II is not as good as that by Method III.
In other words, not only is Method III more efficient in terms of runtime but
also it provides better fit to data both in the body and tail. This advantage will
become clearer in the real data application in the next section.

Although it is proven in Yin and Lin (2016) that the order estimator using
the iSCAD penalty is consistent, we also want to test how efficient our EM
algorithm is in terms of order selection. We adapt a procedure used in Chen
and Khalili (2008) in which a large number of replications are created and each
of them is used to estimate the parameter values and the order by the three
methods. 100 replications are generated and each of them again contains n =
2,500 simulated left truncated data points from the seven-component Erlang
mixture. The results are presented in Table 2.
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TABLE 2

COMPARISON OF THE ACCURACY OF THE ORDER ESTIMATES.

Method m Frequency of m

Model 7 1
I (7,8,9,10,11,12,15) (0.64,0.16,0.07,0.06,0.04,0.02,0.01)
II (7,8) (0.99,0.01)
III 7 1

TABLE 3

COMPARISON OF PARAMETER ESTIMATES γ, α, θ , BIC AND RUNTIME.

Method m γ α θ BIC Total Runtime

Model 2 (5,10) (0.5,0.5) (1,2) – –
I 4 (5, 17, 23, 27) (0.514, 0.310, 0.116, 0.060) 1.02517 32,932.50 5.57195 mins
II 4 (5, 14, 20, 28) (0.501, 0.118, 0.309, 0.072) 1.00553 32,924.21 31.93998 mins
III 3 (5, 17, 25 ) (0.514, 0.331, 0.154) 1.03002 32,919.19 0.8045 mins

The estimation results from the three methods are given in Table 2. It is clear
from Table 2 thatMethods I and II tend to over-estimate the order of a mixture.
The over-estimation by method I is significant with a high frequency of 36%.
Method II performs much better, which shows that it is necessary to adjust
shape parameters if one is to use BIC. However, the iSCAD penalty approach
is superior to both and is able to select the correct order every time.

Example 4.2. In this Example, we generate data from a generalized Erlang mix-
ture that has different scale parameters. In particular, the Erlang mixture un-
der consideration in this example has two components with shape parameters
(γ1, γ2) = (5, 10) and scale parameters (θ1, θ2) = (1, 2), respectively. The com-
ponents are equally weighted. Clearly thismixture is not from the class of Erlang
mixtures considered in this paper and hence is not recoverable. The main pur-
pose of this study is to see how well each of the three methods performs in terms
of model selection. Again we assume a left truncated point of l = 1 but 5, 000
data points are generated from the mixture.

As in Example 4.1, we choose λ = c(1+√
m)

m3/2
√
n with c = 20 and ε = λ3/2.

Again, the EM algorithm is applied consecutively until the order reaches the
lowest possible value of 3. This time, it takes three times with the following

values: M = 50
Ti jm′s Approx.−−−−−−−−→ (m̂ = 25, λ = 0.01358)

1st Appl.−−−−→ (m̂2 =
11, λ2 = 0.03347)

2nd Appl.−−−−→ (m̂3 = 6, λ3 = 0.06639)
3rd Appl.−−−−→ (m̂3 = 5, λ3 =

0.08187)
4th Appl.−−−−→ m̂ = 3.

Table 3 shows the estimation results.
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TABLE 4

COMPARISON OF THE ACCURACY OF THE ORDER ESTIMATES.

Method m Frequency of m

Model 2 1
I (3, 4, 5, 6, 7, 8, 9, 10, 11) (0.18, 0.23, 0.11, 0.14, 0.17, 0.03, 0.09, 0.04, 0.01)
II (3, 4, 5, 7) (0.39, 0.51, 0.09, 0.01)
III (3, 4, 5) (0.53, 0.35, 0.12)

FIGURE 4: Graphical comparison of the densities of the fitted mixtures by Method I, II and III, the true
density, and the histogram of the sample. (Color online)

Table 3 shows that in this situation bothMethods I and II are outperformed
by Method III in terms of model selection and runtime, as the latter requires
only three components to fit the data and the runtime is significantly shorter.
The graphical comparison of the density of the fitted models and the histogram
of the sample in Figure 4 reconfirms the goodness of fit by Method III.

Also similar to Example 4.1, we now perform the procedure of running 100
replications to see how the algorithm works in terms of model selection. The
results are provided in Table 4.

Table 4 shows that Method III tends to have smaller order than that by the
other methods.

5. APPLICATION TO A GROUP MEDICAL INSURANCE CLAIMS DATA

In this section, we apply the Erlang mixture and the EM algorithm with iSCAD
to the SOAGroupMedical Insurance Large ClaimsDatabase that can be found
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TABLE 5

COMPARISON OF BIC AND RUNTIME BY METHODS I, II AND III.

case m BIC time

I 19 1712244 2.440208 hours
II 19 1711722 13.4219 hours
III 19 1711570 0.143 hours

FIGURE 5: P–P plots of the fitted models by Methods I, II and III. (Color online)

in Beirlant et al. (2006). The data set contains 75,789 claims in 1991 that are left
truncated at $25,000. Cebrian et al. (2003) use the generalized Pareto distribu-
tion (GPD) to fit the data and compare it to the commonly used gamma, log-
normal, and log-gamma distributions. They conclude that the GPD is superior
to those traditional parametric models (see Figure 8 of Cebrian et al. (2003)).
They also show that the GPD fits the data very well with high threshold but not
as well when fitting the entire data set (see Figure 7 of Cebrian et al. (2003)).

In this section, we fit the Erlang mixture to the entire data set and show that
the Erlang mixture can simultaneously fit both the body and tail of the data
well. In this example, the tuning parameter λ takes the form of λ = c(1+m3)

m4
√
n or

C(m) = c( 1
m + 1

m4 ), with c = 0.0845 and ε = λ3/2, and We apply EM algorithm

two times with the following values: M = 38
Ti jm′s Approx.−−−−−−−−→ (m̂1 = 23, λ =

1.334632e − 05)
1st Appl.−−−−→ (m̂2 = 21, λ2 = 1.461777e − 05)

2nd Appl.−−−−→ m̂ = 19. For
comparison, we also fit the Erlang mixture to data using Methods I and II.

Table 5 showsMethod III is obviously superior toMethods I and II in terms
of runtime and BIC. For completeness, we provides the estimated parameter
values by these three methods in Tables A1–A3 in the appendix.

The three panels in each of the following figures show the P–P plots andQ–Q
plots of the fitted Erlang mixtures.

The P–P plots by all three methods in Figures 5 are satisfactory, implying
that the fitted Erlang mixtures fit the body of the data well. However, the Q–
Q plots in Figure 6 tell a different story. Although Methods I and II produce
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TABLE 6

COMPARISON OF VARS OF THE FITTED MIXTURES TO THE NON-PARAMETRIC VAR.

Confidence Level Non-Parametric I II III

80.0% 69,332 69,314 69,761 69,420
85.0% 81,456 81,785 81,765 81,523
90.0% 101,846 102,423 101,775 101,942
95.0% 147,563 146,411 147,080 147,114
97.5% 205,397 206,069 205,467 206,102
98.5% 259,236 258,455 259,205 258,599
99.0% 305,970 307,031 306,947 305,963
99.5% 406,225 407,364 407,582 409,180
99.9% 721,119 727,059 727,538 730,098
99.95% 970,505 989,074 971,888 971,057
99.99% 1,701,388 1,267,732 1,770,397 1,775,483
99.995% 1,963,024 1,335,436 2,005,718 1,985,626
99.997% 2,089,817 1,378,500 2,195,287 2,096,864
99.999% 3,734,111 1,459,130 2,394,833 3,967,590

FIGURE 6: Q–Q plots of the fitted models by Methods I, II and III. (Color online)

reasonable Q–Q plots, Method III is significantly better in terms of right tail
fitting.

We can easily calculate VaR and TVaR of the fitted Erlang mixtures using
formulas (2.4) and (2.6) in Section 2. Non-parametric VaR and TVaR are calcu-
lated using the empirical distribution. More precisely, the non-parametric VaR
at security level p is the solution of Fn(VaRp) = p for where Fn(x) =

∑n
i=1 I(xi≤x)

n ,

and TVaRp =
∑n

i=1(xi ·I(xi>VaRp))∑n
i=1 I(xi>VaRp)

. Using non-parametric VaR and TVaR as
benchmarks, we show in Tables 6 and 7 that Method III produces a much more
accurate estimate for both VaR andTVaR, especially at very high security levels.
In other words, the iSCAD penalty is more powerful than the BIC penalty in
capturing the right tail heaviness of data.
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TABLE 7

COMPARISON OF TVARS OF THE FITTED MIXTURES TO THE NON-PARAMETRIC TVAR.

Confidence Level Non-Parametric I II III

80.0% 136,265 135,638 136,146 136,236
85.0% 156,692 155,820 156,411 156,645
90.0% 189,648 188,167 189,246 189,600
95.0% 258,456 255,501 257,789 258,351
97.5% 345,564 339,489 343,951 345,350
98.5% 422,794 412,847 420,273 422,383
99.0% 494,014 479,048 489,937 493,205
99.5% 637,748 608,219 629,990 636,246
99.9% 1,151,879 1,009,962 1,110,367 1,150,762
99.95% 1,458,602 1,164,513 1,376,645 1,457,699
99.99% 2,447,259 1,355,116 2,062,714 2,463,663
99.995% 3,043,534 1,411,431 2,255,474 3,041,870
99.997% 3,365,433 1,449,224 2,359,357 3,715,832
99.999% 4,518,420 1,520,749 2,499,270 4,051,506

6. CONCLUSION

In this paper, we present a new thresholding penalty function and a correspond-
ing EM algorithm for estimation of Erlang mixtures. Using simulation studies
and a real data application, we have demonstrated the efficiency of the EM al-
gorithm in estimating the model parameters and in determining the order of
the mixture. Moreover, in Yin and Lin (2016), we prove that the order estimator
is consistent. In the future, we will explore the use of the proposed penalty for
other non-Gaussian mixtures and application to loss data from property and
casualty insurance.
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APPENDIX : PARAMETER VALUES OF
ERLANGMIXTURE ESTIMATED BY

THREEMETHODS

TABLE A1

ESTIMATES OF SHAPE, WEIGHT AND SCALE PARAMETERS BY METHOD I.

γ j α j θ

1 0.9503691692 16621.91
4 0.0003052692
5 0.0166746763
6 0.0210814331
7 0.0014179692
8 0.0001729291
9 0.0001442196
10 0.0002659201
11 0.0009092656
12 0.0028866802
13 0.0016789623
14 0.0010294484
15 0.0005081389
19 0.0001214971
21 0.0009733723
23 0.0005471604
32 0.0006582970
53 0.0001392742
70 0.0001163179
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TABLE A2

ESTIMATES OF SHAPE, WEIGHT AND SCALE PARAMETERS BY METHOD II.

γ j α j θ

1 6.670521e-01 13008.11
4 6.492856e-05
5 2.438996e-01
6 1.464163e-02
10 2.03565e-04
11 3.21249e-02
12 1.996671e-02
13 7.804933e-05
19 1.492888e-03
20 1.22534e-02
21 9.353468e-04
30 6.340282e-05
31 2.739182e-03
32 1.914173e-03
45 1.633296e-03
68 5.30461e-04
89 2.48693e-04
136 1.12031e-04
174 4.568729e-05
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TABLE A3

ESTIMATES OF SHAPE, WEIGHT AND SCALE PARAMETERS BY METHOD III.

γ j α j θ

6 4.357146e-01 3574.662
12 2.082148e-01
15 1.391404e-01
20 7.625732e-02
25 3.480783e-02
30 3.982403e-02
40 2.684655e-02
50 1.425068e-02
65 1.152380e-02
85 6.516467e-03
115 3.886971e-03
155 1.721645e-03
200 4.708100e-04
250 3.426637e-04
300 2.451458e-04
370 8.071734e-05
480 7.057723e-05
550 5.856789e-05
1100 2.638905e-05
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